Transport Area Working T0C

S. Baset
Group
Internet-Draft H. Schulzrinne
Intended status: Columbia
Experimental University

Expires: December 9, 2009 June 07, 2009

TCP-over-UDP
draft-baset-tsvwg-tcp-over-udp-01

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79. This document may contain material
from IETF Documents or IETF Contributions published or made publicly
available before November 10, 2008. The person(s) controlling the
copyright in some of this material may not have granted the IETF Trust
the right to allow modifications of such material outside the IETF
Standards Process. Without obtaining an adequate license from the
person(s) controlling the copyright in such materials, this document
may not be modified outside the IETF Standards Process, and derivative
works of it may not be created outside the IETF Standards Process,
except to format it for publication as an RFC or to translate it into
languages other than English.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on December 9, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

We present TCP-over-UDP (ToU), an instance of TCP on top of UDP. It
provides exactly the same congestion control, flow control,
reliability, and extension mechanisms as offered by TCP. It is intended
for use in scenarios where applications running on two hosts may not be
able to establish a direct TCP connection but are able to exchange UDP
packets.

Table of Contents

1. Introduction
1.1. Conventions
1.2. Terminology
2. Model of Operation
2.1. Setup and tear down
2.2. Connection tracking
2.3. MTU discovery
Congestion Control, Flow Control, and Reliability
3.1. Explicit Congestion Notification (ECN)
Header Format
NAT related issues
5.1. Using Tou
5.2. NAT bindings
ToU, TLS, and DTLS
Implementation Guidelines
Design Alternatives
8.1. Changing IP protocol number
8.2. Simplified TCP
8.3. TCP-like mechanism within an application layer protocol
8.4. Tunneling
8.5. TFRC
8.6. SCTP
8.7. Criticism
Acknowledgements
IANA Considerations
Security Considerations
References
12.1. Normative References
12.2. Informative References
Appendix A. Change Log
A.1. Changes since draft-baset-tsvwg-tcp-over-udp-00
8§ Authors' Addresses

«

e

i

[T H‘@
PERF

1. Introduction TOC

Network address translators (NATs) pose a challenge for establishing a
direct TCP connection between hosts. While TCP connectivity works when
a TCP client is behind a NAT device and the server is not, it is
problematic when both the TCP client and server are behind different
NAT devices. Thus, applications running on hosts behind different NAT
devices may not be able to establish a direct TCP connection with each
other. Instead, these applications must establish a TCP connection with
a reachable host, which relays the traffic of the application on the
first host to the application on the second host and vice versa. While
this works, this is undesirable as it creates a dependency on a
reachable host. With certain NAT types, even though the applications
cannot establish a direct TCP connection, they may be able to exchange
UDP traffic by using techniques such as ICE-UDP (Rosenberg, J.,
“Interactive Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal for Offer/Answer Protocols,”

October 2007.) [I-D.ietf-mmusic-ice]. Thus, using UDP is attractive for
such applications as it removes the dependency on a reachable host.
However, these applications have a requirement that the underlying
transport be reliable. Further, these applications may run on machines
with heterogeneous network connectivity, thereby requiring flow
control. UDP does not provide reliability, congestion control, or flow
control semantics. Therefore, these applications may either use TCP
with a reachable host, or invent their own reliable, congestion
control, and flow control transport protocol to establish a direct
connection.

We present TCP-over-UDP (ToU), a reliable, congestion control, and flow
control transport protocol on top of UDP. The idea is that TCP is a
well-designed transport protocol that provides reliable, congestion
control, and flow control mechanisms and these mechanisms must be
reused as much as possible. Further, a transport protocol that provides
reliability and flow control mechanisms must not be tied to a specific
application and must be designed to provide modular functionality. To
accomplish this, ToU almost uses the same header as TCP which allows to
easily incorporate TCP's reliable and congestion control algorithms as
defined in TCP congestion control (Allman, M., Paxson, V., and E.
Blanton, “TCP Congestion Control,” July 2009.)
[I-D.ietf-tcpm-rfc2581bis] document. In essence, ToU is not a new
protocol but merely an instance (or profile) of TCP over UDP minus the
TCP checksum, urgent flag, and urgent data.

