
Internet Engineering Task Force R. Belchior
Internet-Draft M. Correia
Intended status: Informational INESC-ID, Instituto Superior Tecnico
Expires: September 11, 2021 T. Hardjono
 MIT
 March 10, 2021

DLT Gateway Crash Recovery Mechanism
draft-belchior-gateway-recovery-01

Abstract

 This memo describes the crash recovery mechanism for the Open Digital
 Asset Protocol (ODAP), entitled ODAP-2PC. ODAP-2PC assures that
 gateways running ODAP are crash-fault tolerant, meaning that the
 atomicity of asset transfers are assured even if gateways crash.
 This protocol includes the description of the messaging and logging
 flow necessary for gateways to keep track of current state, the crash
 recovery protocol, and a rollback protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 11, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Belchior, et al. Expires September 11, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Gateway Crash Recovery March 2021

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Logging Model . 4
3.1. Example . 4

4. Gateway Crash Recovery 6
4.1. Gateway Transfer Model 6
4.2. Crash Recovery Model 7
4.3. Recovery Procedure 8
4.4. Log Storage . 11
4.5. Logging API . 12
4.5.1. POST/saveLogEntry:log 12
4.5.2. GET lastEntry . 13
4.5.3. GET getLogEntry/:id 13
4.5.4. GET getLog . 14
4.5.5. POST updateLog 14

5. Format of log entries . 15
6. Security Considerations 18
7. References . 18
7.1. Normative References 18
7.2. Informative References 19

 Authors' Addresses . 19

1. Introduction

 Gateway systems that perform virtual asset transfers among DLTs must
 possess a degree of resiliency and fault tolerance in the face of
 possible crashes. A key component of crash recovery is maintaining
 logs that enable either the same or other backup gateways to resume
 partially completed transfers. Another key component is an atomic
 commit protocol (ACP) that guarantees that the source and target DLTs
 are modified consistently (atomicity) and permanently (durability),
 e.g., that assets that are taken from the source DLT are persisted
 into the recipient DLT.

 This memo proposes: (i) the parameters that a gateway must retain in
 the form of logs concerning message flows within asset transfers;
 (ii) a JSON-based format for logs related to asset transfers.

Belchior, et al. Expires September 11, 2021 [Page 2]

Internet-Draft Gateway Crash Recovery March 2021

2. Terminology

 There following are some terminology used in the current document:

 o Gateway: The nodes of a DLT system that are functionally capable
 of handling an asset transfer with another DLT. Gateway nodes
 implement the gateway-to-gateway asset transfer protocol.

 o Primary Gateway: The node of a DLT system that has been selected
 or elected to act as a gateway in an asset transfer.

 o Backup Gateway: The node of a DLT system that has been selected or
 elected to act as a backup gateway to a primary gateway.

 o Message Flow Parameters: The parameters and payload employed in a
 message flow between a sending gateway and receiving gateway.

 o Source Gateway (or G1): The gateway that initiates the transfer
 protocol. Acts as a coordinator of the ACP and mediates the
 message flow.

 o Recipient Gateway (or G2): The gateway that is the target of an
 asset transfer. It follows instructions from the source gateway.

 o Source DLT: The DLT of the source gateway.

 o Target DLT: The DLT of the recipient gateway.

 o Log: Set of log entries such that those are ordered by the time of
 its creation.

 o Public (or Shared) Log: log where several nodes can read and write
 from it.

 o Private Log: log where only one node can read and write from it.

 o Log data: The log information is retained by a gateway connected
 to an exchanged message within an asset transfer protocol.

 o Log entry: The log information generated and persisted by a
 gateway regarding one specific message flow step.

 o Log format: The format of log-data generated by a gateway.

 o Atomic commit protocol (ACP): A protocol that guarantees that
 assets that are taken from a DLT are persisted into the other DLT.
 Examples are two and three-phase commit protocols (2PC, 3PC,
 respectively) and non-blocking atomic commit protocols.

Belchior, et al. Expires September 11, 2021 [Page 3]

Internet-Draft Gateway Crash Recovery March 2021

 o Fault: A fault is an event that alters the expected behavior of a
 system.

 o Crash-fault tolerant models: models allowing a system to keep
 operating correctly despite having a set of faulty components.

 o Digital asset: a form of digital medium recordation that is used
 as a digital representation of a tangible or intangible asset.

