
MPTCP Working Group S. Barre
Internet-Draft G. Detal
Intended status: Informational O. Bonaventure
Expires: July 16, 2015 UCLouvain
 January 12, 2015

TFO support for Multipath TCP
draft-barre-mptcp-tfo-01

Abstract

 TCP Fast Open (TFO) is a TCP extension that allows sending data in
 the SYN, instead of waiting until the TCP connection is established.
 This document describes what parts of Multipath TCP must be adapted
 to support it, and how TFO and MPTCP can operate together.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 16, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Barre, et al. Expires July 16, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft MPTCP TFO support January 2015

Table of Contents

1. Introduction . 2
2. TFO cookie request with MPTCP 3
3. Data sequence mapping under TFO 3
4. Early context creation in server 4
5. Using TFO to avoid useless MPTCP negotiations 5
6. Using TFO with MP_JOIN 5
7. Connection establishment examples 5
8. Middlebox interactions 7
9. Security considerations 8
10. Conclusion . 9
11. Acknowledgements . 9
12. Informative References 10
Appendix A. Implementation status 10

 Authors' Addresses . 11

1. Introduction

 TCP Fast Open, described in [I-D.ietf-tcpm-fastopen], has been
 introduced with the objective of gaining one RTT before transmitting
 data. This is considered a valuable gain as very short connections
 are very common, especially for HTTP request/response schemes.
 MPTCP, on the other hand, has been defined in [RFC6824] to add
 multipath support to TCP, where a TCP flow is divided in several TCP
 subflows. Given that MPTCP can be applied transparently to any TCP
 socket, without the application knowing, it should be able to support
 TCP fast open when the application asks for it.

 When doing that, one important thing to examine is the option length
 consumed in segments that would carry both a TFO and an MPTCP option.
 The handling of MPTCP data sequence mappings must also be updated to
 take into account the data that is sent together with the SYN or the
 SYN+ACK. A third issue to handle is the state creation in the
 server: TFO allows the server to create TCP state as soon as a SYN is
 received. With MPTCP, even more state is created, and it may be
 useful to avoid this in a situation where MPTCP does not work but TFO
 does.

 The rest of this document is organized as follows:

Section 2 describes the TFO cookie request, in the case of a
 Multipath TCP flow. Section 3 proposes a way to map SYN data to the
 data sequence number space, while taking middleboxes into account.
 In Section 4, it is explained that the MP_CAPABLE option is no longer
 always necessary in the third ack of the three-way handshake.

Section 5 presents two ways to avoid useless MPTCP context creations
 in the server, one for client implementations, the other for server

https://datatracker.ietf.org/doc/html/rfc6824

Barre, et al. Expires July 16, 2015 [Page 2]

Internet-Draft MPTCP TFO support January 2015

 implementations, as a TFO extension. Section 6 takes the MP_JOIN
 case into consideration. Finally, we describe middlebox interactions
 in Section 8, and security considerations in Section 9.

2. TFO cookie request with MPTCP

 When a TFO client first connects to a server, it cannot immediately
 include data in the SYN, for security reasons
 [I-D.ietf-tcpm-fastopen]. Instead, it requests a cookie that will be
 used in subsequent connections. This is done with the TCP cookie
 request/response options, of resp. 2 bytes and 6-18 bytes (depending
 on the chosen cookie length).

 TFO and MPTCP can be combined provided that the total length of their
 options does not exceed the maximum 40 bytes possible in TCP:

 o In the SYN: MPTCP uses a 12-bytes long MP_CAPABLE option. The
 MPTCP and TFO options sum up to 14 bytes. [RFC6824] mentions in

Appendix A that SYN packet options typically sum up to 19 bytes,
 or 24 bytes where implementations pad each option up to a word
 boundary. Even in the worst case, this fits the maximum option
 space.

 o In the SYN+ACK: MPTCP still uses a 12-bytes long MP_CAPABLE
 option, but now TFO can be as long as 18 bytes. Since the maximum
 option length may be exceeded, it is up to the server to solve
 this by using a shorter cookie or pad the whole option block
 instead of each option separately. Alternatively, the server may
 decide to fallback to MPTCP-only (by not giving a cookie at all),
 or to TFO-only. As an example, if we consider that 19 bytes are
 used for classical TCP options, the maximum possible cookie length
 would be of 7 bytes. The consequence of this, from a security
 viewpoint, is explored in Section 9. Note that the same
 limitation applies to subsequent subflows, for the SYN packet
 (because the client then echoes back the cookie to the server).

 o In the third ACK: Nothing special compared to MPTCP, since no TFO
 option is used there.

