
Workgroup: Aspirational

Internet-Draft:

draft-bdc-something-something-certificate-03

Published: 7 April 2020

Intended Status: Standards Track

Expires: 9 October 2020

Authors: B. Campbell

Ping Identity

Client-Cert HTTP Header: Conveying Client Certificate Information from

TLS Terminating Reverse Proxies to Origin Server Applications

Abstract

This document defines the HTTP header field Client-Cert that allows

a TLS terminating reverse proxy to convey information about the

client certificate of a mutually-authenticated TLS connection to an

origin server in a common and predictable manner.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 October 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Notation and Conventions

1.2. Terminology

2. HTTP Header Field and Processing Rules

2.1. Encoding

2.2. Client-Cert HTTP Header Field

2.3. Processing Rules

3. Security Considerations

4. IANA Considerations

5. Normative References

6. Informative References

Appendix A. Example

Appendix B. Considerations Considered

B.1. Header Injection

B.2. The Forwarded HTTP Extension

B.3. The Whole Certificate and Only the Whole Certificate

Appendix C. Acknowledgements

Appendix D. Document History

Author's Address

1. Introduction

A fairly common deployment pattern for HTTPS applications is to have

the origin HTTP application servers sit behind a reverse proxy that

terminates TLS connections from clients. The proxy is accessible to

the internet and dispatches client requests to the appropriate

origin server within a private or protected network. The origin

servers are not directly accessible by clients and are only

reachable through the reverse proxy. The backend details of this

type of deployment are typically opaque to clients who make requests

to the proxy server and see responses as though they originated from

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

the proxy server itself. Although HTTPS is also usually employed

between the proxy and the origin server, the TLS connection that the

client establishes for HTTPS is only between itself and the reverse

proxy server.

The deployment pattern is found in a number of varieties such as n-

tier architectures, content delivery networks, application load

balancing services, and ingress controllers.

Although not exceedingly prevalent, TLS client certificate

authentication is sometimes employed and in such cases the origin

server often requires information about the client certificate for

its application logic. Such logic might include access control

decisions, audit logging, and binding issued tokens or cookies to a

certificate, and the respective validation of such bindings. The

specific details from the certificate needed also vary with the

application requirements. In order for these types of application

deployments to work in practice, the reverse proxy needs to convey

information about the client certificate to the origin application

server. A common way this information is conveyed in practice today

is by using non-standard headers to carry the certificate (in some

encoding) or individual parts thereof in the HTTP request that is

dispatched to the origin server. This solution works to some extent

but interoperability between independently developed components can

be cumbersome or even impossible depending on the implementation

choices respectively made (like what header names are used or are

configurable, which parts of the certificate are exposed, or how the

certificate is encoded). A standardized approach to this commonly

functionality could improve and simplify interoperability between

implementations.

This document aspires to standardize an HTTP header field named

Client-Cert that a TLS terminating reverse proxy adds to requests

that it sends to the origin or backend servers. The header value

contains the client certificate from the mutually-authenticated TLS

connection between the client and reverse proxy, which enables the

backend origin server to utilize the certificate in its application

logic. The usage of the header, both the reverse proxy adding the

header and the origin server relying on the header for application

logic, are to be configuration options of the respective systems as

they will not always be applicable.

1.1. Requirements Notation and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

Client-Cert

1.2. Terminology

Phrases like TLS client certificate authentication or mutually-

authenticated TLS are used throughout this document to refer to the

process whereby, in addition to the normal TLS server authentication

with a certificate, a client presents its X.509 certificate

[RFC5280] and proves possession of the corresponding private key to

a server when negotiating a TLS connection or the resumption of such

a connection. In contemporary versions of TLS [RFC8446] [RFC5246]

this requires that the client send the Certificate and

CertificateVerify messages during the handshake and for the server

to verify the CertificateVerify and Finished messages.

