
ANIMA M. Behringer, Ed.
Internet-Draft Cisco Systems
Intended status: Informational B. Carpenter
Expires: April 18, 2016 Univ. of Auckland
 T. Eckert
 Cisco
 L. Ciavaglia
 Alcatel Lucent
 B. Liu
 Huawei Technologies
 J. Nobre
 Federal University of Rio Grande do Sul
 J. Strassner
 Huawei Technologies
 October 16, 2015

A Reference Model for Autonomic Networking
draft-behringer-anima-reference-model-04

Abstract

 This document describes a reference model for Autonomic Networking.
 The goal is to define how the various elements in an autonomic
 context work together, to describe their interfaces and relations.
 While the document is written as generally as possible, the initial
 solutions are limited to the chartered scope of the WG.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 18, 2016.

Behringer, et al. Expires April 18, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft AN Reference Model October 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. The Network View . 3
3. The Autonomic Network Element 4
3.1. Architecture . 4

4. The Autonomic Networking Infrastructure 6
4.1. Naming . 6
4.1.1. Naming requirements 6
4.1.2. Proposed Mechanisms 7

4.2. Addressing . 8
4.3. Discovery . 9
4.4. Signaling Between Autonomic Nodes 9
4.5. Intent Distribution 10
4.6. Routing . 10
4.7. The Autonomic Control Plane 10

5. Functional Overview . 11
6. Security and Trust Infrastructure 13
6.1. Public Key Infrastructure 13
6.2. Domain Certificate 13
6.3. The MASA . 13
6.4. Sub-Domains (*) . 13
6.5. Cross-Domain Functionality (*) 13

7. Autonomic Service Agents (ASA) 14
7.1. General Description of an ASA 14
7.2. Specific ASAs for the Enrolment Process 14
7.2.1. The Enrolment ASA 14
7.2.2. The Enrolment Proxy ASA 14
7.2.3. The Registrar ASA 14

8. Management and Programmability 14
8.1. How an AN Network Is Managed 14
8.2. Intent (*) . 15
8.3. Aggregated Reporting (*) 16

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Behringer, et al. Expires April 18, 2016 [Page 2]

Internet-Draft AN Reference Model October 2015

8.4. Feedback Loops to NOC(*) 17
8.5. Control Loops (*) . 17
8.6. APIs (*) . 18
8.7. Data Model (*) . 18

9. Coordination Between Autonomic Functions (*) 19
9.1. The Coordination Problem (*) 19
9.2. A Coordination Functional Block (*) 20

10. Security Considerations 21
10.1. Threat Analysis . 21

11. IANA Considerations . 22
12. Acknowledgements . 22
13. References . 22

 Authors' Addresses . 23

1. Introduction

 The document "Autonomic Networking - Definitions and Design Goals"
 [RFC7575] explains the fundamental concepts behind Autonomic
 Networking, and defines the relevant terms in this space. In section

5 it describes a high level reference model. This document defines
 this reference model with more detail, to allow for functional and
 protocol specifications to be developed in an architecturally
 consistent, non-overlapping manner. While the document is written as
 generally as possible, the initial solutions are limited to the
 chartered scope of the WG.

 As discussed in [RFC7575], the goal of this work is not to focus
 exclusively on fully autonomic nodes or networks. In reality, most
 networks will run with some autonomic functions, while the rest of
 the network is traditionally managed. This reference model allows
 for this hybrid approach.

 This is a living document and will evolve with the technical
 solutions developed in the ANIMA WG. Sections marked with (*) do not
 represent current charter items. While this document must give a
 long term architectural view, not all functions will be standardized
 at the same time.

2. The Network View

 This section describes the various elements in a network with
 autonomic functions, and how these entities work together, on a high
 level. Subsequent sections explain the detailed inside view for each
 of the autonomic network elements, as well as the network functions
 (or interfaces) between those elements.

 Figure 1 shows the high level view of an Autonomic Network. It
 consists of a number of autonomic nodes, which interact directly with

https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires April 18, 2016 [Page 3]

Internet-Draft AN Reference Model October 2015

 each other. Those autonomic nodes provide a common set of
 capabilities across the network, called the "Autonomic Networking
 Infrastructure" (ANI). The ANI provides functions like naming,
 addressing, negotiation, synchronization, discovery and messaging.

 Autonomic functions typically span several, possibly all nodes in the
 network. The atomic entities of an autonomic function are called the
 "Autonomic Service Agents" (ASA), which are instantiated on nodes.

 +- +
 : : Autonomic Function 1 : :
 : ASA 1 : ASA 1 : ASA 1 : ASA 1 :
 +- +
 : : :
 : +- - - - - - - - - - - - - - + :
 : : Autonomic Function 2 : :
 : : ASA 2 : ASA 2 : :
 : +- - - - - - - - - - - - - - + :
 : : :
 +- +
 : Autonomic Networking Infrastructure :
 +- +
 +--------+ : +--------+ : +--------+ : +--------+
 | Node 1 |--------| Node 2 |--------| Node 3 |----...-----| Node n |
 +--------+ : +--------+ : +--------+ : +--------+

 Figure 1: High level view of an Autonomic Network

 In a horizontal view, autonomic functions span across the network, as
 well as the Autonomic Networking Infrastructure. In a vertical view,
 a node always implements the ANI, plus it may have one or several
 Autonomic Service Agents.

