
Internet-Draft D. Barton (CRC for DST)
<draft-barton-gss-api-sec-party-00.txt> 22 February 1996

Multi-party Security Contexts Within the GSS-API

STATUS OF THIS MEMO

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet- Drafts
 Shadow Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

ABSTRACT

 The Generic Security Service Application Program Interface (GSS-API),
 as defined in RFC-1508 and subsequent Internet Draft documents,
 provides security services to callers (applications) in a generic
 fashion, supportable with a range of underlying mechanisms and
 technologies, allowing source-level portability of applications to
 different environments.

 Multi-party security contexts, where security context information is
 shared amongst more than two session peers, have received little
 consideration within the scope of the GSS-API. This document
 describes details of one approach for supporting multi-party security
 services within the GSS-API.

https://datatracker.ietf.org/doc/html/draft-barton-gss-api-sec-party-00.txt
https://datatracker.ietf.org/doc/html/rfc1508

Barton Document Expiration: 22 August 1996 [Page 1]

Internet-Draft 22 February, 1995

1. Introduction

 Multi-party security contexts have been overlooked in the past,
 possibly due in part to the emphasis on the client-server paradigm
 where only two parties need be involved in the context. There is a
 growing need for the ability to seamlessly include multiple parties
 in a single security context. This draft defines a number of simple
 modifications and additions to the GSS-API enabling multi-party
 context support.

2. Multi-party security

 In some situations it is desirable to share security context
 information between a group of parties (entities, individuals, peers,
 what have you). For example, multi-object bindings, secure
 conversations or even electronic contract negotiation may require
 multi-party security contexts for authentication, confidentiality,
 integrity, and other security services.

 The existing specifications for the GSS-API provide no support for
 multi-party contexts. Separate contexts must be set up between each
 pair of parties, simulating multi-party contexts. This approach
 requires N(N-1)/2 contexts, where N is the number of parties. As N
 increases the management complexity and overheads increase to
 unmanagable levels. This is a limiting factor in scaling this
 "solution". The method proposed within this document provides a
 single context handle for each multi-party context, simplifying the
 management required by the application, and maintaining the paradigm
 of the GSS-API.

 There are two methods of establishing a multi-party security context.
 Firstly, initiating a context directly with all of the parties via a
 single call, and secondly, establishing a two or more party context
 and subsequently adding parties to the context over time. These
 approaches are respectively called "static" and "dynamic".
 Definitions for calls supporting both approaches will be provided in
 the following sections, with discussion of each call's behaviour,
 input and output parameters.

 Throughout the following discussion the term "party" will be used to
 refer to a participating, authenticated entity. The GSS-API terms
 these entities as "peers" or "principals", and other systems may use
 other names. The term "party" is intended to be interchangeable with
 any of these terms.

Barton Document Expiration: 22 August 1996 [Page 2]

Internet-Draft 22 February, 1996

2.1 Static Multi-party Contexts

 Static multi-party context establishment occurs via a single call
 interface, yielding a handle to context data which, upon successful
 completion of the initialisation process, is shared by all
 participating parties. This behaviour is a generalisation of the
 standard GSS-API context initialisation interface enables context
 initialisation between two parties. The interface for this call is
 based largely on the gss_init_sec_context() call.

 Only one call is required for static multi-party context initiation.
 Without the additional extensions defined for dynamic security
 contexts, the group of parties involved in the context cannot change,
 hence the term "static".

 A new call for the GSS-API is defined which enables multi-party
 context initialisation. This call is named
 gss_init_group_sec_context() and has the following interface
 characteristics:

 Inputs:

 o name_list NAME_LIST,

 o other inputs as per gss_init_sec_context().

 Outputs:

 o all outputs correspond to gss_init_sec_context().

 This call processes the input parameter, name_list, and attempts to
 initialise a security context shared with each nominated party.
 Network interactions (where necessary) may cause this call to block
 as is the case with gss_init_sec_context().

 Return major_status codes:

 o GSS_S_GROUP_UNSUPPORTED indicates that the underlying mechanism
 has no support for multi-party contexts.

 o others as per gss_init_sec_context().

 This call behaves similarly in all ways to the gss_init_sec_context()
 call. The initiator calls this function, supplying a list of names
 for inclusion in the context. A token is returned which must be
 passed to all named parties for context acceptance. Multi-phase
 token exchange (continuation) may occur between the initiator and
 acceptors if required.

