
rtgwg S. Bryant
Internet-Draft A. Clemm
Intended status: Informational Futurewei Technologies, Inc.
Expires: October 14, 2021 April 12, 2021

Token Cell Routing Data Plane Concepts
draft-bcx-rtgwg-tcr-00

Abstract

 Token Cell Routing is a powerful yet hardware friendly method of
 constructing data plane packets to meet the needs of new
 applications. It is based on the use of token cells (special kinds
 of lightly structured tokens) to provide pointers to procedures pre-
 positioned in the forwarding layer together with the parameters
 needed to provide the required processing context. A packet can be
 composed from multiple token cells as needed to result in new new
 network processing and forwarding semantics.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 14, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Bryant & Clemm Expires October 14, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft TCR-DP April 2021

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. The TCR Concept . 4
3. Relationship to prior work 5
4. TCR Packet Structure . 6
5. Token Cell types and categories 7
6. Token Cell Structure . 9
7. Token Cell Processing Model 10
8. Token Cell Processing Order 12
8.1. Serial Token Cell Processing 13
8.2. Parallel Token Cell Processing 14
8.3. Combined Serial and Parallel Token Cell Processing . . . 16

9. Token Cell Pushing and Token Cell Popping 18
10. Selected Token Cell Type Categories 19
10.1. Disposition Token Cells 19
10.2. Scratchpad and Metadata Token Cells 19
10.3. Conditional and Directive Token Cells 21
10.4. Security Token Cells 21

11. Example applications of TCR 23
11.1. Basic Tunneling of Payload 24
11.2. Latency-Based Forwarding 25
11.3. Forwarding with Flexible Addressing 26
11.4. Forwarding with iOAM analytics 27
11.5. FRR with Latency-Based Forwarding 30
11.6. Segment Routing with Latency-Based Forwarding 32

 11.7. Enhanced Segment Routing with Latency-Based Forwarding . 32
11.8. Enhanced Segment Routing with Differentiated iOAM . . . 33

12. Items for further discussion 35
13. Security Considerations 36
14. IANA Considerations . 38
15. References . 38
15.1. Normative References 38
15.2. Informative References 38

 Authors' Addresses . 39

1. Introduction

 Advances in data plane protocols are needed to address new network
 requirements that stretch existing protocols (including MPLS, IPv6
 and Segment Routing) to their limits. Token Cell Routing (TCR) is a
 new network layer data plane technology that provides the ability to
 program the data plane to meet the needs of many new operational
 scenarios. TCR is based on token cells which provide a flexible

Bryant & Clemm Expires October 14, 2021 [Page 2]

Internet-Draft TCR-DP April 2021

 method describing the required packet action to the forwarder as well
 as carrying any parameters and other data necessary to correctly
 execute the required action.

 Packet actions are not limited to forwarding actions, and it is
 possible perform multiple packet actions at any given node. For
 example, packet actions can include application of special QoS
 algorithms, collection of telemetry, even assessment of dynamic
 conditions before the performing of other actions. Token Cells can
 be differentiated by type depending on the type of packet action that
 they represent.

 TCR is thus analogous to each packet carrying a stack of pointers to
 procedures together with the data needed by those procedures. The
 structure used allows token cells to be sequenced and parallelized in
 groups, and permits the use of pointers to information in other token
 cells. This results in a powerful method constructing advanced new
 packet types from token cells to meet network needs of new
 applications.

 TCR therefore supports customizable semantics with which packets are
 to be processed by nodes encountered along a path, it accommodates
 flexible addressing semantics that do not necessarily depend on a
 single addressing format. TCR accommodates custom "guidance" beyond
 forwarding (such as the definition of QoS treatments that are to be
 applied, the ability to differentiate behavior depending on dynamic
 context encountered at a node, and the ability to collect and pre-
 process telemetry in support of manageability applications). TCR
 enables the direct processing via a "scaffold" that explicitly
 indicates serialization, parallelization, disposition rules. It that
 enables a "lego-esque" composition of packet processing behavior /
 features while at the same time being hardware-friendly, and easy to
 optimize for performance at line rate general in nature and easy to
 extend.

 A new TCR features is added by introducing a new procedure in the
 forwarder and then including in the packet a pointer to that
 procedure. The procedure knows how to interpret the other
 information carried in the token cell. In many ways this is similar
 to the way new FECs are introduced into MPLS and new instructions
 introduced to segment routing.

 TCR thus provides a general, highly extensible data plane that
 supports custom semantics which is hardware friendly. It thus takes
 the programmability of both MPLS and Segment Routing to a new level
 of capability.

Bryant & Clemm Expires October 14, 2021 [Page 3]

Internet-Draft TCR-DP April 2021

 A key differentiator from earlier protocols is the ability to process
 a variable number of processing actions at each hop, at directed by
 the token cell structure. Furthermore token cells do not need to be
 processed in the order in which they are placed in the packet, and
 may be explicitly programmed for a flow.

 We would like to note that at the time of writing the current -00
 version of the draft, this represents a sketch of an idea that
 neither we or anyone else has built. Thus, it is likely to have bugs
 and certainly has many aspects that can be improved on. We would be
 delighted to work with others who are interested in exploring this
 idea and developing it further. A starter set of discussion items is
 included in Section 12 towards the end of the document.

2. The TCR Concept

 The foundation of TCR is the construction of the packet from a set of
 token cells. A token cell is an extended length, type, value
 construct. The type and part of the value is processed by a longest
 match engine, which operates much like an IP address lookup engine,
 but operates on arbitrary constructs rather than being confined to
 address lookup. As part of its value, the token cell may also carry
 parameters specific to the token cell type that are needed to process
 the token cell. Depending on the token cell type, different code
 points can be invoked that process the token cell. The token cell
 type determines the semantics, i.e. the function to be applied. It
 also defines any structure that may be contained in the token cell
 value.

 Token Cell processing can have generalizable packet processing
 semantics: forwarding is a common semantic, but other semantics can
 be applied, in a similar manner to the way in which an MPLS label has
 generalized semantics. The processing of a token cell is: Input -
 Match - Effect, where "effect" is one of forwarding, token cell
 disposition, or something else (such as, conditional directives or
 QoS treatment). Packet processing based on the first n bits of the
 token cell at a known position, which is matchable on prefix, in
 which case less significant bits serve as input.

 The TCR approach to packet design is differentiated from common
 protocol designs in that it allow for processing of variable number
 of token cells per hop, as directed by token cell structure. Which
 token cells to process, and whether token cells have
 interdependencies that require them to be processed in serial order
 or whether they allow for parallelization, is indicated by the token
 cells themselves, as the token cell structure includes length and
 serialization indicators. Processing can be serialized per "next
 token cell" indicator. Processing can be parallelized per "manifest

Bryant & Clemm Expires October 14, 2021 [Page 4]

Internet-Draft TCR-DP April 2021

 token cell" that refers to parallel token cells in order to allow for
 optimization. Note that there is no requirement to "must"
 parallelize. Instead, parallelization is an optimization that nodes
 with support for parallel packet processing stages may take advantage
 of to reduce packet latency due to packet forwarding time.

 Token Cells do not necessarily need to be processed in stack order
 but can be located wherever is most efficient. Some token cells may
 not be processed at all but can be used to carry meta-data (read-only
 or writable) that can be referred to from other token cells.

 The TCR approach allow for extensibility and programmability through:

 o Level 1: Combining different token cells

 o Level 2: Parameterizing token cells

 o Level 3: Introducing new types of token cells

3. Relationship to prior work

 In general data plane packets have been designed with a fixed
 structure plus some variable number of TLVs to provide additional
 instructions/advice to the forwarder. In general any address (for
 example IP address) or instruction (MPLS label of SR SID) is of a
 fixed length although may be structured into a prefix and suffix
 arrangement to support aggregation and is processed using a longest
 match lookup. Where TLVs are used there is their inclusion in the
 packet is normally free form and thus it is necessary search the
 packet for the set of TLVs that need to be processed. MPLS has a
 very primitive parameter system in which one label may be used to
 provide context for the label that follows. Examples of this are the
 use of the context label and the use of the ELI/EL pair.

 In deigning TCR we noted the generality and simplicity of the MPLS
 label stack model and the effectiveness of the longest match
 technique used in IP lookups. Putting these two together we
 concluded that an LTV approach allowed the creation of a simple,
 powerful, extensible, hardware friendly packet design.