We think that our approach is attractive for several reasons. First, we
are not proposing a new congestion control algorithm. Designing new
congestion control algorithms is complex, and requires a large
validation effort. Second, our approach takes advantage of existing
user-level-TCP (such as Daytona (Pradhan, P., Kandula, S., Xu, W.,
Sheikh, A., and E. Nahum, “Daytona : A User-Level TCP Stack,” 2004.)

[Daytona] and MINET (Dinda, P., “The Minet TCP/IP Stack,” 2002.)
[MINET]) or TCP-over-UDP implementations (such as atou (Dunigan, T. and
F. Fowler, “A TCP-over-UDP Test Harness,” 2002.) [atou]). Finally,
since we are replicating TCP semantics over UDP, any TCP options such
as window scaling (Jacobson, V., Braden, B., and D. Borman, “TCP
Extensions for High Performance,” May 1992.) [RFC1323], selective
acknowledgement option (SACK) (Mathis, M., Mahdavi, J., Floyd, S., and
A. Romanow, “TCP Selective Acknowledgment Options,” October 1996.)
[RFC2018], or proposed TCP options such as TCP-Auth (Touch, J., Mankin,
A., and R. Bonica, “The TCP Authentication Option,” March 2010.)
[I-D.ietf-tcpm-tcp-auth-opt] can be easily incorporated in ToU without
a new standardization effort.

1.1. Conventions TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

1.2. Terminology TOC

We use the terms such as congestion window (cwnd), initial window (IW),
restart window (RW), receiver window (rwnd), and sender maximum segment
size (SMSS) as defined in TCP congestion control (Allman, M., Paxson,
V., and E. Blanton, “TCP Congestion Control,” July 2009.)
[I-D.ietf-tcpm-rfc2581bis] document.

2. Model of Operation TOC

Like TCP, ToU has a client and a server. A client connects to a TCP
server to establish a ToU connection. Below, we describe the key ToU
operations.

2.1. Setup and tear down TOC

Like TCP, ToU uses a three-way handshake to establish a connection.
Similarly, it follows TCP's semantics in tearing down the connection.

2.2. Connection tracking TOC

A key difference between TCP and UDP is that the former is connection-
oriented whereas the later is not. This means that a ToU server must
provide a way to keep track of existing connections. It does so through
the source port and IP address of the UDP packet.

2.3. MTU discovery TOC

ToU uses packetization layer path MTU discovery (Mathis, M. and J.
Heffner, “Packetization Layer Path MTU Discovery,” March 2007.)
[RFC4821] to discover link MTU.

Some NAT devices placed in front of PPPoE devices perform MSS clamping,
i.e., they rewrite TCP's MSS option in a SYN packet from 1500 bytes to
1492 bytes. This operation is performed because PPPOE has a MTU of 1492
bytes instead of Ethernet's 1500 bytes. MSS clamping is considered a
'faster' way of discovering MTU in such scenarios. MSS clamping does
not work for ToU because NAT devices treat ToU packets as a stream of
UDP packets. It is an open question how a ToU stack should deal with
PPPOE MTU if faster MTU discovery is desired. One option is to
configure ToU stack with a default MTU of 1492 bytes.

3. Congestion Control, Flow Control, and Reliability TOC

ToU follows the TCP congestion control algorithms described in TCP
congestion control (Allman, M., Paxson, V., and E. Blanton, “TCP
Congestion Control,” July 2009.) [I-D.ietf-tcpm-rfc2581bis] document.
Thus, a ToU sender goes through the slow-start and congestion-avoidance
phases. A ToU sender starts with an initial window (IW) following the
guidelines in RFC 3390 (Allman, M., Floyd, S., and C. Partridge,
“Increasing TCP's Initial Window,” October 2002.) [RFC3390]. During
slow start, a ToU sender increments congestion window (cwnd) by at most
SMSS bytes for each ACK received that cumulatively acknowledges new
data. It switches to congestion avoidance when the congestion window
(cwnd) exceeds slow start threshold (ssthresh). A ToU receiver
generates an acknowledgement following the guidelines in Section 4.2 of

