
Network Working Group M. Behringer
Internet-Draft A. Retana
Intended status: Informational Cisco Systems
Expires: October 27, 2016 R. White
 Ericsson
 G. Huston
 APNIC
 April 25, 2016

A Framework for Defining Network Complexity
draft-behringer-ncrg-complexity-framework-02

Abstract

 Complexity is a widely used parameter in network design, yet there is
 no generally accepted definition of the term. Complexity metrics
 exist in a wide range of research papers, but most of these address
 only a particular aspect of a network, for example the complexity of
 a graph or software. While it may be impossible to define a metric
 for overall network complexity, there is a desire to better
 understand the complexity of a network as a whole, as deployed today
 to provide Internet services. This document provides a framework to
 guide research on the topic of network complexity, as well as some
 practical examples for trade-offs in networking.

 This document summarizes the work of the IRTF's Network Complexity
 Research Group (NCRG) at the time of its closure. It does not
 present final results, but a snapshot of an ongoing activity, as a
 basis for future work.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 27, 2016.

Behringer, et al. Expires October 27, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Complexity Framework April 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 3
2. General Considerations 4
2.1. The Behavior of a Complex Network 4
2.2. Complex versus Complicated 4
2.3. Robust Yet Fragile 5
2.4. The Complexity Cube 5
2.5. Related Concepts . 5
2.6. Technical Debt . 6
2.7. Layering considerations 7

3. Tradeoffs . 7
 3.1. Control Plane State versus Optimal Forwarding Paths
 (Stretch) . 8

3.2. Configuration State versus Failure Domain Separation . . 9
 3.3. Policy Centralization versus Optimal Policy Application . 11
 3.4. Configuration State versus Per Hop Forwarding
 Optimization . 12

3.5. Reactivity versus Stability 12
4. Parameters . 14
5. Elements of Complexity 15
5.1. The Physical Network (Hardware) 15
5.2. Algorithms . 15
5.3. State in the Network 16
5.4. Churn . 16
5.5. Knowledge . 16

6. Location of Complexity 16
6.1. Topological Location 16
6.2. Logical Location . 17
6.3. Layering Considerations 17

7. Dependencies . 17
7.1. Local Dependencies 17
7.2. Network Wide Dependencies 18
7.3. Network External Dependencies 18

8. Management Interactions 18
8.1. Configuration Complexity 19

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Behringer, et al. Expires October 27, 2016 [Page 2]

Internet-Draft Complexity Framework April 2016

8.2. Troubleshooting Complexity 19
8.3. Monitoring Complexity 19
8.4. Complexity of System Integration 20

9. External Interactions . 20
10. Examples . 21
11. Security Considerations 21
12. Acknowledgements . 21
13. Informative References 21

 Authors' Addresses . 22

1. Introduction

 Network design can be described as the art of finding the simplest
 solution to solve a given problem. Complexity is thus assumed in the
 design process; engineers do not ask, "should there be complexity
 here," but rather, "how much complexity is required to solve this
 problem." This question, "how much complexity," assumes there is
 some way to characterize the amount of complexity present in a
 system. The reality is, however, this is an area of research and
 experience, rather than a solved problem within the network
 engineering space. Today's design decisions are made based on a
 rough estimation of the network's complexity, rather than a solid
 understanding.

 The document begins with general considerations, including some
 foundational definitions and concepts. It then provides some
 examples for trade-offs that network engineers regularly make when
 designing a network. This section serves to demonstrate that there
 is no single answer to complexity; rather it is a managed trade-off
 between many parameters. After this, this document provides a set of
 parameters engineers should consider when attempting to either
 measure complexity or build a framework around it. This list makes
 no claim to be complete, but it serves as a guide of known existing
 areas of investigation, as well as a pointer to areas that still need
 to be investigated.

 Two purposes are served here. The first is to guide researchers
 working in the area of complexity in their work. The more
 researchers are able to connect their work to the concerns of network
 designers, the more useful their research will become. This document
 may also guide research into areas not considered before. The second
 is to help network engineers to build a better understanding of where
 complexity might be "hiding" in their networks, and to be more fully
 aware of how complexity interacts with design and deployment.

 The goal of the IRTF Network Complexity Research Group (NCRG) [ncrg]
 was to define a framework for network complexity research, while
 recognising that it may be impossible to define metrics for overall

Behringer, et al. Expires October 27, 2016 [Page 3]

Internet-Draft Complexity Framework April 2016

 network complexity. This document summarizes the work of this group
 at the time of its closure in 2014. It does not present final
 results, but a snapshot of an ongoing activity, as a basis for future
 work.

 Many references to existing research in the area of network
 complexity are listed on the Network Complexity Wiki [wiki]. This
 wiki also contains background information on previous meetings on the
 subject, previous research, etc.