3. Logging Model

 Logs are associated to a process running operations on a certain
 gateway, and they can be stored in several supports: 1) off-chain
 storage (with the possibility of a hash of the logs being stored on-
 chain), where logs are stored on the hard-drive of the computer
 system performing the role of a gateway; 2) cloud storage; 3) on-
 chain storage, either storing the logs on the blockchains that
 gateways are connected, or to a third blockchain.

 To manipulate the log, we define a set of log primitives, that
 translate log entry requests from a process into log entries,
 realized by the log storage API, later presented:

 o writeLogEntry(l,L) - writes a log entry l in the log L

 o getLogLength - obtains the number of log entries

 o getLogEntry(l) - retrieves a log entry l.

 A log entry request typically comes from a single event in a given
 protocol. Log entry requests have the format (phase, step,
 operation, gateways), where the field operation corresponds to an
 arbitrary command, and the field gateways correspond to the parties
 involved in the protocol. We define four operations types to provide
 context to the protocol being executed. Operation type (init-)
 states the intention of a gateway to execute a particular operation,
 and operation (exec-) expresses that the gateway is excecuting an
 operation. The operation type (done-) states when an agent
 successfully executed a step of the protocol, while (ack-) refers to
 when a gateway acknowledges a message received from another.
 Conversely, we use the type (fail-) to refer to when an agent fails
 to execute a specific step.

3.1. Example

Belchior, et al. Expires September 11, 2021 [Page 4]

Internet-Draft Gateway Crash Recovery March 2021

 ,--. ,--. ,-------.
 |G1| |G2| |Log API|
 `--' `--' `-------'
 | [1]: writeLogEntry init-validate |
 | --->
 | | |
 | [2]: initiate ODAP's phase 1| |
 | ----------------------------> |
 | | |
 | | [3]: writeLogEntry exec-validate |
 | | --------------------------------->
 | | |
 | |----.
 | | | [4]: execute validate from p1
 | |<---'
 | | |
 | | [5]: writeLogEntry done-validate |
 | | --------------------------------->
 | | |
 | | [6]: writeLogEntry ack-validate |
 | | --------------------------------->
 | | |
 | [7]: validation complete | |
 | <---------------------------- |
 ,--. ,--. ,-------.
 |G1| |G2| |Log API|
 `--' `--' `-------'

 Figure 1

 From step 1 to 7, the generated logs are:

 At step 1, LOG: <p1, 1, init-validate, (GS->GR)>.

 At step 2, GS commands GR to execute validate.

 At step 3, LOG: <p1, 2, exec-validate, (GR)>.

 At step 4: GR executes validate

 At step 5, LOG: <p1,3, done-validate, (GR)>.

 At step 6, LOG: <p1, 4, ack-validate, (GR->GS)>.

 At step 7: GS receives an acknoledgment from GR.

Belchior, et al. Expires September 11, 2021 [Page 5]

Internet-Draft Gateway Crash Recovery March 2021

4. Gateway Crash Recovery

 The gateway architecture [ODAP] defines two gateway nodes belonging
 to distinct DLT systems as a means to conduct a virtual asset
 transfer in a secure and non-repudiable manner while ensuring the
 asset does not exist simultaneously on both blockchains.

 One of the key deployment requirements of gateways for asset
 transfers is a high degree of gateways availability. In this
 document, we consider two common strategies to increase availability:
 (1) to support the recovery of the gateways and (2) to employ backup
 gateways with the ability to resume a stalled transfer.

 To this end, gateways must retain relevant log information regarding
 incoming protocol messages (parameters, payloads, etc.) and
 transmitted messages. In particular, logs are written before
 operations (write-ahead) to provide atomicity and durability to the
 asset exchange protocol. The log-data is considered as internal
 resources to the DLT system, accessible to the backup gateway and
 possible other gateway nodes.