 The Autonomic Networking Infrastructure (ANI) therefore is the
 foundation for autonomic functions. The current charter of the ANIMA
 WG is to specify the ANI, using a few autonomic functions as use
 cases.

3. The Autonomic Network Element

3.1. Architecture

 This section describes an autonomic network element and its internal
 architecture. The reference model explained in the document
 "Autonomic Networking - Definitions and Design Goals" [RFC7575] shows
 the sources of information that an autonomic service agent can
 leverage: Self-knowledge, network knowledge (through discovery),
 Intent, and feedback loops. Fundamentally, there are two levels

https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires April 18, 2016 [Page 4]

Internet-Draft AN Reference Model October 2015

 inside an autonomic node: the level of Autonomic Service Agents, and
 the level of the Autonomic Networking Infrastructure, with the former
 using the services of the latter. Figure 2 illustrates this concept.

 +--+
 | |
 | +-----------+ +------------+ +------------+ |
	Autonomic		Autonomic		Autonomic	
	Service		Service		Service	
	Agent 1		Agent 2		Agent 3	
+-----------+ +------------+ +------------+						
^ ^ ^						
- -	- - API level - -	- - - - - - -	- - -			
V V V						
--						
Autonomic Networking Infrastructure						
- Data structures (ex: certificates, peer information)						
- Autonomic Control Plane						
- Autonomic Node Addressing						
- Discovery, negotiation and synchronisation functions						
- Intent distribution						
- Aggregated reporting and feedback loops						
- Routing						
--						
Basic Operating System Functions						
 +--+

 Figure 2: Model of an autonomic node

 The Autonomic Networking Infrastructure (lower part of Figure 2)
 contains node specific data structures, for example trust information
 about itself and its peers, as well as a generic set of functions,
 independent of a particular usage. This infrastructure should be
 generic, and support a variety of Autonomic Service Agents (upper
 part of Figure 2). The Autonomic Control Plane is the summary of all
 interactions of the Autonomic Networking Infrastructure with other
 nodes and services.

 The use cases of "Autonomics" such as self-management, self-
 optimisation, etc, are implemented as Autonomic Service Agents. They
 use the services and data structures of the underlying autonomic
 networking infrastructure. The underlying Autonomic Networking
 Infrastructure should itself be self-managing.

 The "Basic Operating System Functions" include the "normal OS",
 including the network stack, security functions, etc.

Behringer, et al. Expires April 18, 2016 [Page 5]

Internet-Draft AN Reference Model October 2015

 Full AN nodes have the full Autonomic Networking Infrastructure, with
 the full functionality described in this document. At a later stage
 ANIMA may define a scope for constrained nodes with a reduced ANI and
 well-defined minimal functionality. They are currently out of scope.

4. The Autonomic Networking Infrastructure

 The Autonomic Networking Infrastructure provides a layer of common
 functionality across an Autonomic Network. It comprises "must
 implement" functions and services, as well as extensions.

 An Autonomic Function, comprising of Autonomic Service Agents on
 nodes, can rely on the fact that all nodes in the network implement
 at least the "must implement" functions.

4.1. Naming

4.1.1. Naming requirements

 o Representing each device

 Inside a domain, each autonomic device needs a domain specific
 identifier.

 [Open Questions] Are there devices that don't need names? Do
 ASAs need names?

 o Uniqueness

 The names MUST NOT collide within one autonomic domain.

 It is acceptable that the names in different domains collide,
 since they could be distinguished by domains.

 o Semantic Encoding

 It is RECOMMENDED that the names encode some semantics rather
 than meaningless strings. The semantics might be:

 + Location

 + Device type

 + Functional role

 + Ownership

 + etc.

Behringer, et al. Expires April 18, 2016 [Page 6]

Internet-Draft AN Reference Model October 2015

 This is for ease of management consideration that network
 administrators could easily recognize the device directly
 through the names.

 o Consistency

 The devices' naming SHOULD follow the same pattern within a
 domain.

4.1.2. Proposed Mechanisms

 __

 o Structured Naming Pattern

 The whole name string could be divided into several fields,
 each of which representing a specific semantic as described
 above. For example: Location-DeviceType-FunctionalRole-
 DistinguisherNumber@NameofDomain.

 The structure should be flexible that some fields are optional.
 When these optional fields are added, the name could still be
 recognized as the previous one. In above example, the
 "DistinguisherNumber" and "NameofDomain" are mandatory whereas
 others are optional. At initial stage, the devices might be
 only capable of self-generating the mandatory fields and the
 "DeviceType" because of the lack of knowledge. Later, they
 might have learned the "Location" and "FunctionalRole" and
 added the fields into current name. However, the other devices
 could still recognize it according to the same
 "DistinguisherNumber".

 o Advertised Common Fields

 Some fields in the structured name might be common among the
 domain (e.g. "Location" "NameofDomain"). Thus, these part of
 the names could be advertised through Intent
 DistributionSection 4.5.

 o Self-generated Fields

 The mandatory fields SHOULD be self-generated so that one
 device could name itself sufficiently without any advertised
 knowledges.

 There should various methods for a device to extract/generate a
 proper word for each mandatory semantic fields (e.g.
 "DeviceType", "DistinguisherNum") from its self-knowledge.