2. General Considerations

2.1. The Behavior of a Complex Network

 While there is no generally accepted definition of network
 complexity, there is some understanding of the behavior of a complex
 network. It has some or all of the following properties:

 o Self-Organization: A network runs some protocols and processes
 without external control; for example a routing process, failover
 mechanisms, etc. The interaction of those mechanisms can lead to
 a complex behaviour.

 o Un-predictability: In a complex network, the effect of a local
 change on the behaviour of the global network may be
 unpredictable.

 o Emergence: The behaviour of the system as a whole is not reflected
 in the behaviour of any individual component of the system.

 o Non-linearity: An input into the network produces a non-linear
 result.

 o Fragility: A small local input can break the entire system.

2.2. Complex versus Complicated

 The two terms "complex" and "complicted" are often used
 interchangably, yet they describe different but overlapping
 properties. The RG made the following statements about the two
 terms, but they would need further refinement to be considered formal
 definitions:

 o A "complicated" system is a deterministic system that can be
 understood by an appropriate level of analysis. It is often an
 externally applied attribute rather than an intrinsic property of
 a system, and is typically associated with systems that require
 deep or significant levels of analysis.

Behringer, et al. Expires October 27, 2016 [Page 4]

Internet-Draft Complexity Framework April 2016

 o A "complex" system, by comparison, is an intrinsic property of a
 system, and is typically associated with emergent behaviours, such
 that the behaviour of the system is not fully described by the sum
 of the behaviour of each of the components of the system. Complex
 systems are often associated with systems whose components exhibit
 high levels of interaction and feedback.

2.3. Robust Yet Fragile

 Networks typically follow the "robust yet fragile" paradigm: They are
 designed to be robust against a set of failures, yet they are very
 vulnerable to other failures. Doyle [Doyle] explains the concept
 with an example: The Internet is robust against single component
 failure, but fragile to targeted attacks. The "robust yet fragile"
 property also touches on the fact that all network designs are
 necessarily making trade-offs between different design goals. The
 simplest one is articulated in "The Twelve Networking Truths" RFC1925
 [RFC1925]: "Good, Fast, Cheap: Pick any two (you can't have all
 three)." In real network design, trade-offs between many aspects
 have to be made, including, for example, issues of scope, time and
 cost in the network cycle of planning, design, implementation and
 management of a network platform. Parameters are discussed in

Section 4, and Section 3 gives some examples of tradeoffs.

2.4. The Complexity Cube

 Complex tasks on a network can be done in different components of the
 network. For example, routing can be controlled by central
 algorithms, and the result distributed (e.g., OpenFlow model); the
 routing algorithm can also run completely distributed (e.g., routing
 protocols such as OSPF or ISIS), or a human operator could calculate
 routing tables and statically configure routing. Behringer
 [Behringer] defines these three axes of complexity as a "complexity
 cube" with three axes: Network elements, central systems, and human
 operators. Any function can be implemented in any of these three
 axes, and this choice likely has an impact on the overall complexity
 of the system.

2.5. Related Concepts

 When discussing network complexity, a large number of influencing
 factors have to be taken into account to arrive at a full picture,
 for example:

 o State in the network: Contains the network elements, such as
 routers, switches (with their OS, including protocols), lines,
 central systems, etc. The number and algorithmic complexity of
 the protocols on network devices for example.

https://datatracker.ietf.org/doc/html/rfc1925
https://datatracker.ietf.org/doc/html/rfc1925

Behringer, et al. Expires October 27, 2016 [Page 5]

Internet-Draft Complexity Framework April 2016

 o Human operators: Complexity manifests itself often by a network
 that is not completely understood by human operators. Human error
 is a primary source for catastrophic failures, and therefore must
 be taken into account.

 o Classes / templates: Rather than counting the number of lines in a
 configuration, or the number of hardware elements, more important
 is the number of classes from which those can be derived. In
 other words, it is probably less complex to have 1000 interfaces
 which are identically configured than 5 that are completely
 different configured.

 o Dependencies and interactions: The number of dependencies between
 elements, as well as the interactions between them has influence
 on the complexity of the network.

 o TCO (Total cost of ownership): TCO could be a good metric for
 network complexity, if the TCO calculation takes into account all
 influencing factors, for example training time for staff to be
 able to maintain a network.

 o Benchmark Unit Cost is a related metric that indicates the cost of
 operating a certain component. If calculated well, it reflects at
 least parts of the complexity of this component. Therefore, the
 way TCO or BUC are calculated can help to derive a complexity
 metric.

 o Churn / rate of change: The change rate in a network itself can
 contribute to complexity, especially if a number of components of
 the overall network interact.

 Networks differ in terms of their intended purpose (such as is found
 in differences between enterprise and public carriage network
 platforms, and in their intended role (such as is found in the
 differences between so-called "access" networks and "core" transit
 networks). The differences in terms of role and purpose can often
 lead to differences in the tolerance for, and even the metrics of,
 complexity within such different network scenarios. This is not
 necessarily a space where a single methodology for measuring
 complexity, and defining a single threshold value of acceptability of
 complexity, is appropriate.

2.6. Technical Debt

 Many changes in a network are made with a dependency on the existing
 network. Often, a suboptimal decision is made because the optimal
 decision is hard or impossible to realise at the time. Over time,
 the number of suboptimal changes in themselves cause significant

Behringer, et al. Expires October 27, 2016 [Page 6]

Internet-Draft Complexity Framework April 2016

 complexity, which would not have been there had the optimal solution
 been implemented.