TCP congestion control (Allman, M., Paxson, V., and E. Blanton, “TCP
Congestion Control,” July 2009.) [I-D.ietf-tcpm-rfc2581bis] document.
It immediately generates an ACK when an out-of-order segment arrives.
The ToU sender uses the fast retransmit algorithm to detect and repair

losses, and fast recovery algorithm to govern the transmission of new
data until a non-duplicate ACK arrives. When ToU sender has not
received a segment for more than one retransmission timeout (RTO), cwnd
is reduced to the value of the restart window (RW) before transmission
begins. The ToU sender may also use selective acknowledgement option
(SACK) (Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, “TCP
Selective Acknowledgment Options,” October 1996.) [RFC2018] to improve
loss recovery when multiple packets are lost from one window of data.
Like TCP, it uses receiver window (rwnd) to achieve flow control.

3.1. Explicit Congestion Notification (ECN) TOC

TCP-over-UDP operates above UDP. To use ECN (Ramakrishnan, K., Floyd,
S., and D. Black, “The Addition of Explicit Congestion Notification
(ECN) to IP,” September 2001.) [RFC3168] with ToU, a UDP socket must
allow ToU to set and retrieve the ECN bits in the IP header. Currently,
UDP sockets do not provide such a mechanism. However, ToU assumes that
in future, UDP sockets will provide this mechanism so that ECN can be
incorporated in the congestion control mechanism of ToU.

ToU endpoints also need to determine whether they both support ECN.
Similar to ECE and CWR flags for TCP as defined in ECN (Ramakrishnan,
K., Floyd, S., and D. Black, “The Addition of Explicit Congestion
Notification (ECN) to IP,” September 2001.) [RFC3168], ToU header
includes these flags.

4. Header Format TOC

A ToU header is like a TCP header (Postel, J., “Transmission Control
Protocol,” September 1981.) [RFC0793] except that it does not include
source port, destination port, and checksum, as they are already
included in the UDP header. ToU header also does not include the 1-bit
Urgent flag and bit corresponding to this flags are reserved in the ToU
header. Further, it also does not include the 16-bit Urgent Pointer.
The reason for excluding Urgent flag and Urgent pointer is that they
are only used in Telnet (Postel, J. and J. Reynolds, “Telnet Protocol
Specification,” May 1983.) [RFC0854] which is not a widely used
protocol.

Between sequence number and acknowledgement number, ToU header has a
32-bit magic cookie to demultiplex it with other UDP-based protocols
such as STUN (Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
“Session Traversal Utilities for NAT (STUN),” October 2008.) [RFC5389].
A ToU header also includes ECE and CWR flags for negotiating ECN
capabilities. These flags are defined in RFEC 3168 (Ramakrishnan, K.,
Floyd, S., and D. Black, “The Addition of Explicit Congestion

Notification (ECN) to IP,” September 2001.) [RFC3168]. The rest of the
fields in a ToU header have exactly the same meaning as those in a TCP
header. The size of the fixed ToU header is 16 bytes, whereas the size
of fixed TCP header is 20 bytes. The fixed ToU header and UDP header

have a cumulative size of 24 bytes, four more than a fixed TCP header.

0 1 2 3
012345678901234567890123456789601

ottt totot-t-totot-t-totot-t-t-F-t-t-tot-t-totot-t-t-F-F-+-+-+
| Sequence Number |
+ot-t-t-t-t-F-F-F-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| Magic Cookie

ottt -t-tot-t-t-t-t-t-t-t-F-t-t-F-t-t-t-F-t-t-t-F-t-t-F-F-+-+-+
| Acknowledgment Number |
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Data | ICIE] [A|P|R[S|F]| I
| Offset|Reserve|W|C|R|C|S|S|Y]|I] Window |
I I IRIE] [K[H|TIN[N] I
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-F+-+-+-+
| Options | Padding |
B e sk sk o e e e e e ek T e e S S S e e e s
| data |
+-t-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

Header for TCP-over-UDP (ToU)
Figure 1
Since ToU header fields are exactly the same as TCP, we have borrowed

their descriptions from the TCP RFC (Postel, J., “Transmission Control
Protocol,” September 1981.) [RFCO793].