Behringer, et al. Expires April 18, 2016 [Page 7]

Internet-Draft AN Reference Model October 2015

 Detailed design of specific naming patterns and methods are out of
 scope of this document.

4.2. Addressing

 Autonomic Service Agents (ASAs) need to communicate with each other,
 using the autonomic addressing of the node they reside on. This
 section describes the addressing approach of the Autonomic Networking
 Infrastructure, used by ASAs. It does NOT describe addressing
 approaches for the data plane of the network, which may be configured
 and managed in the traditional way, or negotiated as a service of an
 ASA. One use case for such an autonomic function is described in
 [I-D.jiang-auto-addr-management]. The addressing of the Autonomic
 Networking Infrastructure is in scope for this section, the address
 space they negotiate for the data plane is not.

 Autonomic addressing is a function of the Autonomic Networking
 Infrastructure (lower part of Figure 2), specifically the Autonomic
 Control Plane. ASAs do not have their own addresses. They may use
 either API calls, or the autonomic addressing scheme of the Autonomic
 Networking Infrastructure.

 An autonomic addressing scheme has the following requirements:

 o Zero-touch for simple networks: Simple networks should have
 complete self-management of addressing, and not require any
 central address management, tools, or address planning.

 o Low-touch for complex networks: If complex networks require
 operator input for autonomic address management, it should be
 limited to high level guidance only, expressed in Intent.

 o Flexibility: The addressing scheme must be flexible enough for
 nodes to be able to move around, for the network to grow, split
 and merge.

 o Robustness: It should be as hard as possible for an administrator
 to negatively affect addressing (and thus connectivity) in the
 autonomic context.

 o Support for virtualization: Autonomic Nodes may support Autonomic
 Service Agents in different virtual machines or containers. The
 addressing scheme should support this architecture.

 o Simplicity: To make engineering simpler, and to give the human
 administrator an easy way to trouble-shoot autonomic functions.

 o Scale: The proposed scheme should work in any network of any size.

Behringer, et al. Expires April 18, 2016 [Page 8]

Internet-Draft AN Reference Model October 2015

 o Upgradability: The scheme must be able to support different
 addressing concepts in the future.

 The primary use for the autonomically managed addressing described
 here is for the Autonomic Control Plane
 ([I-D.ietf-anima-autonomic-control-plane]). The fundamental
 concepts, as well as the proposed addressing scheme for the ACP is
 discussed in [I-D.behringer-anima-autonomic-addressing].

4.3. Discovery

 Traditionally, most of the information a node requires is provided
 through configuration or northbound interfaces. An autonomic
 function should rely on such northbound interfaces minimally or not
 at all, and therefore it needs to discover peers and other resources
 in the network. This section describes various discovery functions
 in an autonomic network.

 Discovering nodes and their properties and capabilities: A core
 function to establish an autonomic domain is the mutual discovery of
 autonomic nodes, primarily adjacent nodes and secondarily off-link
 peers. This may in principle either leverage existing discovery
 mechanisms, or use new mechanisms tailored to the autonomic context.
 An important point is that discovery must work in a network with no
 predefined topology, ideally no manual configuration of any kind, and
 with nodes starting up from factory condition or after any form of
 failure or sudden topology change.

 Discovering services: Network services such as AAA should also be
 discovered and not configured. Service discovery is required for
 such tasks. An autonomic network can either leverage existing
 service discovery functions, or use a new approach, or a mixture.

 Thus the discovery mechanism could either be fully integrated with
 autonomic signaling (next section) or could use an independent
 discovery mechanism such as DNS Service Discovery or Service Location
 Protocol. This choice could be made independently for each Autonomic
 Service Agent, although the infrastructure might require some minimal
 lowest common denominator (e.g., for discovering the security
 bootstrap mechanism, or the source of intent distribution,

Section 4.5).

4.4. Signaling Between Autonomic Nodes

 Autonomic nodes must communicate with each other, for example to
 negotiate and/or synchronize technical objectives (i.e., network
 parameters) of any kind and complexity. This requires some form of
 signaling between autonomic nodes. Autonomic nodes implementing a

Behringer, et al. Expires April 18, 2016 [Page 9]

Internet-Draft AN Reference Model October 2015

 specific use case might choose their own signaling protocol, as long
 as it fits the overall security model. However, in the general case,
 any pair of autonomic nodes might need to communicate, so there needs
 to be a generic protocol for this. A prerequisite for this is that
 autonomic nodes can discover each other without any preconfiguration,
 as mentioned above. To be generic, discovery and signaling must be
 able to handle any sort of technical objective, including ones that
 require complex data structures. The document "A Generic Discovery
 and Negotiation Protocol for Autonomic Networking"
 [I-D.ietf-anima-grasp] describes more detailed requirements for
 discovery, negotiation and synchronization in an autonomic network.
 It also defines a protocol, GDNP, for this purpose, including an
 integrated but optional discovery protocol.

4.5. Intent Distribution

 Intent is the policy language of an Autonomic Network; see
Section 8.2 for general information on Intent. The distribution of

 Intent is also a function of the Autonomic Control Plane. It is
 expected that Intent will be expressed as quite complex human-
 readable data structures, and the distribution mechanism must be able
 to support that. Some Intent items will need to be flooded to most
 or all nodes, and other items of Intent may only be needed by a few
 nodes. Various methods could be used to distribute Intent across an
 autonomic domain. One approach is to treat it like any other
 technical objective needing to be synchronized across a set of nodes.
 In that case the autonomic signaling protocol could be used (previous
 section).