 Once the cookie has been successfully exchanged, the rest of the
 connection is just regular MPTCP. The rest of this document assumes
 that the cookie request has been exchanged, and that data can be
 included in the SYN.

3. Data sequence mapping under TFO

 MPTCP [RFC6824] uses, in the TCP establishment phase, a key exchange
 that is used to generate the Initial Data Sequence Numbers (IDSNs).

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6824

Barre, et al. Expires July 16, 2015 [Page 3]

Internet-Draft MPTCP TFO support January 2015

 More precisely, [RFC6824] states in section 3.1 that "The SYN with
 MP_CAPABLE occupies the first octet of data sequence space, although
 this does not need to be acknowledged at the connection level until
 the first data is sent". With TFO, one way to handle the data sent
 together with the SYN would be to consider an implicit DSS mapping
 that covers that SYN segment (since there is not enough space in the
 SYN to include a DSS option). The problem with that approach is that
 if a middlebox modifies the TFO data, this will not be noticed by
 MPTCP because of the absence of a DSS-checksum. For example, a TCP
 (but not MPTCP)-aware middlebox could insert bytes at the beginning
 of the stream and adapt the TCP checksum and sequence numbers
 accordingly. With an implicit mapping, this would give to client and
 server a different view on the DSS-mapping, with no way to detect
 this inconsistency as the DSS checksum is not present. One way to
 solve this is to simply consider that the TFO data is not part of the
 Data Sequence Number space: the SYN with MP_CAPABLE still occupies
 the first octet of data sequence space, but then the first non-TFO
 data byte occupies the second octet. This guarantees that, if the
 use of DSS-checksum is negotiated, all data in the data sequence
 number space is checksummed. We also note that this does not entail
 a loss of functionality, because TFO-data is always sent when only
 one path is active.

4. Early context creation in server

 In order to enable the server to receive and send data before the end
 of the three-way handshake, TFO allows creating state on the server
 as soon as the SYN is received if a valid cookie is provided. The
 MPTCP state should then also be created upon SYN reception (see
 exceptions for that in Section 5).

 DISCUSSION: Doing that allows relaxing the MPTCP MP_CAPABLE exchange,
 in that the sender's and receiver's keys are no longer required in
 the third ack of the three-way handshake, because their role was
 precisely to compensate for the absence of server state until the end
 of the establishment. The consequence is that the MP_CAPABLE option
 can simply be removed from the third ack. However, an MPTCP option
 must still be present when concluding the three-way handshake, to
 confirm to the server that its own MP_CAPABLE option (in the SYN+ACK)
 has been correctly received by the client. The DSS option can
 replace the MP_CAPABLE option, while simultaneously allowing the
 transmission of more data in the third ack. Moreover, providing a
 DSS option to the server early allows faster establishment of new
 subflows (see [RFC6824], Section 3.1).

 In order to decide whether it can send a third ack with DSS-only
 instead of MP_CAPABLE, a client must verify if the TFO data has been
 at least partially acknowledged. If the SYN+ACK only acknowledges

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6824#section-3.1

Barre, et al. Expires July 16, 2015 [Page 4]

Internet-Draft MPTCP TFO support January 2015

 the SYN, TFO may be not supported in the server, or the cookie may
 have been filtered by the network. There is no guarantee that the
 MPTCP state has been created, and the third ack should contain the
 MP_CAPABLE option, with the client and server keys.

5. Using TFO to avoid useless MPTCP negotiations

 The TFO cookie, sent in a SYN, indicates that a previous connection
 has been successfully established, and that TCP state can safely be
 created. It does not however say anything about whether the MPTCP
 options are filtered or not in the network. It is thus possible that
 a server creates an MPTCP context upon SYN+TFO cookie reception, then
 actually needs to discard it after having discovered that the MPTCP
 options are filtered.