Sequence Number (32-bits): Same as a TCP sequence number.

Magic Cookie (32-bits): A fixed value of 0x7194B32E in network byte
order to demultiplex ToU from other application layer protocols.

Acknowledgement Number (32-bits): Same as a TCP acknowledgement
number.

Data offset (4-bits): The number of 32-bit words in ToU header.
Like a TCP header, ToU header is an integral number of 32-bits
long.

Reserved (4-bits):
Reserved for future use. Must be zero.

Control Bits (8-bits): 8-bits from left to right. Unlike TCP, the
Urgent bit is excluded.

CWR: Congestion window reduced flag as defined in RFC 3168
(Ramakrishnan, K., Floyd, S., and D. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” September 2001.)
[RFC3168].

ECE: ECN-Echo flag as defined in RFC 3168 (Ramakrishnan, K.,
Floyd, S., and D. Black, “The Addition of Explicit Congestion
Notification (ECN) to IP,” September 2001.) [RFC3168].

R: Reserved in ToU. In the TCP header, it is used for the Urgent
bit.

ACK: Acknowledgment field significant
PSH: PSH function.
RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: No more data from sender
Window (16-bits): Same as the window in TCP header. The number of
data octets beginning with the one indicated in the

acknowledgment field which the sender of this segment is willing
to accept.

Options: Same as TCP options.
Padding: Like TCP, the ToU header padding is used to ensure that

the ToU header ends and data begins on a 32 bit boundary. The
padding is composed of zeros.

5. NAT related issues TOC

This section discusses how to determine if hosts should use ToU and the
impact of UDP NAT bindings on ToU connection management.

T0C

5.1. Using ToU

Hosts should only use ToU when establishing a direct TCP connection
fails. It is outside the scope of this draft to specify a mechanism to
determine if establishing a TCP connection fails between two hosts
behind NATs. Hosts may use ICE-TCP (Perreault, S. and J. Rosenberg,
“TCP_Candidates with Interactive Connectivity Establishment (ICE),”
October 2009.) [I-D.ietf-mmusic-ice-tcp] and ICE-UDP (Rosenberg, J.,
“Interactive Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal for Offer/Answer Protocols,”
October 2007.) [I-D.ietf-mmusic-ice] to determine if hosts can directly
establish a TCP connection or directly exchange UDP packets,
respectively. If hosts fail to establish a direct TCP connection but
are able to directly exchange UDP packets, they can establish a TouU
connection.

5.2. NAT bindings TOC

NAT devices maintain a binding for mapping an internal IP address and
port number to an external IP address and port number. The lifetime of
bindings for UDP is much smaller than TCP because UDP is a connection
less protocol. If an application does not send packets over ToU, the
UDP binding may be lost resulting in a broken ToU connection.

ToU does not provide any mechanism to determine UDP binding lifetimes
or to refresh these bindings. Rather, an application establishing a TouU
connection can use STUN (Rosenberg, J., Mahy, R., Matthews, P., and D.
Wing, “Session Traversal Utilities for NAT (STUN),” October 2008.)
[RFC5389] to discover (MacDonald, D. and B. Lowekamp, “NAT Behavior
Discovery Using STUN,” September 2009.)
[I-D.ietf-behave-nat-behavior-discovery] binding lifetimes and
periodically refresh these bindings. Running STUN in conjunction with
ToU has a design implication that a ToU packet must be differentiated
from a STUN packet. The magic cookie in a ToU packet serves this
purpose.