 As we will see later in the document, concatenating the T(ype) and
 the V(alue) allows a single longest match look-up to resolve which
 table to look up the action in, and then to absorb as much of the V
 as is necessary to determine the specific action to take on the T.
 The stack and pointer structure means that it is not necessary to
 search for the applicable TLVs, they the forwarder is led to them
 through the token cell structure pushed onto the packet.

Bryant & Clemm Expires October 14, 2021 [Page 5]

Internet-Draft TCR-DP April 2021

 The general method of processing is thus input - match - effect via a
 match processor. The normal effect is to process one token cell at a
 time in series, but an effect might be to process multiple other
 token cells in parallel where the forwarder supports multiple
 concurrent operations (where parallization is not supported serial
 processing results in the same effect). Token Cells can have
 interdependencies and they can allow for cross-referencing (e.g.
 meta-data, scratch-pad)

4. TCR Packet Structure

 A TCR packet Figure 1 is a series of token cells, each token cell
 carrying a component of the packet delivery system or the payload
 itself.

 <Preamble>
 <Token Cell>
 <Token Cell>
 <Token Cell>
 ...
 <Token Cell>

 Figure 1: Structure of a TCR Packet

 Token Cells are a unit of packet processing that may include
 parameters and/or data. The semantics, structure and processing of
 the token cell is determined by the token cell type. A Token Cell
 can be thought of as a type of "stem cell" that can be morphed into
 any packet component, including components not yet designed,
 resulting in a highly programmable packet design.

 The preamble contains a small number of packet elements that are
 always present in all packets, such as version identification and
 TTL. It has yet to be decided if the preamble should be carried
 conventionally or be carried within a token cell.

 There is no separate payload portion of the packet. Instead, the
 payload is carried within a token cell, generally located at the tail
 of the packet. This allows for different payload delivery semantics
 at the destination, including simply stripping the payload off or
 applying a special type of codec. It also allows for the possibility
 of payload-less packets that can be used for signaling and control
 purposes.

 A token cell MAY contain a complete TCR packet permitting
 hierarchical encapsulation.

Bryant & Clemm Expires October 14, 2021 [Page 6]

Internet-Draft TCR-DP April 2021

5. Token Cell types and categories

 Token Cells have a type. Types themselves can be categorized,
 depending on the purpose which token cells of that type serve.

 The following token cell categories are provided as part of the TCR
 design:

 o Forwarding: A forwarding token cell specifies the destination
 address and method of delivery of the packet. It may also include
 the source address as a parameter, but this could also be
 specified in a separate token cell. Different types within this
 category may differentiate between address types such as IPv6 or
 IPv4.

 o SLO: A Service Level Objective (SLO) token cell specifies the
 target quality of delivery, such as latency, delivery time,
 required discard properties etc., each differentiated by
 corresponding IDs as separate types. This allows intermediate
 nodes on the path to apply special treatment to the packet, such
 as scheduling algorithms, resource reservation, or prioritization,
 in order meet SLOs as requirement.

 o Metadata: These token cells carry metadata that can be referenced
 and accessed as other token cells are being processed. Metadata
 can thus be decoupled from token cells that access it, allowing
 for their independent disposal, not interfering with pushing and
 popping of other token cells.

 o Scratchpad: Scratchpad token cell are in effect writeable metadata
 token cells, a category of token cell in which the network takes
 "notes" during the packet transit. Examples of this include
 recording the route, adding proofs-of-transit, telemetry data, or
 packet transit time of particular nodes that were traversed.

 o Security: A security token cell signs parts of the packet with an
 agreed cryptographic signature. It includes a signature mask that
 specifies which token cells and/or portions thereof are covered by
 the signature. This allows for the possibility of not only the
 sender, but also nodes in transit being able to sign portions of
 the packet. One example use would be for telemetry data that is
 added to a scratchpad by a node being traversed while leaving
 other parts of the scratchpad open to modification by other nodes.

 o Conditional: A conditional token cell is able to test one of more
 conditions and make invokation of the next token cell (NT)
 dependent on the conditions evaluating to true. This allows to
 define more complex behavior, such as the invocation of a

Bryant & Clemm Expires October 14, 2021 [Page 7]

Internet-Draft TCR-DP April 2021

 particular function depending on a dynamic condition encountered
 at a node.

 o Directive: A directive token cell specifies some type of action
 that should be performed. An example would be a directive to
 collect telemetry or OAM data.

 o Manifest: A manifest token cell provides a method of specifying
 which token cells may be processed in parallel. Parallel
 processing is optional, and the token cells can also be correctly
 processed serially. It is up to the entity that specifies the
 manifest to ensure that the parallelism is safe.

 o Rendezvous: A rendezvous token cell is a token cell used to ensure
 that all parallel operations have completed and that it is hence
 safe to resume serial operation of the forwarder. A rendezvous
 token cell may specify the first serial operation to execute after
 the rendezvous, or it may simply hand off to a new token cell.

 o Disposition: A disposition token cell describes what is to be done
 when the packet leaves the TCR domain. Such a token cell might,
 for example specify a pseudowire [RFC3985] action (strip the TCR
 header and send the payload to interface X), or a VPN action
 (lookup the payload IP address in VRF Y). However, the mechanism
 introduces the opportunity to attach a more sophisticated
 disposition action, for example "if the packet arrives before time
 T, forward using VRF V, otherwise drop the packet".

 o Payload: A payload token cell simply carries the payload as its
 value.

 o Other: This is a catch-all category to allow for token cell types
 that do not fit any of the other categories.

 Some of the mentioned categories will be described in greater detail
 in Section 10. In addition to the mentioned categories, it is
 expected that other categories would be introduced as needed.

 The grouping of types into categories may prove useful for various
 purposes. For example, it will allow for the articulation of packet
 grammars and "best packet practices", such as mandating that a packet
 contain at least one token cell of the forwarding category, or that
 the first token cell in a TCR packet must not be a token cell of
 categories metadata, scratchpad, or security. Types allow to further
 differentiate token cells within a given category.

 It should be noted that some of the token categories should be
 considered experimental. Which token types and even which token

https://datatracker.ietf.org/doc/html/rfc3985

Bryant & Clemm Expires October 14, 2021 [Page 8]

Internet-Draft TCR-DP April 2021

 categories to support will in depend on the needs of actual
 deployments.

6. Token Cell Structure

 The structure of a token cell is shown in Figure 2:

 <Length>
 <Next Token>
 <Token Cell Type> -+
 <Cat/Purpose> |
 <ID> +- Match Zone
 <Token Cell Blob> |
 <Prefix> -+
 <Suffix>

 Figure 2: Structure of a TCR Token Cell

 Token Cells will vary in length depending on the token cell type and
 the contents of the token cell blob, although in practice a given
 token cell type MAY be a fixed size.

 Next token cell is a relative pointer (offset) to the next token cell
 to be processed as part of the group of token cells to be
 sequentially processed as a part of the packet action at the node.
 If there is no next token cell to process, its value is null.
 Processing of a packet begins with processing the first token cell.
 Whether or not any additional token cells are processed depends on
 the guidance provided via the Next Token field.

 The token cell type is used to identify the category or purpose of
 the token cell (Cat/Purpose) and the sub-type (ID) within that class.
 An example of a purpose might be "Forwarding", indicating that the
 token cell represents an instruction to forward the packet closer to
 the destination. An example of a sub-type within that category might
 be "IPv6", indicating tht the destination is identified by the
 following IPv6 address.

 The set of IDs consists of a set of well known IDs and a set of user
 specified IDs. This provides both an extensible, and a programmable
 mechanism for enhancing the protocol over time and within
 deployments. Token cell type, category, and sub-type ID are not
 fixed-length fields but represent conventions.

 The token cell blob carries the information needed to process the
 explicit packet that carries it, and/or is a place to record
 information about the packet for later use. Within the token cell
 blob there is a prefix and a suffix, which may themselves each be

Bryant & Clemm Expires October 14, 2021 [Page 9]

Internet-Draft TCR-DP April 2021

 structured. The structure of the token cell blob depends on the
 token cell type, some of which may themselves be subjected to
 standardization.

 The token cell blob prefix, which is neither fixed nor a fixed length
 field is used to qualify the type in the lookup. For example, if the
 sub-type was IPv6 destination address the prefix would be an IPv6
 address. However this is a more general device than just a
 destination address and allows for token cell type categorization.
 This may prove useful for various purposes (e.g. packet grammars and
 Best Packet Practices).

