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Abstract

   Complexity is a widely used parameter in network design, yet there is
   no generally accepted definition of the term.  Complexity metrics
   exist in a wide range of research papers, but most of these address
   only a particular aspect of a network, for example the complexity of
   a graph or software.  While it may be impossible to define a metric
   for overall network complexity, there is a desire to better
   understand the complexity of a network as a whole, as deployed today
   to provide Internet services.  This document provides a framework to
   guide research on the topic of network complexity, as well as some
   practical examples for trade-offs in networking.

   This document summarizes the work of the IRTF's Network Complexity
   Research Group (NCRG) at the time of its closure.  It does not
   present final results, but a snapshot of an ongoing activity, as a
   basis for future work.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on October 27, 2016.
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1.  Introduction

   Network design can be described as the art of finding the simplest
   solution to solve a given problem.  Complexity is thus assumed in the
   design process; engineers do not ask, "should there be complexity
   here," but rather, "how much complexity is required to solve this
   problem."  This question, "how much complexity," assumes there is
   some way to characterize the amount of complexity present in a
   system.  The reality is, however, this is an area of research and
   experience, rather than a solved problem within the network
   engineering space.  Today's design decisions are made based on a
   rough estimation of the network's complexity, rather than a solid
   understanding.

   The document begins with general considerations, including some
   foundational definitions and concepts.  It then provides some
   examples for trade-offs that network engineers regularly make when
   designing a network.  This section serves to demonstrate that there
   is no single answer to complexity; rather it is a managed trade-off
   between many parameters.  After this, this document provides a set of
   parameters engineers should consider when attempting to either
   measure complexity or build a framework around it.  This list makes
   no claim to be complete, but it serves as a guide of known existing
   areas of investigation, as well as a pointer to areas that still need
   to be investigated.

   Two purposes are served here.  The first is to guide researchers
   working in the area of complexity in their work.  The more
   researchers are able to connect their work to the concerns of network
   designers, the more useful their research will become.  This document
   may also guide research into areas not considered before.  The second
   is to help network engineers to build a better understanding of where
   complexity might be "hiding" in their networks, and to be more fully
   aware of how complexity interacts with design and deployment.

   The goal of the IRTF Network Complexity Research Group (NCRG) [ncrg]
   was to define a framework for network complexity research, while
   recognising that it may be impossible to define metrics for overall
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   network complexity.  This document summarizes the work of this group
   at the time of its closure in 2014.  It does not present final
   results, but a snapshot of an ongoing activity, as a basis for future
   work.

   Many references to existing research in the area of network
   complexity are listed on the Network Complexity Wiki [wiki].  This
   wiki also contains background information on previous meetings on the
   subject, previous research, etc.

2.  General Considerations

2.1.  The Behavior of a Complex Network

   While there is no generally accepted definition of network
   complexity, there is some understanding of the behavior of a complex
   network.  It has some or all of the following properties:

   o  Self-Organization: A network runs some protocols and processes
      without external control; for example a routing process, failover
      mechanisms, etc.  The interaction of those mechanisms can lead to
      a complex behaviour.

   o  Un-predictability: In a complex network, the effect of a local
      change on the behaviour of the global network may be
      unpredictable.

   o  Emergence: The behaviour of the system as a whole is not reflected
      in the behaviour of any individual component of the system.

   o  Non-linearity: An input into the network produces a non-linear
      result.

   o  Fragility: A small local input can break the entire system.

2.2.  Complex versus Complicated

   The two terms "complex" and "complicted" are often used
   interchangably, yet they describe different but overlapping
   properties.  The RG made the following statements about the two
   terms, but they would need further refinement to be considered formal
   definitions:

   o  A "complicated" system is a deterministic system that can be
      understood by an appropriate level of analysis.  It is often an
      externally applied attribute rather than an intrinsic property of
      a system, and is typically associated with systems that require
      deep or significant levels of analysis.
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   o  A "complex" system, by comparison, is an intrinsic property of a
      system, and is typically associated with emergent behaviours, such
      that the behaviour of the system is not fully described by the sum
      of the behaviour of each of the components of the system.  Complex
      systems are often associated with systems whose components exhibit
      high levels of interaction and feedback.