6. TouU, TLS, and DTLS TOC

Transport layer security (TLS) (Dierks, T. and E. Rescorla, “The
Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.)
[RFC5246] and Datagram transport layer security (DTLS) (Rescorla, E.
and N. Modadugu, “Datagram Transport Layer Security,” April 2006.)
[RFC4347] protocols provide privacy and data integrity between two
communicating applications. TLS is layered on top of some reliable
transport protocol such as TCP, whereas DTLS only assumes a datagram

service. A question is what is the layering relationship between ToU
protocol, TLS, and DTLS. Figure 2 shows three possible options.
Option-3 is not feasible since ToU layer must be made aware of the size
of header which DTLS may add. Option-2 layers DTLS on top of ToU.
Unlike TLS, DTLS carries a sequence number because it assumes a
datagram service. However, the use of sequence number is made redundant
because ToU provides reliable and inorder delivery semantics.
Therefore, Option-1 is most feasible in which TLS is layered on top of
TouU.

Fot-t-t-+ A-t-t-t-+ F-d-t-t-+

| TLS | | DTLS | | ToU |
+-t-t-t-+ F-t-F-t-+ F-t-t+-+-+
| Tou | | Tou | | DTLS |
e S S D s St S
| UDP | | UubDP | | UDP |

+-4-+-+-+ +-+-+-+-+ +-4-+-+-+
Option-1 Option-2 Option-3

Layering options for ToU, TLS, DTLS

Figure 2

7. Implementation Guidelines TOC

From the implementers perspective, the use of ToU should be as modular
as possible. Once way to achieve this modularity is to implement ToU as
a user-level library that provides socket-1like function calls to the
applications. The library may have its own thread of execution and can
be instantiated at the start of the program. The library implements the
reliable, inorder, congestion control, and flow control semantics of
TCP. Applications can interact with the ToU library through socket-like
function calls.

8. Design Alternatives TOC

ToU is strictly meant for scenarios where end-points desire to
establish a TCP connection but are unable to do so due to the presence

of NATs and firewalls. Below, we briefly discuss the design
alternatives and address possible criticisms for ToU.

8.1. Changing IP protocol number TOC

One solution is to change the IP protocol number of TCP packets to UDP
before sending them on the wire. Similarly, when the packets are
received, the protocol number is changed back to TCP and the received
packets are passed to the TCP stack. The idea behind this approach is
to reuse TCP stack as much as possible. This approach suffers from a
number of problems. First, it requires a change in the operating system
kernel to rewrite IP protocol number of TCP packets to UDP and it is
unrealistic to expect all the 0S kernels to implement this change.
Second, TCP checksum has a different offset than a UDP checksum and
many NAT devices parsing the UDP packet will reject the packet because
the UDP checksum is incorrect. Third, since applications can use the
same port number for TCP and UDP ports, it is unclear how the kernel
will correctly differentiate between TCP and UDP packets for the same
port number.

8.2. Simplified TCP TOC

It may be argued that TCP semantics are too complicated and it might be
easier to define a protocol that adds retransmission of individual UDP
packets, and ACK mechanisms, and sequencing layer. However, unless one
is content with stop-and-wait congestion control (and roughly modem
data rates), it is necessary for a transport protocol to have AIMD or
rate-based congestion control (TFRC). As discussed in Section 8.5
(TERC), rate-based congestion control is not suitable for mid-sized
transfers and is not any simpler than AIMD. Further, since hosts may
have heterogeneous network connectivity, a transport protocol needs to
provide flow control. Moreover, it may not be easy to validate a new
transport protocol that only provides selective TCP semantics.

8.3. TCP-like mechanism within an application layer protocol TOC

In this approach, key TCP mechanisms such as reliability, congestion
control, and flow control are designed as part of the application layer
protocol. This approach has several disadvantages. First, every
application layer protocol that is unable to establish TCP connections
in the presence of NAT and firewalls but may use UDP will need to

invent its own reliable, congestion control and flow control transport
protocol. Second, it is non-trivial to get the first implementations of
a conceptually new protocol right. Third, any new transport protocol,
even if it is specified within an application layer protocol must
undergo a large validation effort. Finally, most long-term successful
protocols are those that provide modular functionality, and not
extremely narrowly-tailored protocols.