4.1. Gateway Transfer Model

 The Open Digital Asset Protocol (ODAP) is a DLT-agnostic gateway-to-
 gateway protocol used by a sender gateway and a target gateway to
 perform a virtual asset's unidirectional transfer [ODAP]. The
 transfer process is started by a client (application) that interacts
 with the source gateway or both (source and recipient) gateways to
 provide instructions regarding actions, related resources located in
 the source DLT system, and resources located in the remote DLT
 system. The protocol has two modes, but here we consider only the
 Relay Mode: Client-initiated Gateway to Gateway asset transfer. When
 we refer to the ODAP protocol in this document, we refer to the ODAP
 protocol in Relay Mode, although the logging model specified in this
 memo can also support the Direct mode., although the logging model
 specified in this memo can also support the Direct mode.

 ODAP has to be instanced with an ACP protocol to guarantee that the
 source and target DLTs are modified consistently, a property
 designated Atomicity [BHG87]. ACPs consider two roles: a Coordinator
 that manages the execution of the protocol and Participants that
 manage the resources that must be kept consistent. The source
 gateway plays the ACP role of Coordinator, and the recipient gateway
 plays the Participant role in relay mode. Gateways exchange messages
 corresponding to the protocol execution, generating log entries for
 each one. The message exchange, and corresponding logging procedure
 is represented in Figure 1.

Belchior, et al. Expires September 11, 2021 [Page 6]

Internet-Draft Gateway Crash Recovery March 2021

 The simplified message flow format is in the form < ODAP_PHASE, STEP,
 COMMAND, GATEWAY >, where ODAP_PHASE corresponds to the current phase
 of ODAP, STEP corresponds to a monotonically increasing integer,
 COMMAND to the command type being issued by a set of gateways
 (GATEWAY). However, both two-phase commit and three-phase commit can
 block in case nodes fail. The protocol being blocking means that if
 the coordinator crashes, then gateways may not finish transactions.
 When a crash happens, gateways will be waiting for a confirmation/
 abort, and possibly holding the lock regarding a specific digital
 asset.

4.2. Crash Recovery Model

 We assume gateways fail by crashing, i.e., by becoming silent, not
 arbitrary or Byzantine faults. We assume authenticated reliable
 channels obtained using TLS/HTTPS [TLS]. To recover from these
 crashes, gateways store in persistent storage data about the step of
 their protocol. This allows the system to recover by getting from
 the log the first step that may have failed. We consider two
 recovery models:

 o Self-healing mode: assumes that after a crash, a gateway
 eventually recovers;

 o Primary-backup mode: assumes that after a crash, a gateway may
 never recover, but that this failure can be detected by timeout
 [AD76].

 In Self-healing mode, when a gateway restarts after a crash, it reads
 the state from the log and continues executing the protocol from that
 point on. We assume the gateway does not lose its long-term keys
 (public-private key pair) and can reestablish all TLS connections.

 In Primary-backup mode, we assume that after a period T of the
 primary gateway failure, a backup gateway detects that failure
 unequivocally and takes the role of the primary gateway. The failure
 is detected using heartbeat messages and a conservative value for T.
 The backup gateway does virtually the same as the gateway in self-
 healing mode: reads the log and continues the process. The
 difference is that the log must be shared between the primary and the
 backup gateways. If there is more than one backup, a leader-election
 protocol may be executed to decide which backup will take the primary
 role.

Belchior, et al. Expires September 11, 2021 [Page 7]

Internet-Draft Gateway Crash Recovery March 2021

4.3. Recovery Procedure

 Gateways can crash at several points of the protocol.

 In 2PC and 3PC, recovery requires that the protocol steps are
 recorded in a log immediately before sending a message and
 immediately after receiving a message. Thus, at every step k of the
 protocol, each gateway writes in the log entry indicating its current
 state. When a node crashes:

 o Self-healing mode: the recovered gateway informs the other party
 of its recovery and continues the protocol execution;

 o Primary-backup mode: if a node is crashed indefinitely, a backup
 is spun off, using the log storage API to retrieve the most recent
 version of the log.