4.6. Routing

 All autonomic nodes in a domain must be able to communicate with each
 other, and with autonomic nodes outside their own domain. Therefore,
 an Autonomic Control Plane relies on a routing function. For
 Autonomic Networks to be interoperable, they must all support one
 common routing protocol.

4.7. The Autonomic Control Plane

 The totality of autonomic interactions forms the "Autonomic Control
 Plane". This control plane can be either implemented in the global
 routing table of a node, such as IGPs in today's networks; or it can
 be provided as an overlay network. The document "An Autonomic
 Control Plane" ([I-D.ietf-anima-autonomic-control-plane]) describes
 the details.

Behringer, et al. Expires April 18, 2016 [Page 10]

Internet-Draft AN Reference Model October 2015

5. Functional Overview

 This section provides an overview on how the functions in the
 Autonomic Networking Infrastructure work together, and how the
 various documents about AN relate to each other.

 The foundations of Autonomic Networking, definitions and gap analysis
 in the context of the IETF are described in [RFC7575] and [RFC7576].

 Autonomic Networking is based on direct interactions between devices
 of a domain. The Autonomic Networking Infrastructure (ANI) is
 normally built on a hop-by-hop basis. Therefore, many interactions
 in the ANI are based on the ANI adjacency table. There are
 interactions that provide input into the adjacency table, and other
 interactions that leverage the information contained in it.

 The ANI adjacency table contains information about adjacent autonomic
 nodes, at a minimum: node-ID, IP address in data plane, IP address in
 ACP, domain, certificate. An autonomic node maintains this adjacency
 table up to date. The adjacency table only contains information
 about other nodes that are capable of Autonomic Networking; non-
 autonomic nodes are normally not tracked here. However, the
 information is tracked independently of the status of the peer nodes;
 specifically, it contains information about non-enrolled nodes, nodes
 of the same and other domains. The adjacency table MAY contain
 information about the validity and trust of the adjacent autonomic
 node's certificate, although all autonomic interactions must verify
 validity and trust independently.

 The adjacency table is fed by the following inputs:

 o Link local discovery: This interaction happens in the data plane,
 using IPv6 link local addressing only, because this addressing
 type is itself autonomic. This way the nodes learns about all
 autonomic nodes around itself. This is described in
 [I-D.ietf-anima-grasp].

 o Vendor re-direct: A new device may receive information on where
 its home network is through a vendor based MASA re-direct; this is
 typically a routable address. See
 [I-D.pritikin-bootstrapping-keyinfrastructures].

 o Non-autonomic input: A node may be configured manually with an
 autonomic peer; it could learn about autonomic nodes through DHCP
 options, DNS, and other non-autonomic mechanisms. Generally such
 non-autonomic mechansims require some administrator intervention.
 The key purpose is to by-pass a non-autonomic device or network.

https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7576

Behringer, et al. Expires April 18, 2016 [Page 11]

Internet-Draft AN Reference Model October 2015

 As this pertains to new devices, it is covered in Section 5.3 of
 [I-D.pritikin-bootstrapping-keyinfrastructures].

 The adjacency table is defining the behaviour of an autonomic node:

 o If the node has not bootstrapped into a domain (i.e., doesn't have
 a domain certificate), it rotates through all nodes in the
 adjacency table that claim to have a domain, and will attempt
 bootstrapping through them, one by one. One possible response is
 a vendor MASA re-direct, which will be entered into the adjacency
 table (see second bullet above). See
 [I-D.pritikin-bootstrapping-keyinfrastructures].

 o If the node has bootstrapped into a domain (i.e., has a domain
 certificate), it will act as a proxy for neighboring nodes that
 need to be bootstrapped. See
 [I-D.pritikin-bootstrapping-keyinfrastructures].

 o If the adjacent node has the same domain, it will authenticate
 that adjacent node and establish the Autonomic Control Plane
 (ACP). See [I-D.ietf-anima-autonomic-control-plane].

 o Other behaviours are possible, for example establishing the ACP
 also with devices of a sub-domain, to other domains, etc. Those
 will likely be controlled by Intent. They are outside scope for
 the moment. Note that Intent is distributed through the ACP;
 therefore, a node can only adapt Intent driven behaviour once it
 has joined the ACP. At the moment, ANIMA does not consider
 providing Intent outside the ACP; this can be considered later.

 Once a node has joined the ACP, it will also learn the ACP addresses
 of its adjacent nodes, and add them to the adjacency table, to allow
 for communication inside the ACP. Further interactions will now
 happen inside the ACP. At this moment, only negotiation /
 synchronization via GRASP [I-D.ietf-anima-grasp] is being defined.
 (Note that GRASP runs in the data plane, as an input in building the
 adjacency table, as well as inside the ACP.)

 Autonomic Functions consist of Autonomic Service Agents (ASAs). They
 run logically above the AN Infrastructure, and may use the adjacency
 table, the ACP, negotiation and synchronization through GRASP in the
 ACP, Intent and other functions of the ANI. Since the ANI only
 provides autonomic interactions within a domain, autonomic functions
 can also use any other context on a node, specifically the global
 data plane.