 The term "technical debt" refers to the accumulated complexity of
 sub-optimal changes over time. As with financial debt, the idea is
 that also technical debt must be repaid one day by cleaning up the
 network or software.

2.7. Layering considerations

 In considering the larger space of applications, transport services,
 network services and media services, it is feasible to engineer
 responses for certain types of desired applications responses in many
 different ways, and involving different layers of the so-called
 network protocol stack. For example, Quality of Service could be
 engineered at any of these layers, or even in a number of
 combinations of different layers.

 Considerations of complexity arise when mutually incompatible
 measures are used in combination (such as error detection and
 retransmission at the media layer in conjunction with the use TCP
 transport protocol), or when assumptions used in one layer are
 violated by another layer. This results in surprising outcomes that
 may result in complex interactions, for example oscillation because
 different layers use different timers for retransmission. These
 issues have led to the perspective that increased layering frequently
 increases complexity [RFC3439].

 While this research work is focussed network complexity, the
 interactions of the network with the end-to-end transport protocols,
 application layer protocols and media properties are relevant
 considerations here.

3. Tradeoffs

 Network complexity is a system level, rather than component level,
 problem; overall system complexity may be more than the sum of the
 complexity of the individual pieces.

 There are two basic ways in which system level problems might be
 addressed: interfaces and continuums. In addressing a system level
 problem through interfaces, we seek to treat each piece of the system
 as a "black box," and develop a complete understanding of the
 interfaces between these black boxes. In addressing a system level
 problem as a continuum, we seek to understand the impact of a single
 change or element to the entire system as a set of tradeoffs.

https://datatracker.ietf.org/doc/html/rfc3439

Behringer, et al. Expires October 27, 2016 [Page 7]

Internet-Draft Complexity Framework April 2016

 While network complexity can profitably be approached from either of
 these perspectives, in this document we have chosen to approach the
 system level impact of network complexity from the perspective of
 continuums of tradeoffs. In theory, modifying the network to resolve
 one particular problem (or class of problems) will add complexity
 which results in the increased likelihood (or appearance) of another
 class of problems. Discovering these continuums of tradeoffs, and
 then determining how to measure each one, become the key steps in
 understanding and measuring system level complexity in this view.

 The following sections describe five such continuums; more may be
 possible.

 o Control Plane State versus Optimal Forwarding Paths (or its
 opposite measure, stretch)

 o Configuration State versus Failure Domain Separation

 o Policy Centralization versus Optimal Policy Application

 o Configuration State versus Per Hop Forwarding Optimization

 o Reactivity versus Stability

3.1. Control Plane State versus Optimal Forwarding Paths (Stretch)

 Control plane state is the aggregate amount of information carried by
 the control plane through the network in order to produce the
 forwarding table at each device. Each additional piece of
 information added to the control plane --such as more specific
 reachability information, policy information, additional control
 planes for virtualization and tunneling, or more precise topology
 information-- adds to the complexity of the control plane. This
 added complexity, in turn, adds to the burden of monitoring,
 understanding, troubleshooting, and managing the network.

 Removing control plane state, however, is not always a net positive
 gain for the network as a system; removing control plane state almost
 always results in decreased optimality in the forwarding and handing
 of packets travelling through the network. This decreased optimality
 can be termed stretch, which is defined as the difference between the
 absolute shortest (or best) path traffic could take through the
 network and the path the traffic actually takes. Stretch is
 expressed as the difference between the optimal and actual path. The
 figure below provides and example of this tradeoff.

Behringer, et al. Expires October 27, 2016 [Page 8]

Internet-Draft Complexity Framework April 2016

 +---R1---+
 | |
 (aggregate: 192.0.2/24) R2 R3 (aggregate: 192.0.2/24)
 | |
 R4-------R5
 |
 (announce: 192.0.2.1/32) R6

 Assume each link is of equal cost in this figure, and R6 is
 advertising 192.0.2.1/32.

 For R1, the shortest path to 192.0.2.1/32, advertised by R6, is along
 the path [R1,R2,R4,R6].

 Assume, however, the network administrator decides to aggregate
 reachability information at R2 and R3, advertising 192.0.2.0/24
 towards R1 from both of these points. This reduces the overall
 complexity of the control plane by reducing the amount of information
 carried past these two routers (at R1 only in this case).

 Aggregating reachability information at R2 and R3, however, may have
 the impact of making both routes towards 192.0.2.1/32 appear as equal
 cost paths to R1; there is no particular reason R1 should choose the
 shortest path through R2 over the longer path through R3. This, in
 effect, increases the stretch of the network. The shortest path from
 R1 to R6 is 3 hops, a path that will always be chosen before
 aggregation is configured. Assuming half of the traffic will be
 forwarded along the path through R2 (3 hops), and half through R3 (4
 hops), the network is stretched by ((3+4)/2) - 3), or .5, a "half a
 hop."