[[HTTP2 forbids TLS renegotiation and post-handshake authentication

but it's possible with HTTP1.1 and maybe needs to be discussed

explicitly here or somewhere in this document? Naively I'd say that

the Client-Cert header will be sent with the data of the most recent

client cert anytime after renegotiation or post-handshake auth. And

only for requests that are fully covered by the cert but that in

practice making the determination of where exactly in the

application data the cert messages arrived is hard to impossible so

it'll be a best effort kind of thing.]]

2. HTTP Header Field and Processing Rules

2.1. Encoding

The field-values of the HTTP header defined herein utilize the

following encoded form.

A certificate is represented in text as an EncodedCertificate, which

is the base64-encoded (Section 4 of [RFC4648]) DER [ITU.X690] PKIX

certificate. The encoded value MUST NOT include any line breaks,

whitespace, or other additional characters. ABNF [RFC5234] syntax

for EncodedCertificate is shown in the figure below.

2.2. Client-Cert HTTP Header Field

In the context of a TLS terminating reverse proxy (TTRP) deployment,

the TTRP makes the TLS client certificate available to the backend

application with the following header field.

The end-entity client certificate as an

EncodedCertificate value.

¶

¶

¶

¶

 EncodedCertificate = 1*(DIGIT / ALPHA / "+" / "/") 0*2"="

 DIGIT = <Defined in Section B.1 of [RFC5234]> ; A-Z / a-z

 ALPHA = <Defined in Section B.1 of [RFC5234]> ; 0-9

¶

¶

¶

The Client-Cert header field defined herein is only for use in HTTP

requests and MUST NOT be used in HTTP responses. It is a single HTTP

header field-value as defined in Section 3.2 of [RFC7230], which

MUST NOT have a list of values or occur multiple times in a request.

2.3. Processing Rules

This section outlines the applicable processing rules for a TLS

terminating reverse proxy (TTRP) that has negotiated a mutually-

authenticated TLS connection to convey the client certificate from

that connection to the backend origin servers. Use of the technique

is to be a configuration or deployment option and the processing

rules described herein are for servers operating with that option

enabled.

A TTRP negotiates the use of a mutually-authenticated TLS connection

with the client, such as is described in [RFC8446] or [RFC5246], and

validates the client certificate per its policy and trusted

certificate authorities. Each HTTP request on the underlying TLS

connection are dispatched to the origin server with the following

modifications:

The client certificate is be placed in the Client-Cert header

field of the dispatched request as defined in Section 2.2.

Any occurrence of the Client-Cert header in the original

incoming request MUST be removed or overwritten before

forwarding the request. An incoming request that has a Client-

Cert header MAY be rejected with an HTTP 400 response.

Requests made over a TLS connection where the use of client

certificate authentication was not negotiated MUST be sanitized by

removing any and all occurrences Client-Cert header field prior to

dispatching the request to the backend server.

Backend origin servers may then use the Client-Cert header of the

request to determine if the connection from the client to the TTRP

was mutually-authenticated and, if so, the certificate thereby

presented by the client.

Forward proxies and other intermediaries MUST NOT add the Client-

Cert header to requests, or modify an existing Client-Cert header.

Similarly, clients MUST NOT employ the Client-Cert header in

requests.

A server that receives a request with a Client-Cert header value

that it considers to be too large can respond with an HTTP 431

status code per Section 5 of [RFC6585].

¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

3. Security Considerations

The header described herein enable a reverse proxy and backend or

origin server to function together as though, from the client's

perspective, they are a single logical server side deployment of

HTTPS over a mutually-authenticated TLS connection. Use of the

Client-Cert header outside that intended use case, however, may

undermine the protections afforded by TLS client certificate

authentication. Therefore steps MUST be taken to prevent unintended

use, both in sending the header and in relying on its value.

Producing and consuming the Client-Cert header SHOULD be a

configurable option, respectively, in a reverse proxy and backend

server (or individual application in that server). The default

configuration for both should be to not use the Client-Cert header

thus requiring an "opt-in" to the functionality.

In order to prevent header injection, backend servers MUST only

accept the Client-Cert header from trusted reverse proxies. And

reverse proxies MUST sanitize the incoming request before forwarding

it on by removing or overwriting any existing instances of the

header. Otherwise arbitrary clients can control the header value as

seen and used by the backend server. It is important to note that

neglecting to prevent header injection does not "fail safe" in that

the nominal functionality will still work as expected even when

malicious actions are possible. As such, extra care is recommended

in ensuring that proper header sanitation is in place.