Behringer, et al. Expires April 18, 2016 [Page 12]

Internet-Draft AN Reference Model October 2015

6. Security and Trust Infrastructure

 An Autonomic Network is self-protecting. All protocols are secure by
 default, without the requirement for the administrator to explicitly
 configure security.

 Autonomic nodes have direct interactions between themselves, which
 must be secured. Since an autonomic network does not rely on
 configuration, it is not an option to configure for example pre-
 shared keys. A trust infrastructure such as a PKI infrastructure
 must be in place. This section describes the principles of this
 trust infrastructure.

 A completely autonomic way to automatically and securely deploy such
 a trust infrastructure is to set up a trust anchor for the domain,
 and then use an approach as in the document "Bootstrapping Key
 Infrastructures" [I-D.pritikin-bootstrapping-keyinfrastructures].

6.1. Public Key Infrastructure

 An autonomic domain uses a PKI model. The root of trust is a
 certification authority (CA). A registrar acts as a registration
 authority (RA).

 A minimum implementation of an autonomic domain contains one CA, one
 Registrar, and network elements.

6.2. Domain Certificate

 We need to define how the fields in a domain certificate are to be
 used. [tbc]

6.3. The MASA

 Explain briefly the function, point to
 [I-D.pritikin-bootstrapping-keyinfrastructures]. [tbc]

6.4. Sub-Domains (*)

 Explain how sub-domains are handled. (tbc)

6.5. Cross-Domain Functionality (*)

 Explain how trust is handled between different domains. (tbc)

Behringer, et al. Expires April 18, 2016 [Page 13]

Internet-Draft AN Reference Model October 2015

7. Autonomic Service Agents (ASA)

 This section describes how autonomic services run on top of the
 Autonomic Networking Infrastructure.

7.1. General Description of an ASA

 general concepts, such as sitting on top of the ANI, etc. Also needs
 to explain that on a constrained node not all ASAs may run, so we
 have two classes of ASAs: Ones that run on an unconstrained node, and
 limited function ASAs that run also on constrained nodes. We expect
 unconstrained nodes to support all ASAs.

7.2. Specific ASAs for the Enrolment Process

 The following ASAs provide essential, required functionality in an
 autonomic network, and are therefore mandatory to implement on
 unconstrained autonomic nodes.

7.2.1. The Enrolment ASA

 This section describes the function of an autonomic node to bootstrap
 into the domain with the help of an enrolment proxy (see previous
 section). [tbc]

7.2.2. The Enrolment Proxy ASA

 This section describes the function of an autonomic node that helps a
 non-enrolled, adjacent devices to enrol into the domain. [tbc]

7.2.3. The Registrar ASA

 This section describes the registrar function in an autonomic
 network. It explains the tasks of a registrar element, and how
 registrars are placed in a network, redundancy between several, etc.
 [tbc]

8. Management and Programmability

 This section describes how an Autonomic Network is managed, and
 programmed.

8.1. How an AN Network Is Managed

 Autonomic management usually co-exists with traditional management
 methods in most networks. Thus, autonomic behavior will be defined
 for individual functions in most environments. In fact, the co-
 existence is twofold: autonomic functions can use traditional methods

Behringer, et al. Expires April 18, 2016 [Page 14]

Internet-Draft AN Reference Model October 2015

 and protocols (e.g., SNMP and NETCONF) to perform management tasks;
 and autonomic functions can conflict with behavior enforced by the
 same traditional methods and protocols.

 The autonomic intent is defined at a high level of abstraction.
 However, since it is necessary to address individual managed
 elements, autonomic management needs to communicate in lower-level
 interactions (e.g., commands and requests). For example, it is
 expected that the configuration of such elements be performed using
 NETCONF and YANG modules as well as the monitoring be executed
 through SNMP and MIBs.

 Conflict can occur between autonomic default behavior, autonomic
 intent, traditional management methods. Conflict resolution is
 achieved in autonomic management through prioritization [RFC7575].
 The rationale is that manual and node-based management have a higher
 priority over autonomic management. Thus, the autonomic default
 behavior has the lowest priority, then comes the autonomic Intent
 (medium priority), and, finally, the highest priority is taken by
 node-specific network management methods, such as the use of command
 line interfaces [RFC7575].

8.2. Intent (*)

 This section describes Intent, and how it is managed. Intent and
 Policy-Based Network Management (PBNM) is already described inside
 the IETF (e.g., PCIM and SUPA) and in other SDOs (e.g., DMTF and TMF
 ZOOM).

 Intent can be describe as an abstract, declarative, high-level policy
 used to operate an autonomic domain, such as an enterprise network
 [RFC7575]. Intent should be limited to high level guidance only,
 thus it does not directly define a policy for every network element
 separately. In an ideal autonomic domain, only one intent provided
 by human administrators is necessary to operate such domain
 [RFC7576]. However, it is als expected intent definition from
 autonomic function(s) and even from traditional network management
 elements (e.g., OSS).

 Intent can be refined to lower level policies using different
 approaches, such as Policy Continuum model [ref]. This is expected
 in order to adapt the intent to the capabilities of managed devices.
 In this context, intent may contain role or function information,
 which can be translated to specific nodes [RFC7575]. One of the
 possible refinements of the intent is the refinement to Event
 Condition Action (ECA) rules. Such rules, which are more suitable to
 individual entities, can be defined using different syntax and
 semantics.

https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7576
https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires April 18, 2016 [Page 15]

Internet-Draft AN Reference Model October 2015

 Different parameters may be configured for intents. These parameters
 are usually provided by the human operator. Some of these parameters
 can influence the behavior of specific autonomic functions as well as
 the way the intent is used to manage the autonomic domain (towards
 intended operational point).