 Traffic engineering through various tunneling mechanisms is, at a
 broad level, adding control plane state to provide more optimal
 forwarding (or network utlization). Optimizing network utilization
 may require detuning stretch (intentionally increasing stretch) to
 increase overall network utilization and efficiency; this is simply
 an alternate instance of control plane state (and hence complexity)
 weighed against optimal forwarding through the network.

3.2. Configuration State versus Failure Domain Separation

 A failure domain, within the context of a network control plane, can
 be defined as the set of devices impacted by a change in the network
 topology or configuration. A network with larger failure domains is
 more prone to cascading failures, so smaller failure domains are
 normally preferred over larger ones.

Behringer, et al. Expires October 27, 2016 [Page 9]

Internet-Draft Complexity Framework April 2016

 The primary means used to limit the size of a failure domain within a
 network's control plane is information hiding; the two primary types
 of information hidden in a network control plane are reachability
 information and topology information. An example of aggregating
 reachability information is summarizing the routes 192.0.2.1/32,
 192.0.2.2/32, and 192.0.2.3/32 into the single route 192.0.2.0/24,
 along with the aggregation of the metric information associated with
 each of the component routes. Note that aggregation is a "natural"
 part of IP networks, starting with the aggregation of individual
 hosts into a subnet at the network edge. An example of topology
 aggregation is the summarization of routes at a link state flooding
 domain boundary, or the lack of topology information in a distance-
 vector protocol.

 While limiting the size of failure domains appears to be an absolute
 good in terms of network complexity, there is a definite tradeoff in
 configuration complexity. The more failure domain edges created in a
 network, the more complex configuration will become. This is
 particularly true if redistribution of routing information between
 multiple control plane processes is used to create failure domain
 boundaries; moving between different types of control planes causes a
 loss of the consistent metrics most control planes rely on to build
 loop free paths. Redistribution, in particular, opens the door to
 very destructive positive feedback loops within the control plane.
 Examples of control plane complexity caused by the creation of
 failure domain boundaries include route filters, routing aggregation
 configuration, and metric modifications to engineer traffic across
 failure domain boundaries.

 Returning to the network described in the previous section,
 aggregating routing information at R2 and R3 will divide the network
 into two failure domains: (R1,R2,R3), and (R2,R3,R4,R5). A failure
 at R5 should have no impact on the forwarding information at R1.

 A false failure domain separation occurs, however, when the metric of
 the aggregate route advertised by R2 and R3 is dependent on one of
 the routes within the aggregate. For instance, if the metric of the
 192.0.2.0/24 aggregate is derived from the metric of the component
 192.0.2.1/32, then a failure of this one component will cause changes
 in the forwarding table at R1 --in this case, the control plane has
 not truly been separated into two distinct failure domains. The
 added complexity in the illustration network would be the management
 of the configuration required to aggregate the contorl plane
 information, and the management of the metrics to ensure the control
 plane is truly separated into two distinct failure domains.

 Replacing aggregation with redistribution adds the complexity of
 managing the feedback of routing information redistributed between

Behringer, et al. Expires October 27, 2016 [Page 10]

Internet-Draft Complexity Framework April 2016

 the failure domains. For instance, if R1, R2, and R3 were configured
 to run one routing protocol, while R2, R3, R4, R5, and R6 were
 configured to run another protocol, R2 and R3 could be configured to
 redistribute reachability information between these two control
 planes. This can split the control plane into multiple failure
 domains (depending on how, specifically, redistribution is
 configured), but at the cost of creating and managing the
 redistribution configuration. Futher, R3 must be configured to block
 routing information redistributed at R2 towards R1 from being
 redistributined (again) towards R4 and R5.

3.3. Policy Centralization versus Optimal Policy Application

 Another broad area where control plane complexity interacts with
 optimal network utilization is Quality of Service (QoS). Two
 specific actions are required to optimize the flow of traffic through
 a network: marking and Per Hop Behaviors (PHBs). Rather than
 examining each packet at each forwarding device in a network, packets
 are often marked, or classified, in some way (typically through Type
 of Service bits) so they can be handled consistently at all
 forwarding devices.

 Packet marking policies must be configured on specific forwarding
 devices throughout the network. Distributing marking closer to the
 edge of the network necessarily means configuring and managing more
 devices, but produces optimal forwarding at a larger number of
 network devices. Moving marking towards the network core means
 packets are marked for proper handling across a smaller number of
 devices. In the same way, each device through which a packet passes
 with the correct PHBs configured represents an increase in the
 consistency in packet handling through the network as well as an
 increase in the number of devices which must be configured and
 managed for the correct PHBs. The network below is used for an
 illustration of this concept.

 +----R1----+
 | |
 +--R2--+ +--R3--+
 | | | |
 R4 R5 R6 R7

 In this network, marking and PHB configuration may be configured on
 any device, R1 through R7.

 Assume marking is configured at the network edge; in this case, four
 devices, (R4,R5,R6,R7), must be configured, including ongoing
 configuration management, to mark packets. Moving packet marking to
 R2 and R3 will halve the number of devices on which packet marking

Behringer, et al. Expires October 27, 2016 [Page 11]

Internet-Draft Complexity Framework April 2016

 configuration must be managed, but at the cost of inconsistent packet
 handling at the inbound interfaces of R2 and R3 themselves.