 The match zone is the portion of the token cell that is subject to
 look up (see processing model section). The model is that the lookup
 will be a longest match of the whole match zone. The token cell
 design does not specify the length of the match zone or the length of
 either the ID or the prefix. It is a property of longest match
 lookup that it will either consume all the bits it needs, or reject
 the lookup. If a result is found the result can specify the
 structure of the token cell blob. Note that this is a model, and
 there is much scope for implementor optimization without sacrificing
 the generality of the design.

 The number of bytes sent to the lookup engine is implementation
 specific. If the attempted match is longer than needed, the longest
 match will ignore the overspill. If more bytes are needed, it is a
 property of longest match that the lookup can be restarted from where
 it left off.

 Within the blob, and in particular within the suffix, any structure
 can be carried such as subfields, parameters. The definition of what
 the suffix contains and how it is structured is part of the token
 cell type definition.

7. Token Cell Processing Model

 The TCR processing model is shown in Figure 3.

Bryant & Clemm Expires October 14, 2021 [Page 10]

Internet-Draft TCR-DP April 2021

 |< Token Cell Match Zone >|
 |<Token Cell type><Blob Prefix>|<Blob Suffix>

 || || |
 || || |
 \ / |
 +---v---+ |
 | |
 V |
 Lookup |
 Engine |
 | |
 | |
 V |
 Lookup o/p parameters | Pipeline
 Code Pointer | state register
 | | ! ^
 | | ! !
 V | ! !
 Code <-----------------+ ! !
 "callback" <~~~~~~~~~~~~~~~~~~~~~' !
 | !
 | !
 V !
 Effect ~~~~~~~~~~~~~~~~~~~~~~~~~~~~'

 Figure 3: TCR Processing Model

 This operates as follows. First the token cell match zone is fed
 into the lookup engine. The lookup engine performs a longest match
 and returns a parameter block which includes the address of the code
 to be executed on the token cell by the forwarder. That code knows
 how to interpret the token cell. Readers will recognize the genesis
 of this is a hybrid between an IP address lookup which performs a
 longest match lookup and returns a parameter block to the IP
 forwarding code, and an MPLS label lookup which performs a fixed size
 look-up logically returns a pointer to the executable code (MPLS
 forward packet, pseudowire, VPN etc) and a parameter block.

 Where it cannot be clear that what the length of the blog prefix is
 from the lookup result, for example where the address is an IPv6
 address, that length needs to be encoded in the prefix in some
 convenient way, such as as a prefix to the prefix.

 From the above, it is clear that there is no constraint on the type
 and structure of the prefix and thus any address type or other
 construct may be submitted to the lookup engine. Token Cell types

Bryant & Clemm Expires October 14, 2021 [Page 11]

Internet-Draft TCR-DP April 2021

 and prefix sets may be added to the forwarder by adding appropriate
 data to the database queried by the lookup engine, and providing the
 corresponding callback code to the network processor, in a manner
 similar to that used in MPLS and in Network Programming. In this
 regard the approach is compatible with proven hardware forwarding
 models.

 The callback code has access to any other element of the token cell
 that it needs, and indeed to other elements of the packet as
 required. Implementations MAY impose a reasonable limitation on the
 number of processing cycles within which callback code needs to
 complete.

 As part of the effect of processing a token cell, a pipeline state
 register can be written which can serve as input for the processing
 of subsequent token cells of the same packet. This allows to compose
 a pipeline of token cells being processed in which the output of one
 function serve as input to the next function. In the special case of
 rendezvous token cells that have multiple predecessors, their
 respective outputs are merged as part of the specific rendezvous
 semantics.

8. Token Cell Processing Order

 It is entirely possible to require several token cells to be
 processed at any given node. For example, one token cell may contain
 a forwarding directive, whereas another token cell might contain a
 directive related to QoS treatment of the packet for meeting a
 Service Level Objective (SLO), while a third token cell indicates
 that certain telemetry data from traversed nodes should be collected.

 In the simple case that token cells can or should be serially
 processed, the processing of token cells will simply be chained, as
 directed by the token cells' respective NT fields. After processing
 of a token cell concludes, the reference in the NT field is resolved
 and processing continues with that token cell. If the NT contains no
 reference (or in the special case of a conditional token cell
 evaluating to false), the processing of the packet concludes. In
 that case, the processing of a packet will require n stages, n being
 the number of chained token cells.

 A packet processing pipeline needs to support a depth that is
 equivalent to the maximum number of token cells that can be chained.

 In some cases, optimization is possible by exploiting
 parallelization. In the earlier example, it may be possible to
 perform some tasks in parallel, such as the application of QoS
 treatment and collection of telemetry data, while other tasks may

Bryant & Clemm Expires October 14, 2021 [Page 12]

Internet-Draft TCR-DP April 2021

 still need to be serialized, such as determining which outgoing
 interface to use as a forwarding decision before performing the QoS
 actions against that interface. The fact that certain token cells
 may be processed concurrently can be indicated through a special
 manifest token cell that references the token cells that follow.
 Each of those token cells can in turn have their own successors, in
 effect resulting in separate packet processing "threads" (all
 processing different token cells of the same packet). While the
 processing of the manifest adds an additional cycle, depending on the
 complexity of the workflow this may be more than offset by the
 parallelization that ensues.

 While full exploitation of the optimization potential may require
 advances in hardware pipeline design, it should be emphasized any
 such optimization is optional and not required. Also, to maintain
 packet ordering, the packet will generally still be required to pass
 through all n pipeline stages. That said, the option of
 parallelization does allow for hardware pipeline designs able to
 exploit concurrency of multiple threads and accommodating a larger
 number of token cells than would otherwise be supported by pipelines
 of a given depth, respectively reduce the pipeline depth that needs
 to be supported.

8.1. Serial Token Cell Processing

 All packets have an element of serial processing in that the preamble
 and then the token cell that follows are always processed.

 A serial group of token cells is constructed by using the next
 pointer to point to the token cell to processed on completion of the
 token cell. The end of a serial token cell group is logically
 indicated using a NULL next token cell pointer, although none of the
 foregoing should be taken as dictating the wire format which will be
 the subject of another text.

Bryant & Clemm Expires October 14, 2021 [Page 13]

Internet-Draft TCR-DP April 2021

 Token Cell T1 <Length>
 <Next Token> T2
 <Token Cell Type>
 <Token Cell Blob>
 Token Cell T2 <Length>
 <Next Token> T4
 <Token Cell Type>
 <Token Cell Blob>
 Token Cell T3 <Length>
 <Next Token> -
 <Token Cell Type>
 <Token Cell Blob>
 Token Cell T4 <Length>
 <Next Token> -
 <Token Cell Type>
 <Token Cell Blob>

 Figure 4: TCR Serial Token Cell Processing of Token Cells

 Figure 4 shows four token cells. The serial processing instructed by
 this construct is that token cell 1 is to be processed, followed by
 token cell 2 and then followed by token cell 4. There are many
 reasons why this construct is interesting and these are discussed
 later in this document.

 In order to simplify the graphical annotation, references to token
 cell cells are in the following simply indicated by a numeric
 identifier instead of being depicted by arrows.

8.2. Parallel Token Cell Processing

 In some cases it is desirable to introduce parallel processing to the
 packet where there are token cells have no result interdependencies.
 We do this through the introduction of a manifest token cell that
 contains a set of pointers or offsets to other token cells.

Bryant & Clemm Expires October 14, 2021 [Page 14]

Internet-Draft TCR-DP April 2021

 <Length>
 <Next Token>
 <Token Cell Type> -+
 <Cat/Purpose> |
 <ID> +- Match Zone
 <Token Cell Blob> |
 <Par 1> -+ -+
 <Par 2> |
 .. +- Manifest
 <Par 4> |
 <Par 5> -+

 Figure 5: TCR Parallel Processing of Token Cells

 The structure of the manifest token cell is shown in Figure 5. The
 initial part of the token cell is standard to all token cells. There
 follows a list of token cell pointers to the set of token cells to be
 processed in parallel. The end of the set of token cells to be
 processed in parallel is determined when the end of the token cell is
 reached as indicted by the token cell length. When all the child
 token cells have completes execution the token cell pointed to by the
 next token cell field is executed.

 Note that the match zone overlaps the manifest. The token cells in
 the manifest will however be ignored by the longest match which will
 complete with the ID.

 Also note that, as previously mentioned, parallelism is an efficiency
 issue, not a correctness issue. A forwarder that does not support
 the parallel dispatch of token cells or that supports less
 parallelism than specified in the manifest can choose to execute
 individual token cells (respectively groups of token cells) serially.
 It is up to the sender to construct the packet as needed and make any
 token cell interdependencies explit, without requiring the network to
 second-guess whether or not there are any such interdependencies. In
 other words, when the order in which token cells are processed might
 result in different behavior, it is the responsibility of the sender
 to specify any required serialization as needed.