8.4. Tunneling TOC

Another design option is to provide a VPN-like tunnel for sending and
receiving TCP packets over UDP. The idea is to use tunneling solutions
between hosts so that hosts can use the kernel TCP stack and unmodified
socket functions calls.

This approach is not desirable for several reasons. First, tunneling
solutions typically require support from kernel or require kernel
upgrades to work. Requiring kernel upgrades to work is not plausible
for an application that is trying to get deployment traction. Second,
establishing a tunnel typically requires root access to the system and
it is unrealistic for user-space applications to require root access
for proper functioning. Third, peer-to-peer applications, which are
expected to use ToU, establish a large number of connections with other
hosts. Even, if a tunneling solution does not require any kernel
support, such a solution consumes significant bandwidth and CPU
resources to maintain a large number of tunnels with other hosts.
Popular P2P applications such as Skype and Bittorrent do not take
advantage of a layer-3 tunneling solution.

8.5. TFRC T0C

TFRC (Floyd, S., Handley, M., Padhye, J., and J. Widmer, “TCP Friendly
Rate Control (TFRC): Protocol Specification,” September 2008.)
[RFC5348] is a congestion control mechanism (not a protocol) that is
designed for long-lived media streams. Its main benefit is of smoothing
rates to these media streams. It does not provide any packet formats,
reliability, or flow control. It's congestion control mechanism is not
suited for exchanging data objects that range from a few dozen to a few
hundred packets. The reason is that TFRC is based on estimating loss
rates within 8 loss intervals. With a loss rate of 1%, this translates,
very roughly, into 800 packets or roughly 800 kB, before a reliable
estimate of a better (higher) rate is computed. Further, its main
benefit, smoothing rates, is of no importance to applications desiring
to replicate TCP functionality over UDP.

8.6. SCTP TOC

SCTP_(Stewart, R., “Stream Control Transmission Protocol,”

September 2007.) [RFC4960] is significantly more complicated than TCP
in its implementation and its performance is generally the same, except
in circumstances involving head-of-line blocking. Further, SCTP will
have trouble getting traction in the consumer and enterprise Internet
space unless it (also) runs over UDP, as there seem to be few NATs that
know how to handle SCTP and thus it is effectively unusable by a fair
fraction of the Internet user population.

8.7. Criticism TOC

A criticism of the ToU approach is that it is deceptively simple to
describe but difficult to implement and is likely to suffer from broken
implementations. We think that this assertion is not valid for three
reasons. First, ToU does not define a new congestion control protocol
and thus stays away from all the validation issues associated with a
new congestion control protocol. Second, a reasonable implementation
approach is to first implement connection management and AIMD
congestion control and test it with regular TCP to determine if the
implemented congestion control mechanisms are broken. This
implementation can be followed by implementing TCP options such as
window scaling and SACK. Third, ToU like other protocols such as SIP
will be implemented as a module or library and is likely to mature over
time.

9. Acknowledgements TOC
The draft incorporates comments from the discussion on TSVWG and P2PSIP

mailing list. We also acknowledge an earlier draft by R. Denis-Courmont
on UDP transports.

10. IANA Considerations TOC

TBD.

T0C

11. Security Considerations

ToU is subject to the same security considerations as TCP.