 Upon recovery, the recovered node attempts to retrieve the most
 recent log of operations. Based on the latest log entry last(log),
 it derives the current state of the asset transfer. This can be
 confirmed by querying all other nodes involved in such transfer by
 sending a recovery message rm. After the current state is fetched
 and agreed upon by all parties, the ODAP protocol continues. There
 are several situations when a crash may occur. The first one is
 immediately after starting the transfer, as shown below:

Belchior, et al. Expires September 11, 2021 [Page 8]

Internet-Draft Gateway Crash Recovery March 2021

 ,--. ,--. ,-------.
 |G1| |G2| |Log API|
 `--' `--' `-------'
 | 1: [1]: writeLogEntry <p1, 1, init-validate, (GS->GR)>|
 | -->
 | | | |
 |----. | |
 | | [2] Crash | |
 |<---' ... | |
 | [3]recover | |
 | | |
 | | |
 | [4] <p1, 1, RECOVER, GR> | |
 | --------------------------> |
 | | |
 | | [5] getLogEntry(i) |
 | | -------------------------->
 | | |
 | | [6] logEntries |
 | | <- - - - - - - - - - - - -
 | | |
 | [7] send updated log ul | |
 | <-------------------------- |
 | | | |
 |----. | |
 | | [8] process log | |
 |<---' | |
 | | |
 | [9] updateLog(ul) |
 | -->
 | | |
 | [10] confirm recovery | |
 | --------------------------> |
 | | |
 | [11] acknowledge recovery| |
 | <- - - - - - - - - - - - - |
 | | |
 | [12]: <p1,2,init-validateNext, (GS->GR)> |
 | -->
 ,--. ,--. ,-------.
 |G1| |G2| |Log API|
 `--' `--' `-------'

 Figure 2

 The source gateway (G1) crashes right before it issued an init
 command to the recipient gateway (G2). The gateway eventually

Belchior, et al. Expires September 11, 2021 [Page 9]

Internet-Draft Gateway Crash Recovery March 2021

 recovers in self-healing mode, querying the last log entry from the
 log storage API. After that, it sends a recovery message to G2,
 advertising that the recovery has been completed and asking for an
 updated version of the log, i.e., the current state. In this case,
 the latest version of the log corresponds to G1 log. After
 synchronization has been achieved, the process can continue.

 The second scenario requires further synchronization (figure below).
 At the retrieval of the latest log entry, G1 notices its log is
 outdated. It updates it upon necessary validation and then
 communicates its recovery to G2. The process then continues as
 defined.

 ,--. ,--. ,-------.
 |G1| |G2| |Log API|
 `--' `--' `-------'
 | 1: [1]: writeLogEntry init-validate |
 | --->
 | | |
 | [2]: initiate ODAP's phase 1| |
 | ----------------------------> |
 | | | |
 |----. | |
 | | [3] Crash | |
 |<---' | |
 | | |
 | | [4]: writeLogEntry init |
 | | ----------------------------->
 | | |
 | |----.
 | | | [5]: execute init from p1
 | |<---'
 | | |
 | | [6]: writeLogEntry done-init |
 | | ----------------------------->
 | | |
 | | [7]: writeLogEntry ack-init |
 | | ----------------------------->
 | | |
 | [8] <p1, 1, RECOVER, GR> | |
 | ----------------------------> |
 | | |
 | | [9] getLogEntry(i) |
 | | ----------------------------->
 | | |
 | | [10] logEntries |
 | | <- - - - - - - - - - - - - - -
 | | |

Belchior, et al. Expires September 11, 2021 [Page 10]

Internet-Draft Gateway Crash Recovery March 2021

 | [11] send updated log ul | |
 | <---------------------------- |
 | | | |
 |----. | |
 | | [12] process log | |
 |<---' | |
 | | |
 | [13] updateLog(ul) |
 | --->
 | | |
 | [14] confirm recovery | |
 | ----------------------------> |
 | | |
 | [15] acknowledge recovery | |
 | <- - - - - - - - - - - - - - |
 | | |
 | [16]: init-validateNext |
 | --->
 ,--. ,--. ,-------.
 |G1| |G2| |Log API|
 `--' `--' `-------'

 Figure 3

4.4. Log Storage

 Log primitives are translated into log entries, persisted by the log
 storage API in the format <operation, step, phase, gateways>, where
 the gateway issuing the operation is implicit. For example, when GS
 initiates ODAP's first phase, by sending a message to GR, a log entry
 specifying the command init given to G2, in the first operation of
 the phase p1 is translated to a log entry <p1,1,init-validate,GS-
 GR)>. After that, the log entry is persisted via the log storage
 API. Thus, log primitives are also translated into log storage API
 requests.