 Thus reducing the number of devices which must have managed
 configurations for packet marking will reduce optimal packet flow
 through the network. Assuming packet marking is actually configured
 along the edge of this network, configuring PHBs on different devices
 has this same tradeoff of managed configuration versus optimal
 traffic flow. If the correct PHBs are configured on R1, R2, and R3,
 then packets passing through the network will be handled correctly at
 each hop. The cost involved will be the management of PHB
 configuration on three devices. Configuring a single device for the
 correct PHBs (R1, for instance), will decrease the amount of
 configuration management required, at the cost of less than optimal
 packet handling along the entire path.

3.4. Configuration State versus Per Hop Forwarding Optimization

 The number of PHBs configured along a forwarding path exhibits the
 same complexity versus optimality tradeoff described in the section
 above. The more classes (or queues) traffic is divided into, the
 more fine-grained traffic will be managed as it passes through the
 network. At the same time, each class of service must be managed,
 both in terms of configuration and in its interaction with other
 classes of service configured in the network.

3.5. Reactivity versus Stability

 The speed at which the network's control plane can react to a change
 in configuration or topology is an area of widespread study. Control
 plane convergence can be broken down into four essential parts:

 o Detecting the change

 o Propagating information about the change

 o Determining the best path(s) through the network after the change

 o Changing the forwarding path at each network element along the
 modified paths

 Each of these areas can be addressed in an effort to improve network
 convergence speeds; some of these improvements come at the cost of
 increased complexity.

 Changes in network topology can be detected much more quickly through
 faster echo (or hello) mechanisms, lower layer physical detection,
 and other methods. Each of these mechanisms, however, can only be

Behringer, et al. Expires October 27, 2016 [Page 12]

Internet-Draft Complexity Framework April 2016

 used at the cost of evaluating and managing false positives and high
 rates of topology change.

 If the state of a link change can be detected in 10ms, for instance,
 the link could theoretically change state 50 times in a second --it
 would be impossible to tune a network control plane to react to
 topology changes at this rate. Injecting topology change information
 into the control plane at this rate can destabalize the control
 plane, and hence the network itself. To counter this, most fast down
 detection techniques include some form of dampening mechanism;
 configuring and managing these dampening mechanisms increases
 complexity that must be configured and managed.

 Changes in network topology must also be propagated throughout the
 network, so each device along the path can compute new forwarding
 tables. In high speed network environments, propagation of routing
 information changes can take place in tens of milliseconds, opening
 the possibility of multiple changes being propagated per second.
 Injecting information at this rate into the contral plane creates the
 risk of overloading the processes and devices participating in the
 control plane, as well as creating destructive positive feedback
 loops in the network. To avoid these consequences, most control
 plane protocols regulate the speed at which information about network
 changes can be transmitted by any individual device. A recent
 innovation in this area is using exponential backoff techniques to
 manage the rate at which information is advertised into the control
 plane; the first change is transmitted quickly, while subsequent
 changes are transmitted more slowly. These techniques all control
 the destabalilzing effects of rapid information flows through the
 control plane through the added complexity of configuring and
 managing the rate at which the control plane can propagate
 information about network changes.

 All control planes require some form of algorithmic calculation to
 find the best path through the network to any given destination.
 These algorithms are often lightweight, but they still require some
 amount of memory and computational power to execute. Rapid changes
 in the network can overwhelm the devices on which these algorithms
 run, particularly if changes are presented more quickly than the
 algorithm can run. Once the devices running these algorithms become
 processor or memory bound, it could experience a computational
 failure altogether, causing a more general network outage. To
 prevent computational overloading, control plane protocols are
 designed with timers limiting how often they can compute the best
 path through a network; often these timers are exponential in nature,
 allowing the first computation to run quickly, while delaying
 subsequent computations. Configuring and managing these timers is
 another source of complexity within the network.

Behringer, et al. Expires October 27, 2016 [Page 13]

Internet-Draft Complexity Framework April 2016

 Another option to improve the speed at which the control plane reacts
 to changes in the network is to precompute alternate paths at each
 device, and possibly preinstall forwarding information into local
 forwarding tables. Additional state is often needed to precompute
 alternate paths, and additional algorithms and techniques are often
 configured and deployed. This additional state, and these additional
 algorithms, add some amount of complexity to the configuration and
 management of the network.

 In some situations (for some topologies), a tunnel is required to
 pass traffic around a network failure or topology change. These
 tunnels, while not manually configured, represent additional
 complexity at the forwarding and control planes.

4. Parameters

 In Section 3 we describe a set of trade-offs in network design to
 illustrate the practical choices network operators have to make. The
 amount of parameters to consider in such tradeoff scenarios is very
 large, thus that a complete listing may not be possible. Also the
 dependencies between the various metrics itself is very complex and
 requires further study. This document attempts to define a
 methodology and an overall high level structure.

 To analyse tradeoffs it is necessary to formalise them. The list of
 parameters for such tradeoffs is long, and the parameters can be
 complex in themselves. For example, "cost" can be a simple
 unidimensional metric, but "extensibility" or "optimal forwarding
 state" are harder to define in detail.