2.3.  Robust Yet Fragile

   Networks typically follow the "robust yet fragile" paradigm: They are
   designed to be robust against a set of failures, yet they are very
   vulnerable to other failures.  Doyle [Doyle] explains the concept
   with an example: The Internet is robust against single component
   failure, but fragile to targeted attacks.  The "robust yet fragile"
   property also touches on the fact that all network designs are
   necessarily making trade-offs between different design goals.  The
   simplest one is articulated in "The Twelve Networking Truths" RFC1925
   [RFC1925]: "Good, Fast, Cheap: Pick any two (you can't have all
   three)."  In real network design, trade-offs between many aspects
   have to be made, including, for example, issues of scope, time and
   cost in the network cycle of planning, design, implementation and
   management of a network platform.  Parameters are discussed in

Section 4, and Section 3 gives some examples of tradeoffs.

2.4.  The Complexity Cube

   Complex tasks on a network can be done in different components of the
   network.  For example, routing can be controlled by central
   algorithms, and the result distributed (e.g., OpenFlow model); the
   routing algorithm can also run completely distributed (e.g., routing
   protocols such as OSPF or ISIS), or a human operator could calculate
   routing tables and statically configure routing.  Behringer
   [Behringer] defines these three axes of complexity as a "complexity
   cube" with three axes: Network elements, central systems, and human
   operators.  Any function can be implemented in any of these three
   axes, and this choice likely has an impact on the overall complexity
   of the system.

2.5.  Related Concepts

   When discussing network complexity, a large number of influencing
   factors have to be taken into account to arrive at a full picture,
   for example:

   o  State in the network: Contains the network elements, such as
      routers, switches (with their OS, including protocols), lines,
      central systems, etc.  The number and algorithmic complexity of
      the protocols on network devices for example.

https://datatracker.ietf.org/doc/html/rfc1925
https://datatracker.ietf.org/doc/html/rfc1925
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   o  Human operators: Complexity manifests itself often by a network
      that is not completely understood by human operators.  Human error
      is a primary source for catastrophic failures, and therefore must
      be taken into account.

   o  Classes / templates: Rather than counting the number of lines in a
      configuration, or the number of hardware elements, more important
      is the number of classes from which those can be derived.  In
      other words, it is probably less complex to have 1000 interfaces
      which are identically configured than 5 that are completely
      different configured.

   o  Dependencies and interactions: The number of dependencies between
      elements, as well as the interactions between them has influence
      on the complexity of the network.

   o  TCO (Total cost of ownership): TCO could be a good metric for
      network complexity, if the TCO calculation takes into account all
      influencing factors, for example training time for staff to be
      able to maintain a network.

   o  Benchmark Unit Cost is a related metric that indicates the cost of
      operating a certain component.  If calculated well, it reflects at
      least parts of the complexity of this component.  Therefore, the
      way TCO or BUC are calculated can help to derive a complexity
      metric.

   o  Churn / rate of change: The change rate in a network itself can
      contribute to complexity, especially if a number of components of
      the overall network interact.

   Networks differ in terms of their intended purpose (such as is found
   in differences between enterprise and public carriage network
   platforms, and in their intended role (such as is found in the
   differences between so-called "access" networks and "core" transit
   networks).  The differences in terms of role and purpose can often
   lead to differences in the tolerance for, and even the metrics of,
   complexity within such different network scenarios.  This is not
   necessarily a space where a single methodology for measuring
   complexity, and defining a single threshold value of acceptability of
   complexity, is appropriate.

2.6.  Technical Debt

   Many changes in a network are made with a dependency on the existing
   network.  Often, a suboptimal decision is made because the optimal
   decision is hard or impossible to realise at the time.  Over time,
   the number of suboptimal changes in themselves cause significant
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   complexity, which would not have been there had the optimal solution
   been implemented.

   The term "technical debt" refers to the accumulated complexity of
   sub-optimal changes over time.  As with financial debt, the idea is
   that also technical debt must be repaid one day by cleaning up the
   network or software.

2.7.  Layering considerations

   In considering the larger space of applications, transport services,
   network services and media services, it is feasible to engineer
   responses for certain types of desired applications responses in many
   different ways, and involving different layers of the so-called
   network protocol stack.  For example, Quality of Service could be
   engineered at any of these layers, or even in a number of
   combinations of different layers.