 In most cases where it is used, a manifest token cell will typically
 be the first token cell after the preamble, to exploit the
 possibility of concurrent processing threads for multiple token cells
 in the same packet from the onset. However, this is not an
 architectural requirement and manifest token cells could also occur
 later in the packet.

 It is possible to remerge concurrent token cell threads using a
 special rendezvous token cell. A rendezvous token cell awaits for

Bryant & Clemm Expires October 14, 2021 [Page 15]

Internet-Draft TCR-DP April 2021

 each of its predecessors to have completed before resuming
 processing. In addition, output from predecessors (i.e. pipeline
 state register content) can be aggregated as needed.

8.3. Combined Serial and Parallel Token Cell Processing

 Figure 6 illustrates the concept of parallel and serialized
 processing further. Please note that this is an admittedly complex
 scenario and most scenarios in practice will be simpler.

 T1
 / | \
 / | \
 T2 T3 T4
 | / | \
 T5 T6 T7 T8
 |
 T9

 Figure 6: TCR Combined Serial and Parallel Processing of Token Cells

 After processing T1, three tokens (T2, T3, T4) can be processed
 concurrently. T5 has a serialization dependency on T2. T6, T7, T8
 can be procesed concurrently once T4 has been processed. Finally, T9
 has a serialization dependency on T7.

 A corresponding packet is shown in Figure 7. Manifest token cells
 are introduced to represent the fact that T2, T3, T4 respectively T6,
 T7, T8 can be processed in parallel. A Next Token field of "-"
 indicates there is no next token.

 Token Cell T1 <Length>
 <Next Token> M1
 <Token Cell Type>
 <Token Cell Blob>
 Token Cell M1 <Length>
 <Next Token> -
 <Token Cell Type = Manifest>
 <Token Cell Blob>
 <Par 1> T2
 <Par 2> T3
 <Par 3> T4
 Token Cell T2 <Length>
 <Next Token> T5
 <Token Cell Type>
 <Token Cell Blob>
 Token Cell T3 <Length>
 <Next Token> -

Bryant & Clemm Expires October 14, 2021 [Page 16]

Internet-Draft TCR-DP April 2021

 <Token Cell Type>
 <Token Cell Blob>
 Token Cell T4 <Length>
 <Next Token> M2
 <Token Cell Type>
 <Token Cell Blob>
 Token Cell M2 <Length>
 <Next Token> -
 <Token Cell Type = Manifest>
 <Par 1> T6
 <Par 2> T7
 <Par 3> T8
 Token Cell T5 <Length>
 <Next Token> -
 <Token Cell Type>
 <Token Cell Blob>
 Token Cell T6 <Length>
 <Next Token> -
 <Token Cell Type>
 <Token Cell Blob>
 Token Cell T7 <Length>
 <Next Token> T9
 <Token Cell Type>
 <Token Cell Blob>
 Token Cell T8 <Length>
 <Next Token> -
 <Token Cell Type>
 <Token Cell Blob>
 Token Cell T9 <Length>
 <Next Token> -
 <Token Cell Type>
 <Token Cell Blob>

 Figure 7: TCR Combined Serial and Parallel Processing of Token Cells

 Token Cell M1 is a manifest that indicates three children (at the
 protocol level, the number of potential children is subject only to
 packet size constraints). From a protocol perspective all three
 children: token cell 2, token cell 3 and token cell 4 can execute
 immediately and concurrently. When token cell 2 completes token cell
 5 runs, when token cell 5 completes that that processing branch is
 completed. Token Cell 3 runs and when it completes that token cell
 branch is completed. Token Cell M2 is also a manifest with three
 children: token cell 6, token cell 7 and token cell 8. When token
 cell 6 completes that processing branch is completed. When token
 cell 7 is completed token cell 9 runs. When token cell 9 completes
 that processing branch is completed. When token cell 8 is completed

Bryant & Clemm Expires October 14, 2021 [Page 17]

Internet-Draft TCR-DP April 2021

 that processing branch is completed. When token cells 5, 3, 6, 9 and
 8 are completed the token cell group is completed.

 It should be noted that the current design of the manifest token cell
 type includes all pointers to subsequent token cells as part of the
 token cell blob. Alternative designs are conceivable in which (for
 example) the next token field would be populated with the first of
 the concurrent successors, with only additional token cells (beyond
 the first) to be referenced from the token cell blob.

 It should also be noted packet permutations can be accommodated, i.e.
 the order of the token cells in the token cell group can be any order
 convenient to the network application designer. For example, the
 same token cells from Figure 7 could have been arranged also in the
 following sequence: T1 - M1 - T2 - T5 - T4 - T3 - M2 - T6 - T7 - T9 -
 T8. The token cells do not need to be arranged in a stack in the way
 that MPLS or SRv6 arrange their labels or SIDs respectively; the
 order in which to process token cells is always resolved by the NT
 reference (respectively any manifest token cell references). However
 it is RECOMMENDED that backward references are avoided as a packet
 with no backward references will not form a processing loop.

9. Token Cell Pushing and Token Cell Popping

 Token Cell groups can be stacked by pushing a group of token cells
 onto a packet to encode a hierarchical set of operations to be
 executed on the packet as it journeys to its destination. This is
 similar to IP tunneling or the pushing and popping of MPLS labels.

 In a manner similar to the pipe model described in [RFC3270] it is a
 matter for the protocol designer and the operator whether the pushed
 token cells are able to understand and interact with existing the
 tokens cells. This will be discussed further in a future version of
 this document.

 Similarly when a token cell group has accomplished its purpose on the
 packet journey it is popped so that the forwarded can gain access to
 the next element of processing.

 Again considerations similar to [RFC3270] may apply.

 For the purposes of this discussion a Token Cell group may consist of
 a single token cell.

 Considerations regarding penultimate hop popping will be included in
 a future version of this text.

https://datatracker.ietf.org/doc/html/rfc3270
https://datatracker.ietf.org/doc/html/rfc3270

Bryant & Clemm Expires October 14, 2021 [Page 18]

Internet-Draft TCR-DP April 2021

10. Selected Token Cell Type Categories

 An overview of token cell type categories was given in Section 5. In
 this section, some of these categories will be explained in further
 detail.

10.1. Disposition Token Cells

 A disposition token cell describes to the network what actions are to
 be performed as a packet egresses the TCR domain. A forwarding token
 cell may for this purpose include a reference to a disposition token
 cell as a parameter.

 All existing IETF network protocols include a disposition semantic
 although sometimes this is implicit. For example when IPv6 has a
 next header of "TCP" the disposition instruction is to dispose of the
 IPv6 header and hand the packet to the TCP handler. Similarly
 pseudowires have a disposition instruction in the PW label
 instructing the forwarder how to dispose of the MPLS header and to
 reconstruct the packet in its original format.

 However as the metadata carried in the packet become more
 sophisticated there is a requirement for the disposition to become
 more sophisticated.

 Disposition token cells thus formalize the description of the egress
 behavior of the network on the packet and allow a richer egress
 semantic to be described.

 It is conceivable to define TCR such that in the absence of a
 reference to a disposition token cell, TCR will revert to implicit
 disposition behavior when the destination address of a forwarding
 token cell is reached. That will involve popping the token cells up
 to the forwarding token cell and resuming processing with the
 subsequent token cell. In other words, a disposition token cell is
 in that case used to specify any special semantics that would go
 beyond vanilla implicit disposition.

10.2. Scratchpad and Metadata Token Cells

 Metadata, provided by a sender of a packet or by an ingress node, can
 provide important guidance to nodes along a path to guide processing
 of the packet. Examples include SLOs that should be taken into
 account for QoS treatment, profiles to apply towards proessing a
 packet, and more. Other uses include the carrying of security
 material as well as the tagging of packets for classification
 purposes.

Bryant & Clemm Expires October 14, 2021 [Page 19]

Internet-Draft TCR-DP April 2021

 Scratchpads refer to writeable metadata, i.e., metadata that can not
 only be accessed but also modified or added by nodes "in flight",
 i.e. during transit. Example uses include collection of telemetry
 and iOAM data [I-D.ietf-ippm-ioam-data], auxiliary data used for
 measurements such as intermediate time stamps, or proof-of-transit
 data and data verifying certain properties of nodes being traversed
 (such as whether from a trusted vendor or located in a certain
 region).