 A list of parameters to trade off contains metrics such as:

 o State: How much state needs to be held in control plane,
 forwarding plane, configuration, etc.

 o Cost: How much does the network cost to build (capex) and run
 (opex)

 o Bandwidth / delay / jitter: Traffic characteristics between two
 points (average, max, ...)

 o Configuration complexity: How hard to configure and maintain the
 configuration

 o Susceptibility to Denial-of-Service: How easy is it to attack the
 service

Behringer, et al. Expires October 27, 2016 [Page 14]

Internet-Draft Complexity Framework April 2016

 o Security (confidentiality / integrity): How easy is it to sniff /
 modify / insert the data flow

 o Scalability: To what size can I grow the network / service

 o Stability: How stable is the network under the influence of local
 change?

 o Reactivity: How fast does the network converge, or adapt to new
 situations?

 o Extensibility: Can I use the network for other services in the
 future?

 o Ease of troubleshooting: Are failure domains separated? How hard
 is it to find and correct problems?

 o Optimal per-hop forwarding behavior

 o Predictability: If I change a parameter, what will happen?

 o Clean failure: When a problem arises, does the root cause lead to
 deterministic failure

5. Elements of Complexity

 Complexity can be found in various elements in a networked system.
 For example, the configuration of a network element reflects some of
 the complexity contained in this system. Or an algorithm used by a
 protocol may be more or less complex. When classifying complexity
 the first question to ask is "WHAT is complex?". This section offers
 a method to answer this question.

5.1. The Physical Network (Hardware)

 The set of network devices and wiring contains a certain complexity.
 For example, adding a redundant link between two locations increases
 the complexity of the network, but provides more redundancy. Also
 network devices can be more or less modular, which has impact on
 complexity trading off against ease of maintenance, availability and
 upgradability.

5.2. Algorithms

 The behavior of the physical network is not only defined by the
 hardware, but also by algorithms that run on network elements and in
 central locations. Every algorithm has a certain intrinsic
 complexity, which is the subject of research on software complexity.

Behringer, et al. Expires October 27, 2016 [Page 15]

Internet-Draft Complexity Framework April 2016

5.3. State in the Network

 The way a network element treats traffic is defined largely by the
 state in the network, in form of configuration, routing state,
 security measures, etc. Section 3.1 shows an example where more
 control plane state allows a more precise forwarding.

5.4. Churn

 The rate of change itself is a parameter in complexity, which needs
 to be weighed against other parameters. Section 3.5 explains a
 trade-off between the speed of communicating changes through the
 network and the stability of the network.

5.5. Knowledge

 Certain complexity parameters have a strong link to the human aspect
 of networking. For example, the more option and parameters a network
 protocol has, the harder it is to configure and trouble-shoot.
 Therefore, there is a trade-off between the knowledge to be
 maintained by operational staff and desired functionality. The
 required knowledge of network operators is therefore an important
 part in complexity considerations.

6. Location of Complexity

 The previous section discussed in which form complexity may be
 perceived. This section focuses on where this complexity is located
 in a network. For example, an algorithm can run centrally,
 distributed, or even in the head of a network administrator. In
 classifying the complexity of a network, the location of a component
 may have an impact on overall complexity. This section offers a
 methodology to the question "WHERE is the complex component?"

6.1. Topological Location

 An algorithm can run distributed, for example a routing protocol like
 OSPF runs on all routers in a network. But it can also be in a
 central location such as the Network Operations Center (NOC). The
 physical location has impact on several other parameters, such as
 availability (local changes might be faster than going through a
 remote NOC) and ease of operation, because it might be easier to
 understand and troubleshoot one central entity rather than many
 remote ones.

 The example in Section 3.3 shows how the location of state (in this
 case configuration) impacts the precision of the policy enforcement

Behringer, et al. Expires October 27, 2016 [Page 16]

Internet-Draft Complexity Framework April 2016

 and the corresponding state required. Enforcement closer to the edge
 requires more network wide state, but is more precise.

6.2. Logical Location

 Independent of its physical location, the logical location also may
 make a difference to complexity. A controller function for example
 can reside in a NOC, but also on a network element. Generally,
 organising a network in separate logical entities is considered
 positive, because it eases the understanding of the network, thereby
 making trouble-shooting and configuration easier. For example a BGP
 route reflector is a separate logical entity from a BGP speaker, but
 it may reside on the same physical node.

6.3. Layering Considerations

 Also the layer of the TCP/IP stack in which a function is implemented
 can have an impact on the complexity of the overall network. Some
 functions are implemented in several layers in slightly different
 ways, which may lead to unexpected results.

 As an example, a link failure is detected on various layers: L1, L2,
 the IGP, BGP, and potentially more. Since those have dependencies on
 each other, different link failure detection times can cause
 undesired effects. Dependencies are discussed in more detail in the
 next section.

7. Dependencies

 Dependencies are generally regarded as related to overall complexity.
 A system with less dependencies is generally considered less complex.
 This section proposes a way to analyse dependencies in a network.