   Considerations of complexity arise when mutually incompatible
   measures are used in combination (such as error detection and
   retransmission at the media layer in conjunction with the use TCP
   transport protocol), or when assumptions used in one layer are
   violated by another layer.  This results in surprising outcomes that
   may result in complex interactions, for example oscillation because
   different layers use different timers for retransmission.  These
   issues have led to the perspective that increased layering frequently
   increases complexity [RFC3439].

   While this research work is focussed network complexity, the
   interactions of the network with the end-to-end transport protocols,
   application layer protocols and media properties are relevant
   considerations here.

3.  Tradeoffs

   Network complexity is a system level, rather than component level,
   problem; overall system complexity may be more than the sum of the
   complexity of the individual pieces.

   There are two basic ways in which system level problems might be
   addressed: interfaces and continuums.  In addressing a system level
   problem through interfaces, we seek to treat each piece of the system
   as a "black box," and develop a complete understanding of the
   interfaces between these black boxes.  In addressing a system level
   problem as a continuum, we seek to understand the impact of a single
   change or element to the entire system as a set of tradeoffs.

https://datatracker.ietf.org/doc/html/rfc3439
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   While network complexity can profitably be approached from either of
   these perspectives, in this document we have chosen to approach the
   system level impact of network complexity from the perspective of
   continuums of tradeoffs.  In theory, modifying the network to resolve
   one particular problem (or class of problems) will add complexity
   which results in the increased likelihood (or appearance) of another
   class of problems.  Discovering these continuums of tradeoffs, and
   then determining how to measure each one, become the key steps in
   understanding and measuring system level complexity in this view.

   The following sections describe five such continuums; more may be
   possible.

   o  Control Plane State versus Optimal Forwarding Paths (or its
      opposite measure, stretch)

   o  Configuration State versus Failure Domain Separation

   o  Policy Centralization versus Optimal Policy Application

   o  Configuration State versus Per Hop Forwarding Optimization

   o  Reactivity versus Stability

3.1.  Control Plane State versus Optimal Forwarding Paths (Stretch)

   Control plane state is the aggregate amount of information carried by
   the control plane through the network in order to produce the
   forwarding table at each device.  Each additional piece of
   information added to the control plane --such as more specific
   reachability information, policy information, additional control
   planes for virtualization and tunneling, or more precise topology
   information-- adds to the complexity of the control plane.  This
   added complexity, in turn, adds to the burden of monitoring,
   understanding, troubleshooting, and managing the network.

   Removing control plane state, however, is not always a net positive
   gain for the network as a system; removing control plane state almost
   always results in decreased optimality in the forwarding and handing
   of packets travelling through the network.  This decreased optimality
   can be termed stretch, which is defined as the difference between the
   absolute shortest (or best) path traffic could take through the
   network and the path the traffic actually takes.  Stretch is
   expressed as the difference between the optimal and actual path.  The
   figure below provides and example of this tradeoff.
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                                +---R1---+
                                |        |
        (aggregate: 192.0.2/24) R2       R3 (aggregate: 192.0.2/24)
                                |        |
                                R4-------R5
                                |
       (announce: 192.0.2.1/32) R6

   Assume each link is of equal cost in this figure, and R6 is
   advertising 192.0.2.1/32.

   For R1, the shortest path to 192.0.2.1/32, advertised by R6, is along
   the path [R1,R2,R4,R6].

   Assume, however, the network administrator decides to aggregate
   reachability information at R2 and R3, advertising 192.0.2.0/24
   towards R1 from both of these points.  This reduces the overall
   complexity of the control plane by reducing the amount of information
   carried past these two routers (at R1 only in this case).

   Aggregating reachability information at R2 and R3, however, may have
   the impact of making both routes towards 192.0.2.1/32 appear as equal
   cost paths to R1; there is no particular reason R1 should choose the
   shortest path through R2 over the longer path through R3.  This, in
   effect, increases the stretch of the network.  The shortest path from
   R1 to R6 is 3 hops, a path that will always be chosen before
   aggregation is configured.  Assuming half of the traffic will be
   forwarded along the path through R2 (3 hops), and half through R3 (4
   hops), the network is stretched by ((3+4)/2) - 3), or .5, a "half a
   hop."