The communication between a reverse proxy and backend server needs

to be secured against eavesdropping and modification by unintended

parties.

The configuration options and request sanitization are necessarily

functionally of the respective servers. The other requirements can

be met in a number of ways, which will vary based on specific

deployments. The communication between a reverse proxy and backend

or origin server, for example, might be authenticated in some way

with the insertion and consumption of the Client-Cert header

occurring only on that connection. Alternatively the network

topology might dictate a private network such that the backend

application is only able to accept requests from the reverse proxy

and the proxy can only make requests to that server. Other

deployments that meet the requirements set forth herein are also

possible.

¶

¶

¶

¶

¶

[RFC2119]

[RFC4648]

[RFC8174]

[RFC5280]

[ITU.X690]

[RFC5246]

[RFC7239]

[RFC5234]

[RFC7230]

4. IANA Considerations

[[TBD if this draft progresses, register the Client-Cert HTTP

header field in the "Permanent Message Header Field Names" registry

defined in [RFC3864]]]

5. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

International Telecommunications Union, "Information

Technology - ASN.1 encoding rules: Specification of Basic

Encoding Rules (BER), Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER)", August 2015.

6. Informative References

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/info/

rfc5246>.

Petersson, A. and M. Nilsson, "Forwarded HTTP Extension",

RFC 7239, DOI 10.17487/RFC7239, June 2014, <https://

www.rfc-editor.org/info/rfc7239>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

¶

https://www.iana.org/assignments/message-headers/message-headers.xhtml
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc7239
https://www.rfc-editor.org/info/rfc7239
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234

[RFC3864]

[RFC7250]

[I-D.ietf-oauth-mtls]

[RFC8446]

[RFC6585]

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Klyne, G., Nottingham, M., and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC 3864,

DOI 10.17487/RFC3864, September 2004, <https://www.rfc-

editor.org/info/rfc3864>.

Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

Weiler, S., and T. Kivinen, "Using Raw Public Keys in

Transport Layer Security (TLS) and Datagram Transport

Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,

June 2014, <https://www.rfc-editor.org/info/rfc7250>.

Campbell, B., Bradley, J., Sakimura, N., and T.

Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication

and Certificate-Bound Access Tokens", Work in Progress,

Internet-Draft, draft-ietf-oauth-mtls-17, 23 August 2019,

<https://tools.ietf.org/html/draft-ietf-oauth-mtls-17>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Nottingham, M. and R. Fielding, "Additional HTTP Status

Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

<https://www.rfc-editor.org/info/rfc6585>.

Appendix A. Example

In a hypothetical example where a TLS client presents the client and

intermediate certificate from Figure 1 when establishing a mutually-

authenticated TLS connection with the reverse proxy, the proxy would

send the Client-Cert header shown in {#example-header} to the

backend. Note that line breaks and whitespace have been added to the

value of the header field in Figure 2 for display and formatting

purposes only.¶

https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc7250
https://tools.ietf.org/html/draft-ietf-oauth-mtls-17
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc6585

Figure 1: Certificate Chain (with client certificate first)