 For example, [Chun] states: "We conjecture that the complexity
 particular to networked systems arises from the need to ensure state
 is kept in sync with its distributed dependencies."

 In this document we distinguish three types of dependencies: Local
 dependencies, network wide dependencies, and network external
 dependencies.

7.1. Local Dependencies

 Local dependencies are relative to a single node in the network. For
 example, an interface on a node may have an IP address; this address
 may be used in other parts of the configuration. If the interface
 address changes, the dependent configuration parts have to change as
 well.

Behringer, et al. Expires October 27, 2016 [Page 17]

Internet-Draft Complexity Framework April 2016

 Similar dependencies exist for QoS policies, access-control-lists,
 names and numbers of configuration parts, etc.

7.2. Network Wide Dependencies

 Routing protocols, failover protocols, and many other have
 dependencies across the network. If one node is affected by a
 problem, this may have a ripple effect through the network. These
 protocols are typically designed to deal with unexpected
 consequences, thus unlikely to cause an issue on their own. But
 occasionally a number of complexity issues come together, for
 example, different timers on different layers, then unexpected
 behaviour can occur.

7.3. Network External Dependencies

 Some dependencies are on elements outside the actual network, for
 example on an external NTP clock source, or a AAA server. Again, a
 tradeoff is made: In the example of AAA used for login
 authentication, we reduce the configuration (state) on each node,
 specifically user specific configuration. But we add an external
 dependency on a AAA server. In networks with many administrators, a
 AAA server is clearly the only manageable way to track all
 administrators. But it comes at the cost of this external
 dependency, with the consequence that admin access may be lost for
 all devices at the same time, when the AAA server is unavailable.

 Even with the external dependency on a AAA server, the advantage of
 centralizing the user information (and logging) still has significant
 value over distributing user information across all devices. To
 solve the problem of the central dependency not being available,
 other solutions have been developed, for example a secondary
 authentication mode with a single root level password in case the AAA
 server is not available.

8. Management Interactions

 A static network generally is relatively stable; conversely, changes
 introduce a degree of uncertainty and therefore need to be examined
 in detail. Also, the trouble shooting of a network exposes
 intuitively the complexity of the network. This section proposes a
 methodology to classify management interactions with regard to their
 relationship to network complexity.

Behringer, et al. Expires October 27, 2016 [Page 18]

Internet-Draft Complexity Framework April 2016

8.1. Configuration Complexity

 Configuration can be seen as distributed state across network
 devices, where the administrator has direct influence on the
 operation of the network. Modifying the configuration can improve
 the network behaviour over all, or negatively affect it. In the
 worst case, a single misconfiguration could potentially bring down
 the entire network. Therefore it is important that a human
 administrator can manage the complexity of the configuration well.

 The configuration reflects most of the local and global dependencies
 in the network, as explained in Section 7. Tracking those
 dependencies in the configuration helps in understanding the overall
 network complexity.

8.2. Troubleshooting Complexity

 Unexpected behaviour can have a number of sources: The configuration
 may contain errors, the operating system (algorithms) may have bugs,
 and the hardware may be faulty, which includes anything from broken
 fibres to faulty line cards. In serious problems, a combination of
 causes could result in a single visible condition. Tracking the root
 causes of a error condition may be extremely difficult, pointing to
 the complex nature of a network.

 Being able to find the source of a problem requires therefore a solid
 understanding of the complexity of a network. The configuration
 complexity discussed in the previous section represents only a part
 of the overall problem space.

8.3. Monitoring Complexity

 Even in the absence of error conditions, the state of the network
 should be monitored to detect error conditions ideally before network
 services are affected. For example, a single "link-down" event may
 not cause a service disruption in a well designed network, but the
 problem needs to be resolved quickly to restore redundancy.

 Monitoring a network has itself a certain complexity. Issues are in
 scale, variations of devices to be monitored, variations of methods
 used to collect information, the inevitable loss of information as
 reporting is aggregated centrally, and the knowledge required to
 understand the network, the dependencies and interactions with users
 and other external inputs.

Behringer, et al. Expires October 27, 2016 [Page 19]

Internet-Draft Complexity Framework April 2016

8.4. Complexity of System Integration

 A network doesn't just consist of network devices, but includes a
 vast array of backend and support systems. It also interfaces a
 large variety of user devices, and a number of human interfaces, both
 to the user / customer, as well as to administrators of the network.
 To make sure the overall network provides the overall service
 expected requires a system integration job.

 All those interactions and systems have to be modelled to understand
 the inter-dependencies and complexities in the network. This is a
 large area of future research.

9. External Interactions

 A network is not a self-contained entity, but exists to provide
 connectivity and services to users and other networks, both of which
 are outside the direct control of a network administrator. The user
 experience of a network also illustrates a form of interaction with
 its own complexity.

 External interactions fall into the following categories:

 User Interactions: Users need a way to request a service, to have
 their problems resolved, and potentially to get billed for their
 usage. There are a number of human interfaces that need to be
 considered, which depend to some extend on the network, for
 example for troubleshooting, or monitoring usage.