   Traffic engineering through various tunneling mechanisms is, at a
   broad level, adding control plane state to provide more optimal
   forwarding (or network utlization).  Optimizing network utilization
   may require detuning stretch (intentionally increasing stretch) to
   increase overall network utilization and efficiency; this is simply
   an alternate instance of control plane state (and hence complexity)
   weighed against optimal forwarding through the network.

3.2.  Configuration State versus Failure Domain Separation

   A failure domain, within the context of a network control plane, can
   be defined as the set of devices impacted by a change in the network
   topology or configuration.  A network with larger failure domains is
   more prone to cascading failures, so smaller failure domains are
   normally preferred over larger ones.
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   The primary means used to limit the size of a failure domain within a
   network's control plane is information hiding; the two primary types
   of information hidden in a network control plane are reachability
   information and topology information.  An example of aggregating
   reachability information is summarizing the routes 192.0.2.1/32,
   192.0.2.2/32, and 192.0.2.3/32 into the single route 192.0.2.0/24,
   along with the aggregation of the metric information associated with
   each of the component routes.  Note that aggregation is a "natural"
   part of IP networks, starting with the aggregation of individual
   hosts into a subnet at the network edge.  An example of topology
   aggregation is the summarization of routes at a link state flooding
   domain boundary, or the lack of topology information in a distance-
   vector protocol.

   While limiting the size of failure domains appears to be an absolute
   good in terms of network complexity, there is a definite tradeoff in
   configuration complexity.  The more failure domain edges created in a
   network, the more complex configuration will become.  This is
   particularly true if redistribution of routing information between
   multiple control plane processes is used to create failure domain
   boundaries; moving between different types of control planes causes a
   loss of the consistent metrics most control planes rely on to build
   loop free paths.  Redistribution, in particular, opens the door to
   very destructive positive feedback loops within the control plane.
   Examples of control plane complexity caused by the creation of
   failure domain boundaries include route filters, routing aggregation
   configuration, and metric modifications to engineer traffic across
   failure domain boundaries.

   Returning to the network described in the previous section,
   aggregating routing information at R2 and R3 will divide the network
   into two failure domains: (R1,R2,R3), and (R2,R3,R4,R5).  A failure
   at R5 should have no impact on the forwarding information at R1.

   A false failure domain separation occurs, however, when the metric of
   the aggregate route advertised by R2 and R3 is dependent on one of
   the routes within the aggregate.  For instance, if the metric of the
   192.0.2.0/24 aggregate is derived from the metric of the component
   192.0.2.1/32, then a failure of this one component will cause changes
   in the forwarding table at R1 --in this case, the control plane has
   not truly been separated into two distinct failure domains.  The
   added complexity in the illustration network would be the management
   of the configuration required to aggregate the contorl plane
   information, and the management of the metrics to ensure the control
   plane is truly separated into two distinct failure domains.

   Replacing aggregation with redistribution adds the complexity of
   managing the feedback of routing information redistributed between
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   the failure domains.  For instance, if R1, R2, and R3 were configured
   to run one routing protocol, while R2, R3, R4, R5, and R6 were
   configured to run another protocol, R2 and R3 could be configured to
   redistribute reachability information between these two control
   planes.  This can split the control plane into multiple failure
   domains (depending on how, specifically, redistribution is
   configured), but at the cost of creating and managing the
   redistribution configuration.  Futher, R3 must be configured to block
   routing information redistributed at R2 towards R1 from being
   redistributined (again) towards R4 and R5.

3.3.  Policy Centralization versus Optimal Policy Application

   Another broad area where control plane complexity interacts with
   optimal network utilization is Quality of Service (QoS).  Two
   specific actions are required to optimize the flow of traffic through
   a network: marking and Per Hop Behaviors (PHBs).  Rather than
   examining each packet at each forwarding device in a network, packets
   are often marked, or classified, in some way (typically through Type
   of Service bits) so they can be handled consistently at all
   forwarding devices.

   Packet marking policies must be configured on specific forwarding
   devices throughout the network.  Distributing marking closer to the
   edge of the network necessarily means configuring and managing more
   devices, but produces optimal forwarding at a larger number of
   network devices.  Moving marking towards the network core means
   packets are marked for proper handling across a smaller number of
   devices.  In the same way, each device through which a packet passes
   with the correct PHBs configured represents an increase in the
   consistency in packet handling through the network as well as an
   increase in the number of devices which must be configured and
   managed for the correct PHBs.  The network below is used for an
   illustration of this concept.