 Some examples of parameters for intents are:

 o Model version: The version of the model used to define the intent.

 o Domain: The network scope in which the intent has effect.

 o Name: The name of the intent which describes the intent for human
 operators.

 o Version: The version of the intent, which is primarly used to
 control intent updates.

 o Signature: The signature is used as a security mechanism to
 provide authentication, integrity, and non-repudiation.

 o Timestamp: The timestamp of the creation of the intent using the
 format supported by the IETF [TBC].

 o Lifetime: The lifetime in which the intent may be observed. A
 special case of the lifetime is the definition of permanent
 intents.

 Intent distribution is considered as one of the common control and
 management functions of an autonomic network [RFC7575]. Since
 distribution is fundamental for autonomic networking, it is necessary
 a mechanism to provision intent by all devices in a domain
 [I-D.ietf-anima-grasp]. The distribution of Intent is function of
 the Autonomic Control Plane and several methods can be used to
 distribute Intent across an autonomic domain [draft-behringer-anima-

reference-model]. Intent distribution might not use the ANIMA
 signaling protocol itself [I-D.ietf-anima-grasp], but there is a
 proposal to extend such protocol for intent delivery [draft-liu-

anima-intent-distribution].

8.3. Aggregated Reporting (*)

 Autonomic Network should minimize the need for human intervention.
 In terms of how the network should behave, this is done through an
 autonomic intent provided by the human administrator. In an
 analogous manner, the reports which describe the operational status
 of the network should aggregate the information produced in different
 network elements in order to present the effectiveness of autonomic

https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/draft-behringer-anima-reference-model
https://datatracker.ietf.org/doc/html/draft-behringer-anima-reference-model
https://datatracker.ietf.org/doc/html/draft-liu-anima-intent-distribution
https://datatracker.ietf.org/doc/html/draft-liu-anima-intent-distribution

Behringer, et al. Expires April 18, 2016 [Page 16]

Internet-Draft AN Reference Model October 2015

 intent enforcement. Therefore, reporting in an autonomic network
 should happen on a network-wide basis [RFC7575]. The information
 gathering and the reporting delivery should be done through the
 autonomic control plane.

 Several events can occur in an autonomic network in the same way they
 can happen in a traditional network. These events can be produced
 considering traditional network management protocols, such as SNMP
 and syslog. However, when reporting to a human administrator, such
 events should be aggregated in order to avoid advertisement about
 individual managed elements. In this context, algorithms may be used
 to determine what should be reported (e.g., filtering) and in which
 way and how different events are related to each other. Besides
 that, an event in an individual element can be compensated by changes
 in other elements in order to maintain in a network-wide level which
 is described in the autonomic intent.

 Reporting in an autonomic network may be in the same abstraction
 level of the intent. In this context, the visibility on current
 operational status of an autonomic network can be used to switch to
 different management modes. Despite the fact that autonomic
 management should minimize the need for user intervention, possibly
 there are some events that need to be addressed by human
 administrator actions. An alternative to model this is the use of
 exception-based management [RFC7575].

8.4. Feedback Loops to NOC(*)

 Feedback loops are required in an autonomic network to allow the
 intervention of a human administrator or central control systems,
 while maintaining a default behaviour. Through a feedback loop an
 administrator can be prompted with a default action, and has the
 possibility to acknowledge or override the proposed default action.

8.5. Control Loops (*)

 Control loops are used in autonomic networking to provide a generic
 mechanism to enable the Autonomic System to adapt (on its own) to
 various factors that can change the goals that the Autonomic System
 is trying to achieve, or how those goals are achieved. For example,
 as user needs, business goals, and the ANI itself changes, self-
 adaptation enables the ANI to change the services and resources it
 makes available to adapt to these changes.

 Control loops operate to continuously observe and collect data that
 enables the autonomic management system to understand changes to the
 behavior of the system being managed, and then provide actions to
 move the state of the system being managed toward a common goal.

https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires April 18, 2016 [Page 17]

Internet-Draft AN Reference Model October 2015

 Self-adaptive systems move decision-making from static, pre-defined
 commands to dynamic processes computed at runtime.

 Most autonomic systems use a closed control loop with feedback. Such
 control loops SHOULD be able to be dynamically changed at runtime to
 adapt to changing user needs, business goals, and changes in the ANI.

 The document [draft-strassner-anima-control-loop] defines the
 requirements for an autonomic control loop, describes different types
 of control loops, and explains how control loops are used in an
 autonomic system.

8.6. APIs (*)

 Most APIs are static, meaning that they are pre-defined and represent
 an invariant mechanism for operating with data. An Autonomic Network
 SHOULD be able to use dynamic APIs in addition to static APIs.

 A dynamic API is one that retrieves data using a generic mechanism,
 and then enables the client to navigate the retrieved data and
 operate on it. Such APIs typically use introspection and/or
 reflection. Introspection enables software to examine the type and
 properties of an object at runtime, while reflection enables a
 program to manipulate the attributes, methods, and/or metadata of an
 object.