 Metadata and scratchpad token cells allow to carry such metadata as
 part of a packet independent of the token cells that access it. This
 decoupling allows to dispose of metadata and scratchpads independent
 of token cells that process it. For example, it makes it conceivable
 to collect different iOAM data along different segments of a path, as
 directed by different token cells, and to export the data only once
 an exporter or egress node is reached. This way, scratchpad token
 cells enable applications that rely on sharing of node-specific data
 along a path to do so without the complications of having to
 introduce piggyback extensions to the underlying protocol. In
 addition to adding and updating data items in scratchpad token cells
 along a path, also additional scratchpads can be added. It also
 avoids the need for the same metadata to be copied across token
 cells, for example in cases where the same SLOs are applicable across
 different segments, each governed by their own respective token
 cells.

 Metadata and scratchpad items can be referenced by other token cells.
 The specific format of those references is to be determined by the
 rules governing the content of the respective token cell blobs for
 the token cell type; in general the reference format will involve an
 offset from the referring token cell.

 Disposition semantics need to include defining what is to happen with
 metadata or scratchpad carried in corresponding token cells.
 Possible disposition actions include:

 o Discard

 o Export (possibly parameterized to specificy export mechanism as
 well as export target)

 o Log (again, possibly parametrized with a logging target)

 Metadata and scratchpad data can also be independently authenticated
 and secured. This allows, for example, to ensure that scratchpad
 data that is added or modified by intermediate nodes cannot be
 tampered with. It also allows for the implementation of operations

Bryant & Clemm Expires October 14, 2021 [Page 20]

Internet-Draft TCR-DP April 2021

 that authenticate both metadata and scratchpad data before processing
 it further.

 Metadata, let alone scratchpad data, is a concept that is not
 directly supported by token-based protocols such as SR or MPLS today.
 While it would be possible to encode such as part of a token, its
 processing would require the token itself be processed (e.g. as part
 of a forwarding operation), tied to its being pushed or popped on a
 stack. This would make it harder to e.g. update scratchpad data
 (that should be protected from popping and may be buried underneath a
 token or label stack), to access data without effectively copying it
 across tokens, and generally to accommodate metadata and scratchpad
 processing where the lifecycle of data items does not directly
 correspond to that of segments. With TCR, there is no need to
 process metadata in "stacked order" nor need for complex token cell
 rewrite rules in order to preserve data.

10.3. Conditional and Directive Token Cells

 Directive Token Cells allow the specification of some type of action
 or function that should be performed as a result of the token cell
 being processed. An example of a directive would be a request to
 collect telemetry or in-situ OAM data and record it as part of
 scratchpad. It is expected that there can potentially be a large
 number of possible directives, each distinguished by its own ID
 respectively token cell type. Different token cell types may impose
 their own respective structure on the token cell blob to represent
 different parameters.

 Conditional Token Cells are similar to Directive Token Cells in that
 they allow the specification of an operation to be performed.
 However, it is different from other categories of tokens in that the
 outcome of the operation determines whether the NT field will be
 processed, i.e. whether processing will subsequently resume with the
 token cell referenced by the NT field or whether it should terminate.
 This allows for the definition of functionality that should be
 performed depending on certain conditions that are being encountered.
 For example, a conditional token cell might allow for a different
 paths to be selected depending on dynamic circumstances such as load
 conditions. Similarly, the collection of certain telemetry data
 might be made dependent on certain conditions being encountered.

10.4. Security Token Cells

 Security token cells enable a security mechanism that allows to sign
 the invariant elements of the packet whilst avoiding signing the
 packet elements that are modified during the passage of the packet
 through the network, such as scratchpad token cells.

Bryant & Clemm Expires October 14, 2021 [Page 21]

Internet-Draft TCR-DP April 2021

 Likewise, they allow for differentiated signing of different parts of
 the packet by different signers, such as in cases where nodes add
 data items to a scratchpad that should be independently signed.

 A security token cell allows to carry signature material pertaining
 to elements of the packet. It includes the following items:

 o An identification of the signer

 o A mask indicating the parts of the packet respectively token
 cell(s) being signed

 o The signature material itself

 The general structure of the security token cell is as follows

 <Length>
 <Next Token>
 <Token Cell Type> -+
 <Cat/Purpose> |- Match Zone
 <ID> -+
 <Token Cell Blob>
 <Key ID>
 <HMAC>
 <N>
 <Token Cell Mask>
 <Token_Protected>
 <NP>
 <Full_Token>
 <Byte_Protected>
 <Bytes>

 Figure 8: Structure of a TCR Security Token Cell

 The token purpose and ID specify that this is a security token, the
 exact structure of the security token, and the type of signature that
 has been used. The structure used here is illustrative and used to
 explain the concept.

 The token cell blob contains the security material and the mask. A
 possible structure is as follows:

 As described in [RFC8754] the Key ID is used to identify the
 preshared key and the algorithm, though the algorithm may be
 indicated by the token ID (this is a matter for the token designer).

https://datatracker.ietf.org/doc/html/rfc8754

Bryant & Clemm Expires October 14, 2021 [Page 22]

Internet-Draft TCR-DP April 2021

 The Hashed Message Authentication Code (HMAC) is the hash of the
 complete TCR security token and the N TCR tokens, and within those
 tokens the token elements specified by the token mask.

 For efficiency the mask operates at a number of levels:

 o The next N token cells

 o The marked tokens within the next N token cells

 o Octets or words within a specific token cell

 N specifies the number of tokens covered by this security token in
 addition to itself. If present, Token Cell Mask is a structure that
 specifies which tokens are actually protected. Token_Protected.NP is
 the number of tokens within the token mask.
 Token_Protected.Full_Token is a bit mask of Token_Protected.NP bits
 indicating which complete tokens are to be included in the signature.
 Token_Protected.Byte_Protected is a bit mask of Token_Protected.NP
 bits indicating which complete tokens are to be included in the
 signature.

11. Example applications of TCR

 This section contains a number of examples illustrating how the TCR
 token system is used to create or "program" packets. The examples
 are illustrative and not exhaustive. Only the essential features of
 the packet are shown.

 In order to simplify depiction of TCR packets, specifically the order
 in which tokens are processed and the cross-dependencies between
 tokens, we will introduce a syntax which identifies individual tokens
 by a numeric token identifier, and that allows to reference tokens
 using this identifier as opposed to packet offsets depicted using
 ASCII art pointers. This is merely done for convenience of textually
 representing TCR packets in this draft. It is independent of the
 actual TCR packet and token structure, in which tokens do not have
 separate identifiers and are simply referenced by offset. This
 applies to Next Token fields, as well as for disposition. A
 disposition token cell is referenced through a field in token cells
 whose type is of the forwarding category.

 A packet is simply represented by a sequence of tokens. Each token
 is represented by a set of fields and their values. In addition, a
 "pseudo field" is introduced for the numeric token identifier. A
 reference to another token (from the <Next Token> field, from a
 manifest token, or from a rendezvous token) contains as value the
 respective token identifier.

Bryant & Clemm Expires October 14, 2021 [Page 23]

Internet-Draft TCR-DP April 2021

11.1. Basic Tunneling of Payload

 In this example we consider a the case where a packet is to be
 tunneled across a network as one might do in a sub-IP network.

 For illustrative purposes we show in Figure 9 an IPv6 address being
 used as a destination address, but any other address family can be
 used with the corresponding forwarding token type.

 <Preamble>
 Token Cell T1 <Length>
 <Next Token> -
 <Type = IPv6fwd>
 <Prefix = Dest Add>
 <Disp = T2>
 Token Cell T2 <Length>
 <Next Token>
 <Type = Disp>
 <Disp Parameters>
 Token Cell T3 <Length>
 <Next Token>
 <Type = Payload>
 <Payload>

 Figure 9: Basic Tunnelling Over TCR

 The packet starts with a preamble followed by token T1 which is IPv6
 forwarding token, a token with the semantic that it is to deliver the
 packet as close to the target address as it can reach. There is no
 next token cell to be processed until arrival at the destination and
 so Next Token is NULL.

 When the packet arrives at its destination the token that is pointed
 to by the disposition pointer is noted and all tokens up to the
 disposition token are popped (in this case only token 1 is popped).