                              +----R1----+
                              |          |
                           +--R2--+   +--R3--+
                           |      |   |      |
                           R4     R5  R6     R7

   In this network, marking and PHB configuration may be configured on
   any device, R1 through R7.

   Assume marking is configured at the network edge; in this case, four
   devices, (R4,R5,R6,R7), must be configured, including ongoing
   configuration management, to mark packets.  Moving packet marking to
   R2 and R3 will halve the number of devices on which packet marking
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   configuration must be managed, but at the cost of inconsistent packet
   handling at the inbound interfaces of R2 and R3 themselves.

   Thus reducing the number of devices which must have managed
   configurations for packet marking will reduce optimal packet flow
   through the network.  Assuming packet marking is actually configured
   along the edge of this network, configuring PHBs on different devices
   has this same tradeoff of managed configuration versus optimal
   traffic flow.  If the correct PHBs are configured on R1, R2, and R3,
   then packets passing through the network will be handled correctly at
   each hop.  The cost involved will be the management of PHB
   configuration on three devices.  Configuring a single device for the
   correct PHBs (R1, for instance), will decrease the amount of
   configuration management required, at the cost of less than optimal
   packet handling along the entire path.

3.4.  Configuration State versus Per Hop Forwarding Optimization

   The number of PHBs configured along a forwarding path exhibits the
   same complexity versus optimality tradeoff described in the section
   above.  The more classes (or queues) traffic is divided into, the
   more fine-grained traffic will be managed as it passes through the
   network.  At the same time, each class of service must be managed,
   both in terms of configuration and in its interaction with other
   classes of service configured in the network.

3.5.  Reactivity versus Stability

   The speed at which the network's control plane can react to a change
   in configuration or topology is an area of widespread study.  Control
   plane convergence can be broken down into four essential parts:

   o  Detecting the change

   o  Propagating information about the change

   o  Determining the best path(s) through the network after the change

   o  Changing the forwarding path at each network element along the
      modified paths

   Each of these areas can be addressed in an effort to improve network
   convergence speeds; some of these improvements come at the cost of
   increased complexity.

   Changes in network topology can be detected much more quickly through
   faster echo (or hello) mechanisms, lower layer physical detection,
   and other methods.  Each of these mechanisms, however, can only be
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   used at the cost of evaluating and managing false positives and high
   rates of topology change.

   If the state of a link change can be detected in 10ms, for instance,
   the link could theoretically change state 50 times in a second --it
   would be impossible to tune a network control plane to react to
   topology changes at this rate.  Injecting topology change information
   into the control plane at this rate can destabalize the control
   plane, and hence the network itself.  To counter this, most fast down
   detection techniques include some form of dampening mechanism;
   configuring and managing these dampening mechanisms increases
   complexity that must be configured and managed.

   Changes in network topology must also be propagated throughout the
   network, so each device along the path can compute new forwarding
   tables.  In high speed network environments, propagation of routing
   information changes can take place in tens of milliseconds, opening
   the possibility of multiple changes being propagated per second.
   Injecting information at this rate into the contral plane creates the
   risk of overloading the processes and devices participating in the
   control plane, as well as creating destructive positive feedback
   loops in the network.  To avoid these consequences, most control
   plane protocols regulate the speed at which information about network
   changes can be transmitted by any individual device.  A recent
   innovation in this area is using exponential backoff techniques to
   manage the rate at which information is advertised into the control
   plane; the first change is transmitted quickly, while subsequent
   changes are transmitted more slowly.  These techniques all control
   the destabalilzing effects of rapid information flows through the
   control plane through the added complexity of configuring and
   managing the rate at which the control plane can propagate
   information about network changes.

   All control planes require some form of algorithmic calculation to
   find the best path through the network to any given destination.
   These algorithms are often lightweight, but they still require some
   amount of memory and computational power to execute.  Rapid changes
   in the network can overwhelm the devices on which these algorithms
   run, particularly if changes are presented more quickly than the
   algorithm can run.  Once the devices running these algorithms become
   processor or memory bound, it could experience a computational
   failure altogether, causing a more general network outage.  To
   prevent computational overloading, control plane protocols are
   designed with timers limiting how often they can compute the best
   path through a network; often these timers are exponential in nature,
   allowing the first computation to run quickly, while delaying
   subsequent computations.  Configuring and managing these timers is
   another source of complexity within the network.
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   Another option to improve the speed at which the control plane reacts
   to changes in the network is to precompute alternate paths at each
   device, and possibly preinstall forwarding information into local
   forwarding tables.  Additional state is often needed to precompute
   alternate paths, and additional algorithms and techniques are often
   configured and deployed.  This additional state, and these additional
   algorithms, add some amount of complexity to the configuration and
   management of the network.