 APIs MUST be able to express and preserve semantics across different
 domains. For example, software contracts [Meyer97] are based on the
 principle that a software-intensive system, such as an Autonomic
 Network, is a set of communicating components whose interaction is
 based on precisely-defined specifications of the mutual obligations
 that interacting components must respect. This typically includes
 specifying:

 o pre-conditions that MUST be satisfied before the method can start
 execution

 o post-conditions that MUST be satisfied when the method has
 finished execution

 o invariant attributes that MUST NOT change during the execution of
 the method

8.7. Data Model (*)

 The following definitions are taken from [supa-model]:

https://datatracker.ietf.org/doc/html/draft-strassner-anima-control-loop

Behringer, et al. Expires April 18, 2016 [Page 18]

Internet-Draft AN Reference Model October 2015

 An information model is a representation of concepts of interest to
 an environment in a form that is independent of data repository, data
 definition language, query language, implementation language, and
 protocol. In contrast, a data model is a representation of concepts
 of interest to an environment in a form that is dependent on data
 repository, data definition language, query language, implementation
 language, and protocol (typically, but not necessarily, all three).

 The utility of an information model is to define objects and their
 relationships in a technology-neutral manner. This forms a
 consensual vocabulary that the ANI and ASAs can use. A data model is
 then a technology-specific mapping of all or part of the information
 model to be used by all or part of the system.

 A system may have multiple data models. Operational Support Systems,
 for example, typically have multiple types of repositories, such as
 SQL and NoSQL, to take advantage of the different properties of each.
 If multiple data models are required by an Autonomic System, then an
 information model SHOULD be used to ensure that the concepts of each
 data model can be related to each other without technological bias.

 A data model is essential for certain types of functions, such as a
 MRACL. More generally, a data model can be used to define the
 objects, attributes, methods, and relationships of a software system
 (e.g., the ANI, an autonomic node, or an ASA). A data model can be
 used to help design an API, as well as any language used to interface
 to the Autonomic Network.

9. Coordination Between Autonomic Functions (*)

9.1. The Coordination Problem (*)

 Different autonomic functions may conflict in setting certain
 parameters. For example, an energy efficiency function may want to
 shut down a redundant link, while a load balancing function would not
 want that to happen. The administrator must be able to understand
 and resolve such interactions, to steer autonomic network performance
 to a given (intended) operational point.

 Several interaction types may exist among autonomic functions, for
 example:

 o Cooperation: An autonomic function can improve the behavior or
 performance of another autonomic function, such as a traffic
 forecasting function used by a traffic allocation function.

 o Dependency: An autonomic function cannot work without another one
 being present or accessible in the autonomic network.

Behringer, et al. Expires April 18, 2016 [Page 19]

Internet-Draft AN Reference Model October 2015

 o Conflict: A metric value conflict is a conflict where one metric
 is influenced by parameters of different autonomic functions. A
 parameter value conflict is a conflict where one parameter is
 modified by different autonomic functions.

 Solving the coordination problem beyond one-by-one cases can rapidly
 become intractable for large networks. Specifying a common
 functional block on coordination is a first step to address the
 problem in a systemic way. The coordination life-cycle consists in
 three states:

 o At build-time, a "static interaction map" can be constructed on
 the relationship of functions and attributes. This map can be
 used to (pre-)define policies and priorities on identified
 conflicts.

 o At deploy-time, autonomic functions are not yet active/acting on
 the network. A "dynamic interaction map" is created for each
 instance of each autonomic functions and on a per resource basis,
 including the actions performed and their relationships. This map
 provides the basis to identify conflicts that will happen at run-
 time, categorize them and plan for the appropriate coordination
 strategies/mechanisms.

 o At run-time, when conflicts happen, arbitration is driven by the
 coordination strategies. Also new dependencies can be observed
 and inferred, resulting in an update of the dynamic interaction
 map and adaptation of the coordination strategies and mechanisms.

 Multiple coordination strategies and mechanisms exists and can be
 devised. The set ranges from basic approaches such as random process
 or token-based process, to approaches based on time separation and
 hierarchical optimization, to more complex approaches such as multi-
 objective optimization, and other control theory approaches and
 algorithms family.

9.2. A Coordination Functional Block (*)

 A common coordination functional block is a desirable component of
 the ANIMA reference model. It provides a means to ensure network
 properties and predictable performance or behavior such as stability,
 and convergence, in the presence of several interacting autonomic
 functions.

 A common coordination function requires:

 o A common description of autonomic functions, their attributes and
 life-cycle.

Behringer, et al. Expires April 18, 2016 [Page 20]

Internet-Draft AN Reference Model October 2015

 o A common representation of information and knowledge (e.g.,
 interaction maps).

 o A common "control/command" interface between the coordination
 "agent" and the autonomic functions.

 Guidelines, recommendations or BCPs can also be provided for aspects
 pertaining to the coordination strategies and mechanisms.

10. Security Considerations

10.1. Threat Analysis

 This is a preliminary outline of a threat analysis, to be expanded
 and made more specific as the various Autonomic Networking
 specifications evolve.