 The disposition token T2 is processed and the disposition parameters
 say how the payload is to be processed. This may be as simple as
 providing the protocol type of the payload, but it may also provide
 information other information such as the identity of a VRF table to
 use, or an interface to dispatch the packet to in the case of a
 pseudowire. It also provides a pointer to the payload. When the
 parser knows how to dispose of the packet, it pops Token 2 and
 processes token 3. Token 3, in the case of containing a tunneled IP
 packet, just requires the length to be noted and corrected for the
 token overhead, the type confirmed as payload and payload to be
 forwarded as an IP packet.

Bryant & Clemm Expires October 14, 2021 [Page 24]

Internet-Draft TCR-DP April 2021

11.2. Latency-Based Forwarding

 In this example we consider the previous case (basic tunneling of
 payload) Section 11.1 and extend it to provide support for on-time
 delivery according to an end-to-end latency objective. The support
 is provided using a Latency-Based Forwarding (LBF). LBF bases the
 decision on when to sent to packet on how urgently or at what exact
 time it needs to arrive. To do so, LBF involves an algorithm that
 determines at any given node whether the packet is "on track" to meet
 its latency objective, and matches the QoS treatment and scheduling
 of the packet against a latency "budget" that is determined from
 latency objective, the latency that was already incurred, and the
 expected remaining latency towards the destination. For further
 details, please refer to [DOI.10.1109_NOMS47738.2020.9110431].

 To indicate that a packet should undergo LBF treatment, a
 corresponding token cell type of category "SLO" is introduced. When
 it is processed, the packet is subject to LBF. Parameters for LBF
 include the end-to-end latency objectives and a helper parameter to
 assess the latency being incurred. An additional input is the egress
 interface that is obtained from processing of the fowarding token
 cell that precedes it and that can be passed using TCR's pipeline
 state register.

 A packet that enables LBF in conjunction with the preivious case is
 depicted in Figure 10. It adds one additional token cell over the
 previous use case, in essence adding the LBF functionality as a
 "module" that is combined with the earlier functionality. The
 ability to compose functionality by simply combining corresponding
 token cells into a packet is part of what makes TCR quite powerful.

 Processing of the packet is similar to the processing of the basic
 tunneling case except that Token 1 the IPv6fwd token contains a
 pointer to a further token that is to be sequentially processed at
 every hop, including arrival at the destination. The Next Token
 pointer in Token 1 points to token 2 which specifies that the packet
 must arrive at a specified time, and contains information needed to
 record the time taken and hence the time at which it should optimally
 leave its current node.

 When the packet arrives at its destination a final check is made to
 see if the arrival time requirement was met and it is processed
 according to the failure to arrive on time instructions in either the
 LBF_ontime token or the disposition token. All further processing is
 as per the above basic tunneling case.

Bryant & Clemm Expires October 14, 2021 [Page 25]

Internet-Draft TCR-DP April 2021

 <Preamble>
 Token Cell T1 <Length>
 <Next Token> T2
 <Type = IPv6fwd>
 <Prefix = Dest Add>
 <Disp = T3>
 Token Cell T2 <Length>
 <Next Token> -
 <Type = LBF_ontime>
 <Blob = LBF parameters>
 Token Cell T3 <Length>
 <Next Token>
 <Type = Disp>
 <Disp Parameters>
 Token Cell T4 <Length>
 <Next Token>
 <Type = Payload>
 <Payload>

 Figure 10: LBF Using TCR

11.3. Forwarding with Flexible Addressing

 The is an emerging need to support multiple address technologies.
 There are two cases in point, firstly where an operator wants to use
 a short address to to address the infrastructure nodes in their
 network. This is particularly the case in segment routing where
 there is competition amongst the vendors to introduce address
 compression due to the extended size of SRv6 data plane headers.
 There is a secondary benefit to this in that if an address system
 other than IP is used within the provider network there are security
 benefits as has been found in operating MPLS. Finally it has been
 speculated that some application environments would prefer to use
 their native addresses rather than manage the mapping between those
 addresses and IP addresses.

 This is achieved by creating a new token cell type, populating the
 FIB with the corresponding addresses and installing in the forwarder
 the necessary forwarding code. That forwarding code may be generic
 since the action will almost certainly be address family independent.

 In the example shown in Figure 11, the address family is encoded in
 the address itself. In an alternative model, the token cell type
 would be specific to the address family.

Bryant & Clemm Expires October 14, 2021 [Page 26]

Internet-Draft TCR-DP April 2021

 <Preamble>
 Token Cell T1 <Length>
 <Next Token> -
 <Type = FlexAddr>
 <Prefix = AddressFamily + Address>
 <Disp> T2
 Token Cell T2 <Length>
 <Next Token> -
 <Type = Disp>
 <Disp Parameters>
 Token Cell T3 <Length>
 <Next Token>
 <Type = Payload>
 <Payload>

 Figure 11: Indirect LBF UsingUsing Flexible Addresses in TCR

11.4. Forwarding with iOAM analytics

 In many cases, there is desire to collect in-situ OAM data
 [I-D.ietf-ippm-ioam-data] as a packet traverses a path. There are
 multiple applications for this, including but not limited to
 diagnosing performance, identification of bottlenecks, and generation
 of data to feed machine-learning algorithms for service optimization.

 Using TCR, it is possible to indicate that iOAM data should be
 collected using a corresponding token cell. The token cell can
 contain in-situ parameters, such as which data items to collect. In-
 situ data itself can be added to a scratchpad, allowing for its
 export using a variety of means upon disposition of packet.

 One scenario is depicted in Figure 12. In this particular example,
 we assume that the iOAM data can be collected per T3 in parallel with
 the forwarding decision being made per T2 in order to show also use
 of a manifest (T1). iOAM Data items are written to the scratchpad in
 T5. T4 indicates disposition, T6 contains the payload.

 It should be noted that rather than simply collecting iOAM data,
 other operations could be applied to aggregate that data and result
 in more refined behavior. In the interest of brevity, the example
 does not feature security tokens used by intermediate nodes to sign
 the scratchpad data items that they add.

Bryant & Clemm Expires October 14, 2021 [Page 27]

Internet-Draft TCR-DP April 2021

 <Preamble>
 Token Cell T1 <Length>
 <Next Token> -
 <Type = Manifest>
 <Par 1> T2
 <Par 2> T3
 Token Cell T2 <Length>
 <Next Token> -
 <Type = IPv6fwd>
 <Prefix = Dest Add>
 <Disp> T4
 Token Cell T3 <Length>
 <Next Token> -
 <Type = Directive-iOAM>
 <Ioam-parameters - data items to collect>
 <Scratchpad> T5
 Token Cell T4 <Length>
 <Next Token> -
 <Type = Disp>
 <Disp Parameters>
 Token Cell T5 <Length>
 <Next Token> -
 <Type = Scratchpad>
 <Blob-Scratchpad>
 Token Cell T6 <Length>
 <Next Token>
 <Type = Payload>
 <Payload>

 Figure 12: iOAM in TCR

 If iOAM data to be collected includes telemetry about the egress
 interface, the manifest cell can be omitted as the forwarding
 decision needs to be made prior to collecting the iOAM data. The
 resulting packet becomes even simpler, as depicted in Figure 13.

Bryant & Clemm Expires October 14, 2021 [Page 28]

Internet-Draft TCR-DP April 2021

 <Preamble>
 Token Cell T1 <Length>
 <Next Token> T2
 <Type = IPv6fwd>
 <Prefix = Dest Add>
 <Disp> T3
 Token Cell T2 <Length>
 <Next Token> -
 <Type = Directive-iOAM>
 <Ioam-parameters - data items to collect>
 <Scratchpad> T4
 Token Cell T3 <Length>
 <Next Token> -
 <Type = Disp>
 <Disp Parameters>
 Token Cell T4 <Length>
 <Next Token> -
 <Type = Scratchpad>
 <Blob-Scratchpad>
 Token Cell T5 <Length>
 <Next Token>
 <Type = Payload>
 <Payload>

 Figure 13: iOAM in TCR - serialized

 To show the modularity that TCR enables, the third scenario shows
 iOAM data to be collected while at the same time LBF is being applied
 to the same packet (Figure 14). Note that in this case, LBF and iOAM
 could have also been applied in parallel, in which case a manifest
 token cell would be added. T1 would then point to the manifest token
 cell, which in turn would point to T2 and T3 as successors.