-----BEGIN CERTIFICATE-----

MIIBqDCCAU6gAwIBAgIBBzAKBggqhkjOPQQDAjA6MRswGQYDVQQKDBJMZXQncyBB

dXRoZW50aWNhdGUxGzAZBgNVBAMMEkxBIEludGVybWVkaWF0ZSBDQTAeFw0yMDAx

MTQyMjU1MzNaFw0yMTAxMjMyMjU1MzNaMA0xCzAJBgNVBAMMAkJDMFkwEwYHKoZI

zj0CAQYIKoZIzj0DAQcDQgAE8YnXXfaUgmnMtOXU/IncWalRhebrXmckC8vdgJ1p

5Be5F/3YC8OthxM4+k1M6aEAEFcGzkJiNy6J84y7uzo9M6NyMHAwCQYDVR0TBAIw

ADAfBgNVHSMEGDAWgBRm3WjLa38lbEYCuiCPct0ZaSED2DAOBgNVHQ8BAf8EBAMC

BsAwEwYDVR0lBAwwCgYIKwYBBQUHAwIwHQYDVR0RAQH/BBMwEYEPYmRjQGV4YW1w

bGUuY29tMAoGCCqGSM49BAMCA0gAMEUCIBHda/r1vaL6G3VliL4/Di6YK0Q6bMje

SkC3dFCOOB8TAiEAx/kHSB4urmiZ0NX5r5XarmPk0wmuydBVoU4hBVZ1yhk=

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIIB5jCCAYugAwIBAgIBFjAKBggqhkjOPQQDAjBWMQswCQYDVQQGEwJVUzEbMBkG

A1UECgwSTGV0J3MgQXV0aGVudGljYXRlMSowKAYDVQQDDCFMZXQncyBBdXRoZW50

aWNhdGUgUm9vdCBBdXRob3JpdHkwHhcNMjAwMTE0MjEzMjMwWhcNMzAwMTExMjEz

MjMwWjA6MRswGQYDVQQKDBJMZXQncyBBdXRoZW50aWNhdGUxGzAZBgNVBAMMEkxB

IEludGVybWVkaWF0ZSBDQTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJf+aA54

RC5pyLAR5yfXVYmNpgd+CGUTDp2KOGhc0gK91zxhHesEYkdXkpS2UN8Kati+yHtW

CV3kkhCngGyv7RqjZjBkMB0GA1UdDgQWBBRm3WjLa38lbEYCuiCPct0ZaSED2DAf

BgNVHSMEGDAWgBTEA2Q6eecKu9g9yb5glbkhhVINGDASBgNVHRMBAf8ECDAGAQH/

AgEAMA4GA1UdDwEB/wQEAwIBhjAKBggqhkjOPQQDAgNJADBGAiEA5pLvaFwRRkxo

mIAtDIwg9D7gC1xzxBl4r28EzmSO1pcCIQCJUShpSXO9HDIQMUgH69fNDEMHXD3R

RX5gP7kuu2KGMg==

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIICBjCCAaygAwIBAgIJAKS0yiqKtlhoMAoGCCqGSM49BAMCMFYxCzAJBgNVBAYT

AlVTMRswGQYDVQQKDBJMZXQncyBBdXRoZW50aWNhdGUxKjAoBgNVBAMMIUxldCdz

IEF1dGhlbnRpY2F0ZSBSb290IEF1dGhvcml0eTAeFw0yMDAxMTQyMTI1NDVaFw00

MDAxMDkyMTI1NDVaMFYxCzAJBgNVBAYTAlVTMRswGQYDVQQKDBJMZXQncyBBdXRo

ZW50aWNhdGUxKjAoBgNVBAMMIUxldCdzIEF1dGhlbnRpY2F0ZSBSb290IEF1dGhv

cml0eTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABFoaHU+Z5bPKmGzlYXtCf+E6