12. References

T0C

12.1. Normative References

[I-D.ietf-tcpm-
rfc2581bis]

[I-D.ietf-tcpm-
tcp-auth-opt]

[RFCO793]

[RFCO854]

[RFC1122]

[RFC1323]

[RFC2018]

[RFC2119]

[RFC3168]

[RFC3390]

[RFC4347]

[RFC4821]

[RFC4960]

[RFC5246]

TOC
Allman, M., Paxson, V., and E. Blanton, “TCP
Congestion Control,” draft-ietf-tcpm-rfc2581bis-07
(work in progress), July 2009 (TXT).
Touch, J., Mankin, A., and R. Bonica, “The TCP
Authentication Option,” draft-ietf-tcpm-tcp-auth-
opt-11 (work in progress), March 2010 (TXT).
Postel, J., “Transmission Control Protocol,” STD 7,
RFC 793, September 1981 (TXT).
Postel, J. and J. Reynolds, “Telnet Protocol
Specification,” STD 8, RFC 854, May 1983 (TXT).
Braden, R., “Requirements for Internet Hosts -
Communication Layers,” STD 3, RFC 1122,
October 1989 (TXT).
Jacobson, V., Braden, B., and D. Borman, *“TCP
Extensions for High Performance,” RFC 1323,
May 1992 (TXT).
Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow,
“TCP _Selective Acknowledgment Options,” RFC 2018,
October 1996 (TXT, HTML, XML).
Bradner, S., “Key words for use in RFCs to Indicate
Reguirement Levels,” BCP 14, RFC 2119, March 1997
(IXT, HTML, XML).
Ramakrishnan, K., Floyd, S., and D. Black, “The
Addition of Explicit Congestion Notification (ECN)
to IP,” RFC 3168, September 2001 (TXT).
Allman, M., Floyd, S., and C. Partridge,
“Increasing TCP's Initial Window,” RFC 3390,
October 2002 (TXT).
Rescorla, E. and N. Modadugu, “Datagram Transport
Layer Security,” RFC 4347, April 2006 (TXT).
Mathis, M. and J. Heffner, “Packetization Layer
Path MTU Discovery,” RFC 4821, March 2007 (TXT).
Stewart, R., “Stream Control Transmission
Protocol,” RFC 4960, September 2007 (TXT).

http://www.ietf.org/internet-drafts/draft-ietf-tcpm-rfc2581bis-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-rfc2581bis-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-rfc2581bis-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcp-auth-opt-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcp-auth-opt-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcp-auth-opt-11.txt
http://tools.ietf.org/html/rfc793
http://www.rfc-editor.org/rfc/rfc793.txt
http://tools.ietf.org/html/rfc854
http://tools.ietf.org/html/rfc854
http://www.rfc-editor.org/rfc/rfc854.txt
mailto:Braden@ISI.EDU
http://tools.ietf.org/html/rfc1122
http://tools.ietf.org/html/rfc1122
http://www.rfc-editor.org/rfc/rfc1122.txt
mailto:van@CSAM.LBL.GOV
mailto:Braden@ISI.EDU
mailto:dab@cray.com
http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc1323
http://www.rfc-editor.org/rfc/rfc1323.txt
mailto:mathis@psc.edu
mailto:mahdavi@psc.edu
mailto:floyd@ee.lbl.gov
mailto:allyn@eng.sun.com
http://tools.ietf.org/html/rfc2018
http://www.rfc-editor.org/rfc/rfc2018.txt
http://xml.resource.org/public/rfc/html/rfc2018.html
http://xml.resource.org/public/rfc/xml/rfc2018.xml
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc3168
http://tools.ietf.org/html/rfc3168
http://tools.ietf.org/html/rfc3168
http://www.rfc-editor.org/rfc/rfc3168.txt
http://tools.ietf.org/html/rfc3390
http://www.rfc-editor.org/rfc/rfc3390.txt
http://tools.ietf.org/html/rfc4347
http://tools.ietf.org/html/rfc4347
http://www.rfc-editor.org/rfc/rfc4347.txt
http://tools.ietf.org/html/rfc4821
http://tools.ietf.org/html/rfc4821
http://www.rfc-editor.org/rfc/rfc4821.txt
http://tools.ietf.org/html/rfc4960
http://tools.ietf.org/html/rfc4960
http://www.rfc-editor.org/rfc/rfc4960.txt

[RFC5348]

[RFC5389]

Dierks, T. and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

Floyd, S., Handley, M., Padhye, J., and J. Widmer,
“TCP _Friendly Rate Control (TFRC): Protocol
Specification,” RFC 5348, September 2008 (TXT).
Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
“Session Traversal Utilities for NAT (STUN),”

RFC 5389, October 2008 (TXT).