 One way to solve this would be for the client to cache destinations
 that do support MPTCP. TFO allows sending data together with the SYN
 starting at the second connection. The first one is used to learn
 the cookie from the server. It could also be used to learn whether
 MPTCP can be used with the peer.

 DISCUSSION: The other, compatible way to solve the problem is to
 extend TFO and cache the Multipath Capability in the cookie generated
 by the server. The server could modify its cookie computation, to
 include multipath capability information in the cookie. Then, upon
 SYN+TFO cookie reception, the server could easily determine if the
 initial TFO flow was a successful MPTCP connection or not. The
 problem with this approach is that the server does not know yet
 whether the flow is multipath-capable when sending the TFO cookie.
 It could then send a first pessimistic cookie, as
 GetCookie(IP_Address, mp_capable=false) (adapted from
 [I-D.ietf-tcpm-fastopen], Section 4.1.2). Then, when it is
 determined that the flow is Multipath Capable (third ack received
 with an MPTCP option), a new cookie=GetCookie(IP_Address,
 mp_capable=true) can be generated and sent in the FIN to ensure
 reliable delivery.

6. Using TFO with MP_JOIN

 TFO must not be used when establishing joined subflows. Doing that
 would be in contradiction with [RFC6824], that states in section 3.2
 that "It is not permitted to send data while in the PRE_ESTABLISHED
 state". Using TFO with joined subflows would mean that data is sent
 even before getting to the PRE_ESTABLISHED state.

7. Connection establishment examples

https://datatracker.ietf.org/doc/html/rfc6824

Barre, et al. Expires July 16, 2015 [Page 5]

Internet-Draft MPTCP TFO support January 2015

 In this section we show a few examples of possible TFO+MPTCP
 establishment scenarios. For representing segments, we use the
 Tcpdump syntax.

 Before a client can send data together with the SYN, it must request
 a cookie to the server, as shown in Figure 1. This is done by simply
 combining the TFO and MPTCP options.

 client server
 | |
 | S 0(0) <MP_CAPABLE>,<TFO cookie request> |
 | ---> |
 | |
 | S. 0(0) ack 1 <MP_CAPABLE>,<TFO cookie> |
 | <--- |
 | |
 | . 0(0) ack 1 <MP_CAPABLE> |
 | ---> |
 | |

 Figure 1: Cookie request

 Once this is done, the received cookie can be used for TFO, as shown
 in Figure 2. The MP_CAPABLE is no longer required for the third ack,
 as explained in Section 4. Note that the last segment in the figure
 has a TCP sequence number of 21, while the DSS subflow sequence
 number is 1 (because the TFO data is not part of the data sequence
 number space, as explained in Section 3.

 client server
 | |
 | S 0(20) <MP_CAPABLE>,<TFO cookie> |
 | ---> |
 | |
 | S. 0(0) ack 21 <MP_CAPABLE> |
 | <--- |
 | |
 | . 1(100) ack 21 <DSS ack=1 seq=1 ssn=1 dlen=100> |
 | <--- |
 | |
 | . 21(20) ack 101 <DSS ack=101 seq=1 ssn=1 dlen=20> |
 | ---> |
 | |

 Figure 2: The server supports TFO

Barre, et al. Expires July 16, 2015 [Page 6]

Internet-Draft MPTCP TFO support January 2015

 In Figure 3, the server does not support TFO. The client detects
 that no state is created in the server (as no data is acked), and now
 sends the MP_CAPABLE in the third ack, in order for the server to
 build its MPTCP context at then end of the establishment. Now, the
 tfo data, retransmitted, becomes part of the data sequence mapping
 because it is effectively sent (in fact re-sent) after the
 establishment.

 client server
 | |
 | S 0(20) <MP_CAPABLE>,<TFO cookie> |
 | ---> |
 | |
 | S. 0(0) ack 1 <MP_CAPABLE> |
 | <--- |
 | |
 | . 21(0) ack 1 <MP_CAPABLE> |
 | ---> |
 | |
 | . 1(20) ack 1 <DSS ack=1 seq=1 ssn=1 dlen=20> |
 | ---> |
 | |
 | . 0(0) ack 21 <DSS ack=21 seq=1 ssn=1 dlen=0> |
 | <--- |