HYj62fORaHDOrt+yyh3H/rTcs7ynFfGn+gyFsrSP3Ez88rajv+U2NfD0o0uZ4Pmj

YzBhMB0GA1UdDgQWBBTEA2Q6eecKu9g9yb5glbkhhVINGDAfBgNVHSMEGDAWgBTE

A2Q6eecKu9g9yb5glbkhhVINGDAPBgNVHRMBAf8EBTADAQH/MA4GA1UdDwEB/wQE

AwIBhjAKBggqhkjOPQQDAgNIADBFAiEAmAeg1ycKHriqHnaD4M/UDBpQRpkmdcRF

YGMg1Qyrkx4CIB4ivz3wQcQkGhcsUZ1SOImd/lq1Q0FLf09rGfLQPWDc

-----END CERTIFICATE-----

Client-Cert: MIIBqDCCAU6gAwIBAgIBBzAKBggqhkjOPQQDAjA6MRswGQYDVQQKDBJM

 ZXQncyBBdXRoZW50aWNhdGUxGzAZBgNVBAMMEkxBIEludGVybWVkaWF0ZSBDQTAeFw0y

 MDAxMTQyMjU1MzNaFw0yMTAxMjMyMjU1MzNaMA0xCzAJBgNVBAMMAkJDMFkwEwYHKoZI

 zj0CAQYIKoZIzj0DAQcDQgAE8YnXXfaUgmnMtOXU/IncWalRhebrXmckC8vdgJ1p5Be5

 F/3YC8OthxM4+k1M6aEAEFcGzkJiNy6J84y7uzo9M6NyMHAwCQYDVR0TBAIwADAfBgNV

 HSMEGDAWgBRm3WjLa38lbEYCuiCPct0ZaSED2DAOBgNVHQ8BAf8EBAMCBsAwEwYDVR0l

 BAwwCgYIKwYBBQUHAwIwHQYDVR0RAQH/BBMwEYEPYmRjQGV4YW1wbGUuY29tMAoGCCqG

 SM49BAMCA0gAMEUCIBHda/r1vaL6G3VliL4/Di6YK0Q6bMjeSkC3dFCOOB8TAiEAx/kH

 SB4urmiZ0NX5r5XarmPk0wmuydBVoU4hBVZ1yhk=

Figure 2: Header in HTTP Request to Origin Server

Appendix B. Considerations Considered

B.1. Header Injection

This draft requires that the reverse proxy sanitize the headers of

the incoming request by removing or overwriting any existing

instances of the Client-Cert header before dispatching that request

to the backend application. Otherwise, a client could inject its own

Client-Cert header that would appear to the backend to have come

from the reverse proxy. Although numerous other methods of

detecting/preventing header injection are possible; such as the use

of a unique secret value as part of the header name or value or the

application of a signature, HMAC, or AEAD, there is no common

general standardized mechanism. The potential problem of client

header injection is not at all unique to the functionality of this

draft and it would therefor be inappropriate for this draft to

define a one-off solution. In the absence of a generic standardized

solution existing currently, stripping/sanitizing the headers is the

de facto means of protecting against header injection in practice

today. Sanitizing the headers is sufficient when properly

implemented and is normative requirement of Section 3.

[[Note that there are some very strong opinions around this issue.

One (well respected) contributor has suggested that due potential/

perceived brittleness of the approach, the draft should pursue

informational status rather than proposed standard.]]

B.2. The Forwarded HTTP Extension

The Forwarded HTTP header field defined in [RFC7239] allows proxy

components to disclose information lost in the proxying process. The

TLS client certificate information of concern to this draft could

have been communicated with an extension parameter to the Forwarded

header field, however, doing so would have had some disadvantages

that this draft endeavored to avoid. The Forwarded header syntax

allows for information about a full the chain of proxied HTTP

requests, whereas the Client-Cert header of this document is

concerned only with conveying information about the certificate

presented by the originating client on the TLS connection to the

reverse proxy (which appears as the server from that client's

perspective) to backend applications. The multi-hop syntax of the

Forwarded header is expressive but also more complicated, which

would make processing it more cumbersome, and more importantly, make

properly sanitizing its content as required by Section 3 to prevent

header injection considerably more difficult and error prone. Thus,

this draft opted for the flatter and more straightforward structure

of a single Client-Cert header.

¶

¶

¶

B.3. The Whole Certificate and Only the Whole Certificate

Different applications will have varying requirements about what

information from the client certificate is needed, such as the

subject and/or issuer distinguished name, subject alternative

name(s), serial number, subject public key info, fingerprint, etc..

Furthermore some applications like [I-D.ietf-oauth-mtls] make use of

the entire certificate. In order to accommodate the latter and

ensure wide applicability by not trying to cherry-pick particular

certificate information, this draft opted to pass the full encoded

certificate as the value of the Client-Cert header.

The handshake and validation of the client certificate (chain) of

the mutually-authenticated TLS connection is performed by reverse

proxy. With the responsibility of certificate validation falling on

the proxy, only the end-entity certificate is passed to the backend

- the root Certificate Authority is not included nor are any

intermediates.