 We consider the log file to be a stack of log entries. Each time a
 log entry is added, it goes to the top of the stack (the highest
 index). Logs can be saved locally (computer?s disk), in an external
 service (e.g., cloud storage service), or in the DLT the gateway is
 operating. Saving logs locally is faster than saving them on the
 respective ledger but delivers weaker integrity and availability
 guarantees. Saving log entries on a DLT may slow down the protocol
 because issuing a transaction is several orders of magnitude slower
 than writing on disk or accessing a cloud service. Self-healing mode
 is compatible with the three types of logs, but Primary-backup mode

Belchior, et al. Expires September 11, 2021 [Page 11]

Internet-Draft Gateway Crash Recovery March 2021

 requires storage in an external service or the DLT. For critical
 scenarios where strong accountability and traceability are needed
 (e.g., financial institution gateways), blockchain-based logging
 storage may be appropriate. Conversely, for gateways that implement
 interoperability between blockchains belonging to the same
 organization (i.e., a legal framework protects the legal entities
 involved), local storage might suffice.

 We assume the storage service used provides the means necessary to
 assure the logs' confidentiality and integrity, stored and in
 transit. The service must provide an authentication and
 authorization scheme, e.g., based on OAuth and OIDC [OIDC], and use
 secure channels based on TLS/HTTPS [TLS].

 We consider a log storage API that allows developers to abstract from
 the storage details (e.g., relational vs. non-relational, local vs.
 cloud) and handles access control if needed. This is API-TYPE 1, as
 the gateway uses it to store off-chain resources.

4.5. Logging API

 The log storage API serves two purposes: 1) it provides a reliable
 mean to store logs created by all gateways involved in an asset
 transfer; and 2) promote accountability across parties.

 The log storage API MUST respond with return codes indicating the
 failure (error 5XX) or success of the operation (200). The
 application may carry out further operation in future to determine
 the ultimate status of the operation.

4.5.1. POST/saveLogEntry:log

 Persists a log entry at the default storage environment, by appending
 it to the current log. Returns the index of the saved log entry.

 Response example:

Belchior, et al. Expires September 11, 2021 [Page 12]

Internet-Draft Gateway Crash Recovery March 2021

 HTTP/1.1 200 OK
 Cache-Control: private
 Date: Mon, 02 Mar 2020 05:07:35 GMT
 Content-Type: application/json

 {
 "success": true,
 "response_data":"2"
 }

 Figure 4

4.5.2. GET lastEntry

 Obtains the latest log entry from the log.

 Response example:

 HTTP/1.1 200 OK
 Cache-Control: private
 Date: Mon, 02 Mar 2020 05:07:35 GMT
 Content-Type: application/json

 {
 "success": true,
 "response_data":
 "log_entry": {...}
 }

 Figure 5

4.5.3. GET getLogEntry/:id

 Obtains a log entry with specified ID.

 Response example:

Belchior, et al. Expires September 11, 2021 [Page 13]

Internet-Draft Gateway Crash Recovery March 2021

 HTTP/1.1 200 OK
 Cache-Control: private
 Date: Mon, 02 Mar 2020 05:07:35 GMT
 Content-Type: application/json

 {
 "success": true,
 "response_data":
 "log_entry": {...}
 }

 Figure 6

4.5.4. GET getLog

 Obtains the whole log.

 Response example:

 HTTP/1.1 200 OK
 Cache-Control: private
 Date: Mon, 02 Mar 2020 05:07:35 GMT
 Content-Type: application/json

 {
 "success": true,
 "response_data":
 "log": {...}
 }

 Figure 7

4.5.5. POST updateLog

 Updates the current log. The log is updated if there are new log
 entries.

 Returns the index of the last common log entry (common prefix).

 Response example:

Belchior, et al. Expires September 11, 2021 [Page 14]

Internet-Draft Gateway Crash Recovery March 2021

 HTTP/1.1 200 OK
 Cache-Control: private
 Date: Mon, 02 Mar 2020 05:07:35 GMT
 Content-Type: application/json

 {
 "success": true,
 "response_data":"2"
 }

 Figure 8

5. Format of log entries

 The log entries are stored by a gateway in its log. Entries account
 for the current status of one of the three ODAP flows: Transfer
 Initiation flow, Lock-Evidence flow, and Commitment Establishment
 flow. The recommended format for log entries is JSON [xxx], with
 protocol-specific mandatory fields, support for a free format field
 for plaintext or encrypted payloads directed at the DLT gateway or an
 underlying DLT. Although the recommended format is JSON, other
 formats can be used (e.g., XML).