 Figure 3: The server does not support TFO

 It is also possible that the server acknowledges only part of the TFO
 data, as illustrated in Figure 4.

 client server
 | |
 | S 0(1000) <MP_CAPABLE>,<TFO cookie> |
 | ---> |
 | |
 | S. 0(0) ack 501 <MP_CAPABLE> |
 | <--- |
 | |
 | . 501(500) ack 1 <DSS ack=1 seq=1 ssn=1 dlen=500> |
 | ---> |
 | |

 Figure 4: Partial data acknowledgement

8. Middlebox interactions

Barre, et al. Expires July 16, 2015 [Page 7]

Internet-Draft MPTCP TFO support January 2015

[RFC6824], Section 6, describes middlebox interactions for Multipath
 TCP. This document does not define any new option compared to MPTCP
 or TFO. It defines a combination of them.

 TFO also defines how an implementation should react when the TFO SYN
 is lost (fallback to regular TCP, [I-D.ietf-tcpm-fastopen]

Section 4.2.1).

 We propose to remove the MP_CAPABLE option from the third ack when
 TFO is used, based on the assumption that the context has been
 created already in the server upon SYN reception. Should the server
 actually not create this state, it would not be able to create its
 MPTCP state and would fallback to regular TCP. The state is not
 created in the server if it has no TFO support or the cookie is
 invalid, but in that case only the SYN is acknowledged, and the
 client does send the MP_CAPABLE option.

 The other case where the server does not create MPTCP state is when
 the cookie includes a "mp_capable=false" information. In that case,
 regular TCP is used to take into account middleboxes that prevent
 correct MPTCP operation.

 Even though this document presents mechanisms for collaboration
 between MPTCP and TFO, the filtering of one will not stop the other
 from working. For example, if a TFO option is dropped, MPTCP will
 fallback to sending MP_CAPABLE in third_ack, because no TFO data is
 acked. If the server stores MPTCP information in the cookie, this
 will be completely opaque to the network, and even to the client.
 Should that cookie be transformed or lost, it would not be accepted
 anymore by the server, which would fallback to regular MPTCP
 communication, or regular TCP if MPTCP options are also filtered or
 modified.

 The problem of middleboxes that alter the TFO data is solved by the
 fact that TFO data is not part of the Data Sequence Number space, as
 explained in Section 3.

9. Security considerations

 Compared to using TFO or MPTCP alone, implementing the present
 combination could lead to more state created in the server, since
 MPTCP now creates state as soon as the first SYN is received. This
 is however not considered as a problem, for the following reasons:

 o The server will only create state when a valid TFO cookie is
 received. This guarantees that a successful TCP connection has
 been previously established with the same peer.

https://datatracker.ietf.org/doc/html/rfc6824#section-6

Barre, et al. Expires July 16, 2015 [Page 8]

Internet-Draft MPTCP TFO support January 2015

 o It remains possible that a useless MPTCP context is created upon
 SYN reception (due to TFO support but MPTCP options being filtered
 by the network). This is more an optimization issue than a
 security issue given the TFO cookie protection already present.

Section 5 still proposes a solution to avoid creating MPTCP state
 in that case.

 o When under memory pressure, a server always has the option to
 refuse the client cookie. In that case, the session establishment
 will happen without data, and the client will send the MP_CAPABLE
 option in the third ack so that the server can create the MPTCP
 context at that time.

 As mentioned in Section 2, it may be required to reduce the length of
 the cookie when MPTCP and TFO are used together. This can become a
 security issue when attackers and networks become fast enough for a
 brute force attack to be successful. An option to solve this would
 be to use TCP payload to store additional options, as suggested in

[RFC6824], Section 5. Another way would be to allow longer TCP
 options by using an "Extended Data Offset Option"
 [I-D.touch-tcpm-tcp-edo]. The problem with this is that the most
 problematic segment in the present case is the SYN (with long TFO
 cookie and MP_CAPABLE MPTCP option), for which it is more difficult
 to apply the Extended Data Offset Option ([I-D.touch-tcpm-tcp-edo],
 Section 7.7).