Barton Document Expiration: 22 August 1996 [Page 3]

Internet-Draft 22 February, 1996

2.2 Dynamic Multi-party Contexts

 Dynamic multi-party contexts are somewhat more complicated than
 standard two party or static multi-party contexts due to extra
 management and maintenance requirements. Addition of new parties
 requires access control and a process by which a party external to
 the context may gain entry to the context. Context data must be
 maintained consistently across the group of parties in the context,
 and parties should have a simple way of determining the list of
 parties with whom they are sharing the context. Specifications are
 given below for the interface characteristics of three calls
 supporting some of the services mentioned previously;
 gss_add_party(), gss_vote() and gss_context_parties() respectively.

 The gss_add_party() call effectively performs a context initiation
 with the nominated party using existing context data. This call will
 therefore behave similarly to the gss_init_sec_context() call in many
 ways. Continuation may occur in the intialisation phase, and
 multi-phase token exchange may be required for context data
 initialisation (sharing). The gss_add_party() call is intended to
 yield tokens which can be fed as input directly into the
 gss_accept_sec_context() call by the acceptor, rather than requiring
 a separate API call for accepting addition to a context.

 The gss_add_party() call:

 Inputs:

 o new_member_name INTERNAL NAME specifies the name of the new
 member to add to the group.

 o context_handle CONTEXT HANDLE group context data established using
 gss_init_group_sec_context() or gss_init_sec_context().

 o output_token OCTET STRING context token generated by successful
 call, to be passed to the new peer for processing by
 gss_accept_sec_context() or used as input data for multi-phase
 initiation (continuation).

 Outputs:

 o output_token OCTET STRING as above.

 Return major_status codes:

 o GSS_S_SUCCESS Successful completion

 o GSS_S_FAILURE Failure. See minor_status for more information.

 o GSS_S_CONTEXT_EXPIRED The context has already expired

Barton Document Expiration: 22 August 1996 [Page 4]

Internet-Draft 22 February, 1996

 o GSS_S_CREDENTIALS_EXPIRED The context is recognized, but
 associated credentials have expired

 o GSS_S_NO_CONTEXT The context_handle parameter did not identify a
 valid context

 o GSS_S_NO_CRED The supplied credentials did not reference any
 credentials.

 o GSS_S_BAD_NAME The target_name value provided in the input_token
 was ill-formed.

 o GSS_S_VOTING_INCOMPLETE Indicates that voting is not yet
 finalised.

 o GSS_S_CONTINUE_NEEDED as per gss_init_sec_context().

 The initiator calls gss_add_party(), supplying the context handle and
 details of the party to be added. The initiator must then pass an
 application message to all other parties, voters, informing them, at
 the application level, that an add request has been made. The voters
 must then register their vote using gss_vote(). Meanwhile the
 initiator is polling the mechanism using gss_add_party(), and
 continues to do so until all votes are registered. Once all votes
 are registered, addition success can be determined. If addition is
 successful, gss_add_party() returns a token which must be passed to
 the party being added, for context acceptance using
 gss_accept_sec_context().

 The process by which the application calling gss_vote() determines
 the value of the vote it casts can be determined in a number of ways.
 Firstly, the application could arbitrarily acknowledge all add
 requests. Secondly, an access control list or trust scheme may be
 used to determine whether or not to acknowledge an add request.
 Alternatively, the user (if the application is a user-level process)
 may be prompted for a response, particularly in the case of an
 on-line, multi-party conversation.

 The gss_vote() call:

 Inputs:

 o context_handle CONTEXT HANDLE group context data established using
 gss_init_group_sec_context or gss_init_sec_context.

 o vote_status BOOLEAN indicating either "yes"/TRUE or "no"/FALSE
 response to the addition of the specified party.

 Outputs:

 o none

Barton Document Expiration: 22 August 1996 [Page 5]

Internet-Draft 22 February, 1996

 Return major_status codes:

 o GSS_S_SUCCESS Successful completion

 o GSS_S_FAILURE Failure. See minor_status for more information.

 o GSS_S_CONTEXT_EXPIRED The context has already expired

 o GSS_S_CREDENTIALS_EXPIRED The context is recognized, but
 associated credentials have expired

 o GSS_S_NO_CONTEXT The context_handle parameter did not identify a
 valid context

 o GSS_S_NO_CRED The supplied credentials did not reference any
 credentials.