12.2. Informative References

[Daytona]

[I-D.ietf-
behave-nat-
behavior-
discovery]
[I-D.ietf-
mmusic-ice]

[I-D.ietf-
mmusic-ice-tcp]

TOC
Kandula, S., Xu, W., Sheikh, A., and
E. Nahum, “Daytona A User-Level TCP Stack,” 2004.
MacDonald, D. and B. Lowekamp, “NAT Behavior
Discovery Using STUN,” draft-ietf-behave-nat-
behavior-discovery-08 (work in progress),
September 2009 (TXT).
Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal for Offer/Answer
Protocols,” draft-ietf-mmusic-ice-19 (work in
progress), October 2007 (TXT).
Perreault, S. and J. Rosenberg, “TCP Candidates
with Interactive Connectivity Establishment (ICE),”
draft-ietf-mmusic-ice-tcp-08 (work in progress),
October 2009 (TXT).

Pradhan, P.,

[MINET] Dinda, P., “The Minet TCP/IP Stack,” 2002.
[atou] Dunigan, T. and F. Fowler, “A TCP-over-UDP Test
Harness,” 2002.
Appendix A. Change Log TOC
A.1. Changes since draft-baset-tsvwg-tcp-over-udp-00 TOC

*Updated introduction to reflect that it is difficult for two
hosts behind two different NATs to establish a TCP connection.

*Added PSH bit.

*Added MTU discovery to model of operation section.

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5348
http://tools.ietf.org/html/rfc5348
http://www.rfc-editor.org/rfc/rfc5348.txt
http://tools.ietf.org/html/rfc5389
http://www.rfc-editor.org/rfc/rfc5389.txt
http://nms.lcs.mit.edu/~kandula/data/daytona.pdf
http://www.ietf.org/internet-drafts/draft-ietf-behave-nat-behavior-discovery-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-nat-behavior-discovery-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-nat-behavior-discovery-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-tcp-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-tcp-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-tcp-08.txt
http://cs.northwestern.edu/~pdinda/minet/NWU-CS-02-08.pdf
http://www.csm.ornl.gov/~dunigan/atou.ps
http://www.csm.ornl.gov/~dunigan/atou.ps

*Added text on ECN to congestion control section.
*Added a section on NAT related issues.

*Updated text in design alternatives section.

Authors' Addresses

Salman A. Baset
Columbia University
1214 Amsterdam Avenue
New York, NY
USA

Email: salman@cs.columbia.edu

Henning Schulzrinne
Columbia University
1214 Amsterdam Avenue
New York, NY
USA

Email: hgs@cs.columbia.edu

T0C

mailto:salman@cs.columbia.edu
mailto:hgs@cs.columbia.edu

	TCP-over-UDPdraft-baset-tsvwg-tcp-over-udp-01
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction
	1.1. Conventions
	1.2. Terminology
	2. Model of Operation
	2.1. Setup and tear down
	2.2. Connection tracking
	2.3. MTU discovery
	3. Congestion Control, Flow Control, and Reliability
	3.1. Explicit Congestion Notification (ECN)
	4. Header Format
	5. NAT related issues
	5.1. Using ToU
	5.2. NAT bindings
	6. ToU, TLS, and DTLS
	7. Implementation Guidelines
	8. Design Alternatives
	8.1. Changing IP protocol number
	8.2. Simplified TCP
	8.3. TCP-like mechanism within an application layer protocol
	8.4. Tunneling
	8.5. TFRC
	8.6. SCTP
	8.7. Criticism
	9. Acknowledgements
	10. IANA Considerations
	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References
	Appendix A. Change Log
	A.1. Changes since draft-baset-tsvwg-tcp-over-udp-00
	Authors' Addresses