10. Conclusion

 In this document, we have proposed minor extensions to MPTCP and TFO
 to allow them to operate together. In particular, we proposed
 excluding the TFO data from the data sequence number space. We
 explained that TFO allows to relax the MPTCP establishment in that
 the MP_CAPABLE option of the third ack can be removed in some cases.
 We also emphasized that such a combination augments the size of the
 TCP options, already quite large, although the combination is still
 possible with common TCP options and limited cookie length. We also
 proposed a way to cache multipath capability information in the
 client or in the TFO cookie. Finally, we examined potential
 middlebox interaction problems, or security problems that would arise
 from that combined operation.

11. Acknowledgements

 This work was supported by the FP7-Trilogy2 project and by the
 Belgian Walloon Region under its FIRST Spin-Off Program (RICE
 project).

https://datatracker.ietf.org/doc/html/rfc6824#section-5

Barre, et al. Expires July 16, 2015 [Page 9]

Internet-Draft MPTCP TFO support January 2015

12. Informative References

 [I-D.ietf-tcpm-fastopen]
 Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", draft-ietf-tcpm-fastopen-10 (work in
 progress), September 2014.

 [I-D.touch-tcpm-tcp-edo]
 Touch, J. and W. Eddy, "TCP Extended Data Offset Option",

draft-touch-tcpm-tcp-edo-03 (work in progress), July 2014.

 [MultipathTCP-Linux]
 Paasch, C., Barre, S., and . et al, "Multipath TCP
 implementation in the Linux kernel", n.d.,
 <http://www.multipath-tcp.org>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

Appendix A. Implementation status

 In this section, we present the report of the implementation of this
 draft inside the Linux reference implementation of Multipath TCP
 [MultipathTCP-Linux]. The support of TFO in the MPTCP stack has been
 implemented on the 3.14 kernel (MPTCP v0.89).

 The main design choices of this implementation are the following:

 o Minimize the modification to the current MPTCP and TFO stacks,
 i.e. let the TFO stack deal with sending data, receiving data
 inside the SYN.

 o Create the MPTCP state when receiving a SYN with a valid token on
 the server side as defined in Section 4.

 o Map the remaining data segments in the receive and send buffers to
 MPTCP data sequence numbers.

 This latter point needs further explanation. First, in the current
 reference implementation of MPTCP, the MPTCP state is created upon
 reception of the SYN+ACK on the client-side. The implementation
 however did the MPTCP state allocation before processing the actual
 acknowledgement at the subflow level. This means that data (even
 acknowledged by the SYN+ACK) remains in the send buffer at the time
 of the allocation (which contained only the SYN in the case of
 regular MPTCP). We modified this behaviour to ensure that only
 unacknowledged data remains in the send buffer when allocating the

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-10
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-tcp-edo-03
http://www.multipath-tcp.org
https://datatracker.ietf.org/doc/html/rfc6824

Barre, et al. Expires July 16, 2015 [Page 10]

Internet-Draft MPTCP TFO support January 2015

 state. Moreover, as the data was initially sent over the regular TCP
 flow, they had no MPTCP sequence numbers (the MPTCP state did not
 exist during the initial sendto() call). After the allocation of the
 MPTCP state, we modify these sequence numbers such that they are
 mapped starting at "IDSN + 1". This effectively gives the data
 sequence number "IDSN + 1" to the first byte following the
 establishement, since the acknowledged TFO data has been removed
 fromt the queues at this point. This data will then follow the same
 path as for data sent via a regular write() call.

 As is the case for unacknowledged data on the client-side, the
 server-side can also have data in the receive buffer (the data sent
 in the SYN). We perform the same operation by mapping this data from
 TCP to MPTCP sequence numbers. TFO data is then mapped ahead of the
 IDSN, so as to ensure, again, that the first byte following the
 establishment has the data sequence number "IDSN + 1".

 As of this writing, the implementation still generates a regular
 third acknowledgment with a MP_CAPABLE option (see Section 4) and it
 does not take benefit from the TFO cache to avoid useless MPTCP
 negotiation (see Section 5).

Authors' Addresses

 Sebastien Barre
 UCLouvain

 Email: sebastien.barre@uclouvain.be

 Gregory Detal
 UCLouvain

 Email: gregory.detal@uclouvain.be

 Olivier Bonaventure
 UCLouvain

 Email: Olivier.Bonaventure@uclouvain.be

Barre, et al. Expires July 16, 2015 [Page 11]