   In some situations (for some topologies), a tunnel is required to
   pass traffic around a network failure or topology change.  These
   tunnels, while not manually configured, represent additional
   complexity at the forwarding and control planes.

4.  Parameters

   In Section 3 we describe a set of trade-offs in network design to
   illustrate the practical choices network operators have to make.  The
   amount of parameters to consider in such tradeoff scenarios is very
   large, thus that a complete listing may not be possible.  Also the
   dependencies between the various metrics itself is very complex and
   requires further study.  This document attempts to define a
   methodology and an overall high level structure.

   To analyse tradeoffs it is necessary to formalise them.  The list of
   parameters for such tradeoffs is long, and the parameters can be
   complex in themselves.  For example, "cost" can be a simple
   unidimensional metric, but "extensibility" or "optimal forwarding
   state" are harder to define in detail.

   A list of parameters to trade off contains metrics such as:

   o  State: How much state needs to be held in control plane,
      forwarding plane, configuration, etc.

   o  Cost: How much does the network cost to build (capex) and run
      (opex)

   o  Bandwidth / delay / jitter: Traffic characteristics between two
      points (average, max, ...)

   o  Configuration complexity: How hard to configure and maintain the
      configuration

   o  Susceptibility to Denial-of-Service: How easy is it to attack the
      service
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   o  Security (confidentiality / integrity): How easy is it to sniff /
      modify / insert the data flow

   o  Scalability: To what size can I grow the network / service

   o  Stability: How stable is the network under the influence of local
      change?

   o  Reactivity: How fast does the network converge, or adapt to new
      situations?

   o  Extensibility: Can I use the network for other services in the
      future?

   o  Ease of troubleshooting: Are failure domains separated?  How hard
      is it to find and correct problems?

   o  Optimal per-hop forwarding behavior

   o  Predictability: If I change a parameter, what will happen?

   o  Clean failure: When a problem arises, does the root cause lead to
      deterministic failure

5.  Elements of Complexity

   Complexity can be found in various elements in a networked system.
   For example, the configuration of a network element reflects some of
   the complexity contained in this system.  Or an algorithm used by a
   protocol may be more or less complex.  When classifying complexity
   the first question to ask is "WHAT is complex?".  This section offers
   a method to answer this question.

5.1.  The Physical Network (Hardware)

   The set of network devices and wiring contains a certain complexity.
   For example, adding a redundant link between two locations increases
   the complexity of the network, but provides more redundancy.  Also
   network devices can be more or less modular, which has impact on
   complexity trading off against ease of maintenance, availability and
   upgradability.

5.2.  Algorithms

   The behavior of the physical network is not only defined by the
   hardware, but also by algorithms that run on network elements and in
   central locations.  Every algorithm has a certain intrinsic
   complexity, which is the subject of research on software complexity.
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5.3.  State in the Network

   The way a network element treats traffic is defined largely by the
   state in the network, in form of configuration, routing state,
   security measures, etc.  Section 3.1 shows an example where more
   control plane state allows a more precise forwarding.

5.4.  Churn

   The rate of change itself is a parameter in complexity, which needs
   to be weighed against other parameters.  Section 3.5 explains a
   trade-off between the speed of communicating changes through the
   network and the stability of the network.

5.5.  Knowledge

   Certain complexity parameters have a strong link to the human aspect
   of networking.  For example, the more option and parameters a network
   protocol has, the harder it is to configure and trouble-shoot.
   Therefore, there is a trade-off between the knowledge to be
   maintained by operational staff and desired functionality.  The
   required knowledge of network operators is therefore an important
   part in complexity considerations.