 There are alternatives to the voting-based style of access control.
 Access control lists could be used, trust-based methods or even
 simply security policy. However, the design attempts to allow for
 the greatest flexibility, whilst providing a useful means of access
 control. The voting scheme was seen to satisfactorily address these
 requirements.

 The third call defined for the dynamic multi-party contexts
 specification enables a party to determine the list of parties
 sharing the context. The gss_context_parties() call consults the
 mechanism for an authoritative reply as to the participating members
 of the context at the current time. On successful completion the
 call returns a list of the names of all context members.

 The gss_context_parties() call:

 Inputs:

 o context_handle CONTEXT HANDLE group context data established
 using gss_init_group_sec_context() or gss_init_sec_context().

 Outputs:

 o party_list NAME LIST The list of internal names of all parties
 sharing the context data

 Return major_status codes:

 o GSS_S_SUCCESS Successful completion

 o GSS_S_FAILURE Failure. See minor_status for more information.

 o GSS_S_CONTEXT_EXPIRED The context has already expired

Barton Document Expiration: 22 August 1996 [Page 6]

Internet-Draft 22 February, 1996

 o GSS_S_CREDENTIALS_EXPIRED The context is recognized, but
 associated credentials have expired

 o GSS_S_NO_CONTEXT The context_handle parameter did not identify a
 valid context

 o GSS_S_NO_CRED The supplied credentials did not reference any
 credentials.

3 New Data Structures

 A new data structure is necessary for multi-party context support to
 enable a list of names to be passed into the
 gss_init_group_sec_context() call and return from
 gss_context_parties(). This data structure is a compound of an
 existing GSS-API structure in a basic list data type. A C binding
 for this data structure might be defined as follows:

 typedef struct _name_list {
 gss_name_type name;
 struct _name_list *next;
 }
 name_list;

 Only one other possible change to GSS-API data structures might be
 required. The context data structure is typically highly mechanism
 dependant, but generally contains the names of all parties involved
 in the context. This data structure may, in some cases, need to be
 generalised to enable the storage of more than two party names,
 typically in the form of a single local name, and a list of the names
 of all other parties in the context. This data type must also be
 dynamic and able to be updated throughout the lifetime of the
 context, to enable appropriate handling of addition of new parties to
 the context.

4 References

 Linn, J., "Generic Security Service Application Program Interface",
RFC 1508, September 1993.

 Wray, J., "Generic Security Service API : C-Bindings", RFC 1509,
 September 1993.

5 Acknowledgements

 The author would like to acknowledge the assistance in preparing this
 draft and designing the original forms of multi-party security for
 implementation. The thanks of the author are extended to: Dr. Luke
 O'Connor (DSTC), Gary Gaskell (DSTC), John Linn (OpenVision), David

https://datatracker.ietf.org/doc/html/rfc1508
https://datatracker.ietf.org/doc/html/rfc1509

 Arnold (DSTC) and many others.

Barton Document Expiration: 22 August 1996 [Page 7]

Internet-Draft 22 February, 1996

6 Appendix A : C-Bindings

OM_uint32 gss_init_group_sec_context(
 OM_uint32*, /* minor_status */
 gss_cred_id_t, /* claimant_cred_handle */
 gss_ctx_id_t*, /* context_handle */
 gss_name_list_t, /* target_name list */
 const_gss_OID, /* mech_type */
 int, /* req_flags */
 OM_uint32, /* time_req */
 gss_channel_bindings_t,
 /* input_chan_bindings */
 gss_buffer_t, /* input_token */
 gss_OID*, /* actual_mech_type */
 gss_buffer_t, /* output_token */
 int*, /* ret_flags */
 OM_uint32* /* time_rec */
);

OM_uint32 gss_add_party(
 OM_uint32*, /* minor_status */
 gss_name_t, /* add party's name */
 gss_ctx_id_t, /* context_handle */
 gss_buffer_t* /* return GSS token */
);

OM_uint32 gss_vote(
 OM_uint32*, /* minor_status */
 gss_ctx_id_t, /* context_handle */
 OM_uint32, /* operation ADD/DELETE/ETC */
 OM_uint32 /* vote preference */
);

OM_uint32 gss_context_parties(
 OM_uint32*, /* minor_status */
 gss_ctx_id_t, /* context_handle */
);

Barton Document Expiration: 22 August 1996 [Page 8]