Bryant & Clemm Expires October 14, 2021 [Page 29]

Internet-Draft TCR-DP April 2021

 <Preamble>
 Token Cell T1 <Length>
 <Next Token> T2
 <Type = IPv6fwd>
 <Prefix = Dest Add>
 <Disp> T4
 Token Cell T2 <Length>
 <Next Token> T3
 <Type = LBF_ontime>
 <Blob = LBF parameters>
 Token Cell T3 <Length>
 <Next Token> -
 <Type = Directive-iOAM>
 <Ioam-parameters - data items to collect>
 <Scratchpad> T6
 Token Cell T4 <Length>
 <Next Token> -
 <Type = Disp>
 <Disp Parameters>
 Token Cell T5 <Length>
 <Next Token> -
 <Type = Scratchpad>
 <Blob-Scratchpad>
 Token Cell T6 <Length>
 <Next Token> -
 <Type = Payload>
 <Payload>

 Figure 14: iOAM and LBF in TCR

11.5. FRR with Latency-Based Forwarding

 This example depicted in Figure 15 extends the earlier LBF example to
 include a fast re-route diversion. We show only a single token cell
 (T0) added at the point of local repair (PLR), but of course the
 repair might be more complex and need multiple intermediate staging
 counts to successfully be repaired.

Bryant & Clemm Expires October 14, 2021 [Page 30]

Internet-Draft TCR-DP April 2021

 <Preamble>
 Token Cell T0 <Length>
 <Next Token> T2
 <Type = IPv6fwd>
 <Prefix = Reroute Add>
 Token Cell T1 <Length>
 <Next Token> T2
 <Type = IPv6fwd>
 <Prefix = Dest Add>
 <Disp = T3>
 Token Cell T2 <Length>
 <Next Token> -
 <Type = LBF_ontime>
 <Blob = LBF parameters>
 Token Cell T3 <Length>
 <Next Token>
 <Type = Disp>
 <Disp Parameters>
 Token Cell T4 <Length>
 <Next Token>
 <Type = Payload>
 <Payload>

 Figure 15: FRR with LBF Using TCR

 The PLR was expecting to forward the packet normally and so is aware
 that the packet is latency sensitive and understands the semantics
 and hence importance of token 2. To maintain the expected path
 quality the PLR MUST use an FRR path while also ensuring the SLO is
 still being adhered to per the LBF token cell. The FRR path
 therefore needs to feature nodes able to support LBF token cells, and
 not incur a latency penalty that would physically prohibit being able
 to meet the SLO. This path can be selected by the SDN controller, or
 locally through the use of path attributes applied to the normal IP-
 FRR path selection process.

 On detecting a local repairable failure of the next hop or the link
 to the next hop the PLR pushes one or more tokens as is necessary to
 deliver the packet to the destination. In each case the next token
 pointer points to Token 2 the LBF token. When the packet arrives at
 the intermediate node chosen by the PLR for the next stage of the
 repair, the token (in this case Token 0) at the top of the token
 stack is popped and forwarding proceeds as dictated by token 1. The
 above operation can clearly be carried out as many times as necessary
 on the packet to provide a repair, by pushing as many tokens as are
 needed.

Bryant & Clemm Expires October 14, 2021 [Page 31]

Internet-Draft TCR-DP April 2021

 Note that the scheme in this example uses an implicit disposition
 operation by intermediate nodes as described above in Section 10.1.

11.6. Segment Routing with Latency-Based Forwarding

 The operation described in Section 11.5 in which repair tokens are
 pushed onto the packet is identical to the operation that happens
 when a packet is configured for segment routing (SR). Technically
 the packet depicted in Figure 15 IS a segment routed packet.

 It therefore follows that implementing segement routing and segment
 routing enhanced by features such as enhanced QoS is trivial in TCR.
 As we shall see in the next sections, TCR is capable of enhancing SR
 significantly beyond that.

11.7. Enhanced Segment Routing with Latency-Based Forwarding

 This example illustrates how TCR can be used to add an enhanced QoS
 capability such as latency based forwarding to segment routing. We
 saw previously Section 11.6 how all segments can be made to execute a
 common policy but it might be desirable to execute a different policy
 in different segments. For example, some segments might underly
 their own latency objectives (just for that segment), without
 affecting the overall end-to-end objective.

 A packet that achieves this is depicted below (Figure 16. The packet
 in the example has three segments. Segments 1 and 3 apply LBF for
 the end-to-end latency objective, per T5. Segment 2 applies a "sub-
 SLO" just for that particular segment, per T4. Disposition of T1 and
 T2 is implicit (popping the token on reaching the segment
 destination), whereas disposition of T3 is explicit per T6.

Bryant & Clemm Expires October 14, 2021 [Page 32]

Internet-Draft TCR-DP April 2021

 <Preamble>
 Token Cell T1 <Length>
 <Next Token> T5
 <Type = IPv6fwd>
 <Prefix = Seg 1 Add>
 Token Cell T2 <Length>
 <Next Token> T4
 <Type = IPv6fwd>
 <Prefix = Seg 2 Add>
 Token Cell T3 <Length>
 <Next Token> T5
 <Type = IPv6fwd>
 <Prefix = Seg 3 Add>
 <Disp = T6)
 Token Cell T4 <Length>
 <Next Token> -
 <Type = LBF_ontime (for segment)>
 <Blob = LBF parameters>
 Token Cell T5 <Length>
 <Next Token> -
 <Type = LBF_ontime (for end-to-end)>
 <Blob = LBF parameters>
 Token Cell T6 <Length>
 <Next Token>
 <Type = Disp>
 <Disp Parameters>
 Token Cell T7 <Length>
 <Next Token>
 <Type = Payload>
 <Payload>

 Figure 16: Enhanced Segment Routing Using TCR

11.8. Enhanced Segment Routing with Differentiated iOAM

 The final example shows a variation of the previous example. Instead
 of applying a specific latency objectives for particular segments, it
 is possible to also invoke other functionality, such as collecting
 certain iOAM data only for particular segments, or collecting
 additional iOAM data for one of the segments, or even for collecting
 different sets of iOAM data along different segments. The particular
 example depicted (Figure 17) shows a packet with three segments. One
 set of parameters is collected for segments 1 and 3 using scratchpad
 T6, another set of parameters is collected for segment 2 using
 scratchpad T7.

 If instead, segment 2 should collect additional parameters beyond
 those collected for segments 1 and 2, this could be easily

Bryant & Clemm Expires October 14, 2021 [Page 33]

Internet-Draft TCR-DP April 2021

 accommodated by simply setting "Next Token" of T4 to T5 instead of
 null. (This does not include a possible optimization for
 parallelization, but attests to the flexibility of the approach.)

 <Preamble>
 Token Cell T1 <Length>
 <Next Token> T4
 <Type = IPv6fwd>
 <Prefix = Seg 1 Add>
 Token Cell T2 <Length>
 <Next Token> T5
 <Type = IPv6fwd>
 <Prefix = Seg 2 Add>
 Token Cell T3 <Length>
 <Next Token> T4
 <Type = IPv6fwd>
 <Prefix = Seg 3 Add>
 <Disp = T8)
 Token Cell T4 <Length>
 <Next Token> -
 <Type = Directive-iOAM>
 <Ioam-parameters - data items to collect>
 <Scratchpad> T6
 Token Cell T5 <Length>
 <Next Token> -
 <Type = Directive-iOAM>
 <Ioam-parameters - data items to collect>
 <Scratchpad> T7
 Token Cell T6 <Length>
 <Next Token> -
 <Type = Scratchpad>
 <Blob-Scratchpad>
 Token Cell T7 <Length>
 <Next Token> -
 <Type = Scratchpad>
 <Blob-Scratchpad>
 Token Cell T8 <Length>
 <Next Token>
 <Type = Disp>
 <Disp Parameters>
 Token Cell T9 <Length>
 <Next Token>
 <Type = Payload>
 <Payload>

 Figure 17: Enhanced Segment Routing Using TCR

Bryant & Clemm Expires October 14, 2021 [Page 34]

Internet-Draft TCR-DP April 2021

12. Items for further discussion

 This document does not constitute a finalized design and there are
 many design decisions that will require further discussion. The
 following is a partial list:

 o Preamble. The preamble needs further study. The goal is that it
 contains only the minimum of information as it needs to be popped
 and pushed when a token cell is popped or pushed. We need to
 understand if there is a need for a number of token cell's
 indicator, and/or a last child indicator.

 o Token Cell identification. As an alternative to referencing other
 token cells by offset, it is conceivable to introduce token cell
 identifiers and refer to token cells by their ID.

 o Manifest token cells. Rather to require processing of a full
 token cell, it is conceivable to express manifests as part of a
 token cell preamble, at least as long as the number of token cells
 to process in parallel are limited. This could save on stage in a
 token cell processing pipeline. However, it would result in a
 slightly longer or more complex preamble.

 o Manifest token cells (cont'd.) It should be noted that the
 current design of the manifest token cell type includes all
 pointers to subsequent token cells as part of the token cell blob.
 Alternative designs are conceivable. For example, the design
 might be altered to allow for the next token to be populated and
 only require any additional token cells to be referenced from the
 token cell blob.

 o Rendezvous token cells. As an optimization, it is conceivable to
 combine manifests and rendezvous points into a single token cell.

 o Security token cells. Further investigation is needed to
 determine the most effective structure, specifically compact yet
 efficient encodings for the token cell mask that is used to
 identify the portions of the packet being signed.

 o Disposition token cells. There are different ways that
 disposition token cells could be referred to for processing,
 including through a DT parameter (Disposition Token Cell) as part
 of forwarding token cells, through a separate field as part of the
 token cell structure, or indirectly by virtue of popping a
 forwarding token cell when the destination is reached and
 processing the token cell behind it.