6.  Location of Complexity

   The previous section discussed in which form complexity may be
   perceived.  This section focuses on where this complexity is located
   in a network.  For example, an algorithm can run centrally,
   distributed, or even in the head of a network administrator.  In
   classifying the complexity of a network, the location of a component
   may have an impact on overall complexity.  This section offers a
   methodology to the question "WHERE is the complex component?"

6.1.  Topological Location

   An algorithm can run distributed, for example a routing protocol like
   OSPF runs on all routers in a network.  But it can also be in a
   central location such as the Network Operations Center (NOC).  The
   physical location has impact on several other parameters, such as
   availability (local changes might be faster than going through a
   remote NOC) and ease of operation, because it might be easier to
   understand and troubleshoot one central entity rather than many
   remote ones.

   The example in Section 3.3 shows how the location of state (in this
   case configuration) impacts the precision of the policy enforcement
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   and the corresponding state required.  Enforcement closer to the edge
   requires more network wide state, but is more precise.

6.2.  Logical Location

   Independent of its physical location, the logical location also may
   make a difference to complexity.  A controller function for example
   can reside in a NOC, but also on a network element.  Generally,
   organising a network in separate logical entities is considered
   positive, because it eases the understanding of the network, thereby
   making trouble-shooting and configuration easier.  For example a BGP
   route reflector is a separate logical entity from a BGP speaker, but
   it may reside on the same physical node.

6.3.  Layering Considerations

   Also the layer of the TCP/IP stack in which a function is implemented
   can have an impact on the complexity of the overall network.  Some
   functions are implemented in several layers in slightly different
   ways, which may lead to unexpected results.

   As an example, a link failure is detected on various layers: L1, L2,
   the IGP, BGP, and potentially more.  Since those have dependencies on
   each other, different link failure detection times can cause
   undesired effects.  Dependencies are discussed in more detail in the
   next section.

7.  Dependencies

   Dependencies are generally regarded as related to overall complexity.
   A system with less dependencies is generally considered less complex.
   This section proposes a way to analyse dependencies in a network.

   For example, [Chun] states: "We conjecture that the complexity
   particular to networked systems arises from the need to ensure state
   is kept in sync with its distributed dependencies."

   In this document we distinguish three types of dependencies: Local
   dependencies, network wide dependencies, and network external
   dependencies.

7.1.  Local Dependencies

   Local dependencies are relative to a single node in the network.  For
   example, an interface on a node may have an IP address; this address
   may be used in other parts of the configuration.  If the interface
   address changes, the dependent configuration parts have to change as
   well.
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   Similar dependencies exist for QoS policies, access-control-lists,
   names and numbers of configuration parts, etc.

7.2.  Network Wide Dependencies

   Routing protocols, failover protocols, and many other have
   dependencies across the network.  If one node is affected by a
   problem, this may have a ripple effect through the network.  These
   protocols are typically designed to deal with unexpected
   consequences, thus unlikely to cause an issue on their own.  But
   occasionally a number of complexity issues come together, for
   example, different timers on different layers, then unexpected
   behaviour can occur.

7.3.  Network External Dependencies

   Some dependencies are on elements outside the actual network, for
   example on an external NTP clock source, or a AAA server.  Again, a
   tradeoff is made: In the example of AAA used for login
   authentication, we reduce the configuration (state) on each node,
   specifically user specific configuration.  But we add an external
   dependency on a AAA server.  In networks with many administrators, a
   AAA server is clearly the only manageable way to track all
   administrators.  But it comes at the cost of this external
   dependency, with the consequence that admin access may be lost for
   all devices at the same time, when the AAA server is unavailable.

   Even with the external dependency on a AAA server, the advantage of
   centralizing the user information (and logging) still has significant
   value over distributing user information across all devices.  To
   solve the problem of the central dependency not being available,
   other solutions have been developed, for example a secondary
   authentication mode with a single root level password in case the AAA
   server is not available.

8.  Management Interactions

   A static network generally is relatively stable; conversely, changes
   introduce a degree of uncertainty and therefore need to be examined
   in detail.  Also, the trouble shooting of a network exposes
   intuitively the complexity of the network.  This section proposes a
   methodology to classify management interactions with regard to their
   relationship to network complexity.