 Interactions with End Systems: The network also interacts with the
 devices that connect to it. Typically a device receives an IP
 address from the network, and information on how to resolve domain
 names, plus potentially other services. While those interactions
 are relatively simple, the vast amount of end device types makes
 this a complicated space to track.

 Inter-Network Interactions: Most networks connect to other
 networks. Also in this case there are many interactions between
 networks, both technically (for example, running a routing
 protocol), as well as non-technical (for example, tracing problems
 across network boundaries).

 For a fully operational network providing services to users, also the
 external interactions and dependencies form an integral part of the
 overall complexity of the network service. A specific example are
 the root DNS servers, which are critical to the function of the
 Internet. Practically all Internet users have an implicit dependency
 on the root DNS servers, which explains why those are frequent

Behringer, et al. Expires October 27, 2016 [Page 20]

Internet-Draft Complexity Framework April 2016

 targets for attacks. Understanding the overall complexity of a
 network includes understanding all those external dependencies. Of
 course, in the case of the root DNS servers, there is little a
 network operator can influence.

10. Examples

 In the foreseeable future it is unlikely to define a single,
 objective metric that includes all the relevant aspects of
 complexity. In the absence of such a global metric, a comparative
 approach could be easier.

 For example, it is possible to compare the complexity of a
 centralised systems where algorithms run centrally, and the results
 are distributed to the network nodes with a distributed algorithm.
 The type of algorithm may be similar, but the location is different,
 and a different dependency graph would result. The supporting
 hardware may be the same, thus could be ignored for this exercise.
 Also layering is likely to be the same. The management interactions
 though would significantly differ in both cases.

 The classification in this document also makes it easier to survey
 existing research with regards to which area of complexity is
 covered. This could help in identifying open areas for research.

11. Security Considerations

 This document does not discuss any specific security considerations.

12. Acknowledgements

 The motivations and framework of this overview of studies into
 network complexity is the result of many meetings and discussions,
 with too many people to provide a full list here. However, key
 contributions have been made by: John Doyle, Dave Meyer, Jon
 Crowcroft, Mark Handley, Fred Baker, Paul Vixie, Lars Eggert, Bob
 Briscoe, Keith Jones, Bruno Klauser, Steve Youell, Joel Obstfeld,
 Philip Eardley.

 The authors would like to acknowledge the contributions of Rana
 Sircar, Ken Carlberg and Luca Caviglione in the preparation of this
 document.

13. Informative References

 [Behringer]
 Behringer, M., "Classifying Network Complexity",
 Proceedings of the ACM Re-Arch'09, December 2009.

Behringer, et al. Expires October 27, 2016 [Page 21]

Internet-Draft Complexity Framework April 2016

 [Chun] Chun, B-G., Ratnasamy, S., and E. Eddie, "NetComplex: A
 Complexity Metric for Networked System Design", 5th Usenix
 Symposium on Networked Systems Design and
 Implementation NSDI 2008, April 2008,
 <http://berkeley.intel-research.net/sylvia/netcomp.pdf>.

 [Doyle] Doyle, J., "The 'robust yet fragile' nature of the
 Internet", PNAS vol. 102 no. 41 14497-14502, October 2005.

 [ncrg] "Network Complexity Research Group",
 <https://irtf.org/concluded/ncrg>.

 [RFC1925] Callon, R., "The Twelve Networking Truths", RFC 1925,
 DOI 10.17487/RFC1925, April 1996,
 <http://www.rfc-editor.org/info/rfc1925>.

 [RFC3439] Bush, R. and D. Meyer, "Some Internet Architectural
 Guidelines and Philosophy", RFC 3439,
 DOI 10.17487/RFC3439, December 2002,
 <http://www.rfc-editor.org/info/rfc3439>.

 [wiki] "Network Complexity Wiki",
 <http://networkcomplexity.org/>.

Authors' Addresses

 Michael H. Behringer
 Cisco Systems
 Building D, 45 Allee des Ormes
 Mougins 06250
 France

 Email: mbehring@cisco.com

 Alvaro Retana
 Cisco Systems
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Email: aretana@cisco.com

http://berkeley.intel-research.net/sylvia/netcomp.pdf
https://irtf.org/concluded/ncrg
https://datatracker.ietf.org/doc/html/rfc1925
http://www.rfc-editor.org/info/rfc1925
https://datatracker.ietf.org/doc/html/rfc3439
http://www.rfc-editor.org/info/rfc3439
http://networkcomplexity.org/

Behringer, et al. Expires October 27, 2016 [Page 22]

Internet-Draft Complexity Framework April 2016

 Russ White
 Ericsson
 144 Warm Wood Lane
 Apex, NC 27539
 United States

 Email: russw@riw.us
 URI: http://www.ericsson.com

 Geoff Huston
 Asia Pacific Network Information Centre
 6 Cordelia St
 South Brisbane, QLD 4101
 Australia

 Email: gih@apnic.net
 URI: http://www.apnic.net

http://www.ericsson.com
http://www.apnic.net

Behringer, et al. Expires October 27, 2016 [Page 23]