 Since AN will hand over responsibility for network configuration from
 humans or centrally established management systems to fully
 distributed devices, the threat environment is also fully
 distributed. On the one hand, that means there is no single point of
 failure to act as an attractive target for bad actors. On the other
 hand, it means that potentially a single misbehaving autonomic device
 could launch a widespread attack, by misusing the distributed AN
 mechanisms. For example, a resource exhaustion attack could be
 launched by a single device requesting large amounts of that resource
 from all its peers, on behalf of a non-existent traffic load.
 Alternatively it could simply send false information to its peers,
 for example by announcing resource exhaustion when this was not the
 case. If security properties are managed autonomically, a
 misbehaving device could attempt a distributed attack by requesting
 all its peers to reduce security protections in some way. In
 general, since autonomic devices run without supervision, almost any
 kind of undesirable management action could in theory be attempted by
 a misbehaving device.

 If it is possible for an unauthorised device to act as an autonomic
 device, or for a malicious third party to inject messages appearing
 to come from an autonomic device, all these same risks would apply.

 If AN messages can be observed by a third party, they might reveal
 valuable information about network configuration, security
 precautions in use, individual users, and their traffic patterns. If
 encrypted, AN messages might still reveal some information via
 traffic analysis, but this would be quite limited (for example, this
 would be highly unlikely to reveal any specific information about
 user traffic). AN messages are liable to be exposed to third parties

Behringer, et al. Expires April 18, 2016 [Page 21]

Internet-Draft AN Reference Model October 2015

 on any unprotected Layer 2 link, and to insider attacks even on
 protected Layer 2 links.

11. IANA Considerations

 This document requests no action by IANA.

12. Acknowledgements

 Many people have provided feedback and input to this document: Sheng
 Jiang, Roberta Maglione, Jonathan Hansford.

13. References

 [I-D.behringer-anima-autonomic-addressing]
 Behringer, M., "An Autonomic IPv6 Addressing Scheme",

draft-behringer-anima-autonomic-addressing-02 (work in
 progress), October 2015.

 [I-D.ietf-anima-autonomic-control-plane]
 Behringer, M., Bjarnason, S., BL, B., and T. Eckert, "An
 Autonomic Control Plane", draft-ietf-anima-autonomic-

control-plane-01 (work in progress), October 2015.

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-

grasp-01 (work in progress), October 2015.

 [I-D.jiang-auto-addr-management]
 Jiang, S., Carpenter, B., and Q. Qiong, "Autonomic
 Networking Use Case for Auto Address Management", draft-

jiang-auto-addr-management-00 (work in progress), April
 2014.

 [I-D.pritikin-bootstrapping-keyinfrastructures]
 Pritikin, M., Behringer, M., and S. Bjarnason,
 "Bootstrapping Key Infrastructures", draft-pritikin-

bootstrapping-keyinfrastructures-01 (work in progress),
 September 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-addressing-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-01
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-01
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-01
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-01
https://datatracker.ietf.org/doc/html/draft-jiang-auto-addr-management-00
https://datatracker.ietf.org/doc/html/draft-jiang-auto-addr-management-00
https://datatracker.ietf.org/doc/html/draft-pritikin-bootstrapping-keyinfrastructures-01
https://datatracker.ietf.org/doc/html/draft-pritikin-bootstrapping-keyinfrastructures-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Behringer, et al. Expires April 18, 2016 [Page 22]

Internet-Draft AN Reference Model October 2015

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <http://www.rfc-editor.org/info/rfc4193>.

 [RFC7404] Behringer, M. and E. Vyncke, "Using Only Link-Local
 Addressing inside an IPv6 Network", RFC 7404,
 DOI 10.17487/RFC7404, November 2014,
 <http://www.rfc-editor.org/info/rfc7404>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <http://www.rfc-editor.org/info/rfc7575>.

 [RFC7576] Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015,
 <http://www.rfc-editor.org/info/rfc7576>.

Authors' Addresses

 Michael H. Behringer (editor)
 Cisco Systems
 Building D, 45 Allee des Ormes
 Mougins 06250
 France

 Email: mbehring@cisco.com

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

 Toerless Eckert
 Cisco

 Email: eckert@cisco.com

https://datatracker.ietf.org/doc/html/rfc4193
http://www.rfc-editor.org/info/rfc4193
https://datatracker.ietf.org/doc/html/rfc7404
http://www.rfc-editor.org/info/rfc7404
https://datatracker.ietf.org/doc/html/rfc7575
http://www.rfc-editor.org/info/rfc7575
https://datatracker.ietf.org/doc/html/rfc7576
http://www.rfc-editor.org/info/rfc7576

Behringer, et al. Expires April 18, 2016 [Page 23]

Internet-Draft AN Reference Model October 2015

 Laurent Ciavaglia
 Alcatel Lucent
 Route de Villejust
 Nozay 91620
 France

 Email: laurent.ciavaglia@alcatel-lucent.com

 Bing Liu
 Huawei Technologies
 Q14, Huawei Campus
 No.156 Beiqing Road
 Hai-Dian District, Beijing 100095
 P.R. China

 Email: leo.liubing@huawei.com

 Jeferson Campos Nobre
 Federal University of Rio Grande do Sul
 Av. Bento Goncalves, 9500
 Porto Alegre 91501-970
 Brazil

 Email: jcnobre@inf.ufrgs.br

 John Strassner
 Huawei Technologies
 2330 Central Expressway
 Santa Clara, CA 95050
 USA

 Email: john.sc.strassner@huawei.com

Behringer, et al. Expires April 18, 2016 [Page 24]