Behringer, et al.       Expires October 27, 2016               [Page 18]



Internet-Draft            Complexity Framework                April 2016

8.1.  Configuration Complexity

   Configuration can be seen as distributed state across network
   devices, where the administrator has direct influence on the
   operation of the network.  Modifying the configuration can improve
   the network behaviour over all, or negatively affect it.  In the
   worst case, a single misconfiguration could potentially bring down
   the entire network.  Therefore it is important that a human
   administrator can manage the complexity of the configuration well.

   The configuration reflects most of the local and global dependencies
   in the network, as explained in Section 7.  Tracking those
   dependencies in the configuration helps in understanding the overall
   network complexity.

8.2.  Troubleshooting Complexity

   Unexpected behaviour can have a number of sources: The configuration
   may contain errors, the operating system (algorithms) may have bugs,
   and the hardware may be faulty, which includes anything from broken
   fibres to faulty line cards.  In serious problems, a combination of
   causes could result in a single visible condition.  Tracking the root
   causes of a error condition may be extremely difficult, pointing to
   the complex nature of a network.

   Being able to find the source of a problem requires therefore a solid
   understanding of the complexity of a network.  The configuration
   complexity discussed in the previous section represents only a part
   of the overall problem space.

8.3.  Monitoring Complexity

   Even in the absence of error conditions, the state of the network
   should be monitored to detect error conditions ideally before network
   services are affected.  For example, a single "link-down" event may
   not cause a service disruption in a well designed network, but the
   problem needs to be resolved quickly to restore redundancy.

   Monitoring a network has itself a certain complexity.  Issues are in
   scale, variations of devices to be monitored, variations of methods
   used to collect information, the inevitable loss of information as
   reporting is aggregated centrally, and the knowledge required to
   understand the network, the dependencies and interactions with users
   and other external inputs.
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8.4.  Complexity of System Integration

   A network doesn't just consist of network devices, but includes a
   vast array of backend and support systems.  It also interfaces a
   large variety of user devices, and a number of human interfaces, both
   to the user / customer, as well as to administrators of the network.
   To make sure the overall network provides the overall service
   expected requires a system integration job.

   All those interactions and systems have to be modelled to understand
   the inter-dependencies and complexities in the network.  This is a
   large area of future research.

9.  External Interactions

   A network is not a self-contained entity, but exists to provide
   connectivity and services to users and other networks, both of which
   are outside the direct control of a network administrator.  The user
   experience of a network also illustrates a form of interaction with
   its own complexity.

   External interactions fall into the following categories:

      User Interactions: Users need a way to request a service, to have
      their problems resolved, and potentially to get billed for their
      usage.  There are a number of human interfaces that need to be
      considered, which depend to some extend on the network, for
      example for troubleshooting, or monitoring usage.

      Interactions with End Systems: The network also interacts with the
      devices that connect to it.  Typically a device receives an IP
      address from the network, and information on how to resolve domain
      names, plus potentially other services.  While those interactions
      are relatively simple, the vast amount of end device types makes
      this a complicated space to track.

      Inter-Network Interactions: Most networks connect to other
      networks.  Also in this case there are many interactions between
      networks, both technically (for example, running a routing
      protocol), as well as non-technical (for example, tracing problems
      across network boundaries).

   For a fully operational network providing services to users, also the
   external interactions and dependencies form an integral part of the
   overall complexity of the network service.  A specific example are
   the root DNS servers, which are critical to the function of the
   Internet.  Practically all Internet users have an implicit dependency
   on the root DNS servers, which explains why those are frequent
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   targets for attacks.  Understanding the overall complexity of a
   network includes understanding all those external dependencies.  Of
   course, in the case of the root DNS servers, there is little a
   network operator can influence.

10.  Examples

   In the foreseeable future it is unlikely to define a single,
   objective metric that includes all the relevant aspects of
   complexity.  In the absence of such a global metric, a comparative
   approach could be easier.

   For example, it is possible to compare the complexity of a
   centralised systems where algorithms run centrally, and the results
   are distributed to the network nodes with a distributed algorithm.
   The type of algorithm may be similar, but the location is different,
   and a different dependency graph would result.  The supporting
   hardware may be the same, thus could be ignored for this exercise.
   Also layering is likely to be the same.  The management interactions
   though would significantly differ in both cases.

   The classification in this document also makes it easier to survey
   existing research with regards to which area of complexity is
   covered.  This could help in identifying open areas for research.

11.  Security Considerations

   This document does not discuss any specific security considerations.
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