[[It has been suggested that more information about the certificate

chain might be needed/wanted by the backend application (to

independently evaluate the cert chain, for example, although that

could potentially be very inefficient) and that any intermediates as

well as the root should also be somehow conveyed, which is an area

for further discussion should this draft progress. One potential

approach suggested by a few folks is to allow some configurability

in what is sent along with maybe a prefix token to indicate what's

being sent - something like Client-Cert: FULL <cert> <intermediate>

<anchor> or Client-Cert: EE <cert>] or a perhaps a parameter or

other construct of draft-ietf-httpbis-header-structure. It's also

been suggested that the end-entity certificate by itself might

sometimes be too big (esp. e.g., with some post-quantum signature

schemes). Hard to account for it both being too much data and not

enough data at the same time. But potentially configuration options

to send only specific attribute(s) from the client certificate is a

possibility for that. In the author's humble opinion the end-entity

certificate by itself strikes a good balance for the majority of

needs. But, again, this is an area for further discussion should

this draft progress.]]

[[It has also been suggested that maybe considerations for

[RFC7250] Raw Public Keys is maybe worth considering. This too is

this is an area for further discussion and consideration should this

draft progress.]]

Appendix C. Acknowledgements

The author would like to thank the following individuals who've

contributed in various ways ranging from just being generally

¶

¶

¶

¶

supportive of bringing forth the draft to providing specific

feedback or content: Annabelle Backman, Mike Bishop, Rory Hewitt,

Benjamin Kaduk, Torsten Lodderstedt, Kathleen Moriarty, Mark

Nottingham, Mike Ounsworth, Matt Peterson, Eric Rescorla, Justin

Richer, Michael Richardson, Joe Salowey, Rich Salz, Mohit Sethi,

Rifaat Shekh-Yusef, Travis Spencer, Nick Sullivan, Peter Wu, and

Hans Zandbelt.

[[Please let me know if you've been erroneously omitted or if you

prefer not to be named]]

Appendix D. Document History

[[To be removed by the RFC Editor before publication as an RFC

(should that come to pass)]] draft-bdc-something-something-

certificate-03

Expanded [[further discussion notes]] to capture some of the

feedback in and around the presentation of the draft in

SECDISPATCH at IETF 107 and add those who've provided such

feedback to the acknowledgements

draft-bdc-something-something-certificate-02

Editorial tweaks + [[further discussion notes]]

draft-bdc-something-something-certificate-01

Use the RFC v3 Format or die trying

draft-bdc-something-something-certificate-00

Initial draft after a time constrained and rushed secdispatch

presentation at IETF 106 in Singapore with the recommendation to

write up a draft (at the end of the minutes) and some folks

expressing interest despite the rather poor presentation

Author's Address

Brian Campbell

Ping Identity

Email: bcampbell@pingidentity.com

¶

¶

¶

*

¶

¶

* ¶

¶

* ¶

¶

*

¶

https://datatracker.ietf.org/meeting/106/materials/slides-106-secdispatch-securing-protocols-between-proxies-and-backend-http-servers-00
https://datatracker.ietf.org/meeting/106/materials/slides-106-secdispatch-securing-protocols-between-proxies-and-backend-http-servers-00
https://datatracker.ietf.org/meeting/106/materials/minutes-106-secdispatch
mailto:bcampbell@pingidentity.com

	Client-Cert HTTP Header: Conveying Client Certificate Information from TLS Terminating Reverse Proxies to Origin Server Applications
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation and Conventions
	1.2. Terminology

	2. HTTP Header Field and Processing Rules
	2.1. Encoding
	2.2. Client-Cert HTTP Header Field
	2.3. Processing Rules

	3. Security Considerations
	4. IANA Considerations
	5. Normative References
	6. Informative References
	Appendix A. Example
	Appendix B. Considerations Considered
	B.1. Header Injection
	B.2. The Forwarded HTTP Extension
	B.3. The Whole Certificate and Only the Whole Certificate
	Appendix C. Acknowledgements
	Appendix D. Document History
	Author's Address