Bryant & Clemm Expires October 14, 2021 [Page 35]

Internet-Draft TCR-DP April 2021

 o Disposition token cells for processing by intermediate nodes. The
 example in Section 11.5 uses an implicit disposition operation of
 forwarding token cells by intermediate nodes, in which a
 forwarding token cell is simply popped and processing simply
 resumes with the subsequent token cell. It is conceivable to
 apply explicit disposition operations instead for the sake of more
 consistent semantics. Explicit semantics of "pop and resume
 processing with subsequent token cell" could be incorporated into
 the semantics of a forwarding token cell itself, or potentially
 indicated by a corresponding flag in the prefix.

 o Implementation profiles. Implementations may impose a reasonable
 limit on the number of token cells that can be serially processed
 at any one node. This will facilitate mapping to packet
 processing pipelines, which then support a predefined number of
 token cell processing stages per packet at line rate while
 maintaining constant packet processing delay at any given node.
 Determination of reasonable constraints is for further study.
 Analogous limitations may apply to the number of processing cycles
 that can be performed by callback functions, within which the
 processing of any given token cell needs to complete.

 o Implementation profiles (contd.). For further study are any
 mechanisms for the discovery of constraints as mentioned in the
 previous list item, as well as any capabilities for negotiation of
 corresponding profiles and the definition of node behavior when
 such limitations were to be breached (in all likelihood resulting
 in aborting the processing of the packet, dropping it with
 corresponding error code).

 o The design only requires forward token cell pointers and this
 prevents processing loops. We need to understand if this is too
 significant a restriction. If this restriction is removed some
 form of maximum tokens to be processed limit, similar in concept
 to TTL may be needed.

13. Security Considerations

 This section concerns itself with the security of the TCR dataplane.

 The security of the control and management plane is a matter for the
 designers of those aspects of the solution. However, it is not
 anticipated that the securing of those components will be any more
 onerous than securing the control and management plane of other IETF
 designed dataplanes.

 Security of entry to the dataplane will depend on what entities have
 access to the dataplane. If TCR is used as a single domain sub-IP

Bryant & Clemm Expires October 14, 2021 [Page 36]

Internet-Draft TCR-DP April 2021

 layer in the way that MPLS is used, then it will have the same
 security properties as MPLS in that it is extremely difficult for an
 unauthorized party to inject traffic into such a network because with
 TCR such traffic is easily recognized at network ingress and dropped.
 If the traffic is a TCR packet that is to be carried across the TCR
 network it will be encapsulated and so, in the absence of a TCR
 network error, will not be able to escape the encapsulation and cause
 harm. Only if a TCR network (or node) were to peer with another TCR
 network would there be a security concern with that third party
 having the ability to control the actions taken on the packet. Such
 a case is for further study. It should be noted that similar
 situations have been satisfactorily addressed in MPLS.

 We now need to consider the security of the contents of the packet.
 Clearly we could craft a token that signed the payload, and where the
 payload was a token, we have the option of including that signature
 in the token itself. However, securing the tokens themselves is more
 interesting because we need to authenticate selected components of
 the packet header, such as single tokens, groups of tokens or even
 components/portions of tokens. This is needed to allow the
 differentiation of metadata that must not be altered from scratchpad
 data that may be modified during packet transit. In addition, we
 need to allow intermediate nodes along a path to authenticate data
 that they modify, e.g. scratchpad data items that they create.

 The approach used in TCR allows the authentication of tokens and
 processing guidance they contain for additional security.
 Furthermore there is flexibility for intermediate hops to provide
 their own authentication, to secure scratchpad-type data added to
 packets along a path. This also allows for "authenticity chains" in
 which nodes verify the authenticity of data items they operate on
 before modifying and signing the update.

 It is clear that the above approach is different from earlier
 protocols where payloads are generally signed in their entirety and
 do not include support for differentiated signing, accommodating
 multiple signers of different packet aspects along a path.

 Most protocols secure their payload in its entirety, exposing only
 the packet header for processing (unless that is tunneled as well).
 TCR is a protocols that include additional packet components that may
 require more differentiated securing. Specifically, it includes
 guidance for how to process packets, including tokens, and metadata.
 In addition, TCR includes some packet components that can be modified
 or added by intermediate nodes in transit, specifically scratchpad
 data. This includes telemetry and iOAM data as well as data to
 indicate and verify certain properties of nodes that were traversed.
 While some data must not be modified, other data items might be added

Bryant & Clemm Expires October 14, 2021 [Page 37]

Internet-Draft TCR-DP April 2021

 and/or be subject to modification. An example would be data that
 aggregates or analyzes telemetry data encountered in transit, for
 example an indicator of a minimum or maximum (queue length,
 utilization, latency) encountered along a path. TCR thus includes a
 mechanism that allows the operator to ensure the authenticity of
 packet data beyond the payload, but that allows them to do this in a
 way that exempts certain data items which are allowed to be modified
 along the way, with the option to allow the corresponding nodes to
 secure these modifications. This allows receiving applications to
 (for example) verify the authenticity of scratchpad data, and allow
 for the modification of data items where such modification is
 permitted without compromising the authenticity of the remaining
 portions of the packet.

 The design of the security token is described in Section 10.4 . This
 can only be used to sign itself and tokens or token contents after
 the security token. By including in the security token a mask
 structure it is possible to select what is to be signed. The
 efficiency of this method is described in Section 10.4.

 Matters related to inter-domain security will be considered in a
 future version of this text.

14. IANA Considerations

 This document makes no IANA requests.

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

15.2. Informative References

 [DOI.10.1109_NOMS47738.2020.9110431]
 Clemm, A. and T. Eckert, "High-Precision Latency
 Forwarding over Packet-Programmable Networks", NOMS 2020 -
 2020 IEEE/IFIP Network Operations and
 Management Symposium, DOI 10.1109/noms47738.2020.9110431,
 April 2020.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Bryant & Clemm Expires October 14, 2021 [Page 38]

Internet-Draft TCR-DP April 2021

 [I-D.ietf-ippm-ioam-data]
 Brockners, F., Bhandari, S., and T. Mizrahi, "Data Fields
 for In-situ OAM", draft-ietf-ippm-ioam-data-11 (work in
 progress), November 2020.

 [RFC3270] Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen,
 P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-
 Protocol Label Switching (MPLS) Support of Differentiated
 Services", RFC 3270, DOI 10.17487/RFC3270, May 2002,
 <https://www.rfc-editor.org/info/rfc3270>.

 [RFC3985] Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation
 Edge-to-Edge (PWE3) Architecture", RFC 3985,
 DOI 10.17487/RFC3985, March 2005,
 <https://www.rfc-editor.org/info/rfc3985>.

 [RFC8754] Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy, J.,
 Matsushima, S., and D. Voyer, "IPv6 Segment Routing Header
 (SRH)", RFC 8754, DOI 10.17487/RFC8754, March 2020,
 <https://www.rfc-editor.org/info/rfc8754>.

Authors' Addresses

 Stewart Bryant
 Futurewei Technologies, Inc.

 Email: sb@stewartbryant.com

 Alexander Clemm
 Futurewei Technologies, Inc.

 Email: ludwig@clemm.org

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-11
https://datatracker.ietf.org/doc/html/rfc3270
https://www.rfc-editor.org/info/rfc3270
https://datatracker.ietf.org/doc/html/rfc3985
https://www.rfc-editor.org/info/rfc3985
https://datatracker.ietf.org/doc/html/rfc8754
https://www.rfc-editor.org/info/rfc8754

Bryant & Clemm Expires October 14, 2021 [Page 39]