 The mandatory fields of a log entry are:

 o session_ID REQUIRED: unique identifier (UUIDv2) representing an
 ODAP interaction (corresponding to a particular flow)

 o seq_number REQUIRED: represents the ordering of steps recorded on
 the log for a particular session

 o odap_phase REQUIRED: flow to which the logging refers to. Can be
 Transfer Initiation flow, Lock-Evidence flow, and Commitment
 Establishment flow.

 o source_gateway_pubkey REQUIRED: the public key of the gateway
 initiating a transfer

 o source_gateway_dlt_system REQUIRED: the ID of the gateway
 initiating a transfer

 o recipient_gateway_pubkey REQUIRED: the public key of the gateway
 involved in a transfer

 o recipient_gateway_dlt_system REQUIRED: the ID of the recipient
 gateway involved in a transfer

Belchior, et al. Expires September 11, 2021 [Page 15]

Internet-Draft Gateway Crash Recovery March 2021

 o timestamp REQUIRED: timestamp referring to when the log entry was
 generated (UNIX format)

 o payload REQUIRED: Message payload. Contains subfields Votes
 (optional), Msg, Message type. Votes refers to the votes parties
 need to commit in the 2PC. Msg is the content of the log entry.
 Message type refers to the different logging actions (e.g.,
 command, backup). Msg and Message type are specific to the ODAP
 phase [ODAP].

 o payload_hash REQUIRED: hash of the current message payload

 Optional log entry fields are:

 o logging_profile: contains the profile regarding the logging
 procedure. If not present, a local store for the logs is assumed.

 o source_gateway_uid: the uid of the source gateway involved in a
 transfer

 o recipient_gateway_uid : the uid of the recipient gateway involved
 in a transfer

 o message_signature: Gateway EDCSA signature over the log entry

 o last_entry_hash: Hash of previous log entry

 o access_control_profile: the profile regarding the confidentiality
 of the log entries being stored

 Example of a log entry created by G1, corresponding to locking an
 asset (phase 2.3 of the ODAP protocol) :

Belchior, et al. Expires September 11, 2021 [Page 16]

Internet-Draft Gateway Crash Recovery March 2021

{
 "sessionId": "4eb424c8-aead-4e9e-a321-a160ac3909ac",
 "seqNumber": 6,
 "phaseId": "lock",
 "sourceGatewayId": "5.47.165.186",
 "sourceDltId": "Hyperledger-Fabric-JusticeChain",
 "targetGatewayId": "192.47.113.116",
 "targetDltId": "Ethereum",
 "timestamp": "1606157330",
 "payload": {
 "messageType": "2pc-log",
 "message": "LOCK_ASSET",
 "votes": "none"
 },
 "payloadHash":
"80BCF1C7421E98B097264D1C6F1A514576D6C9F4EF04955FA3AEF1C0664B34E3",
"logEntryHash": "[...]"
}

 Figure 9

 Example of a log entry created by G2, acknowledging G1 locking an
 asset (phase 2.4 of the ODAP protocol) :

{
 "sessionId": "4eb424c8-aead-4e9e-a321-a160ac3909ac",
 "seqNumber": 7,
 "phaseId": "lock",
 "sourceGatewayId": "5.47.165.186",
 "sourceDltId": "Hyperledger-Fabric-JusticeChain",
 "targetGatewayId": "192.47.113.116",
 "targetDltId": "Ethereum",
 "timestamp": "1606157333",
 "payload": {
 "messageType": "2pc-log",
 "message": "LOCK_ASSET_ACK",
 "votes": "none"
 }
 ,
 "payloadHash":
"84DA7C54F12CE74680778C22DAE37AEBD60461F76D381D3CD855B0713BB98D1",
"logEntryHash": "[...]"
}

 Figure 10

Belchior, et al. Expires September 11, 2021 [Page 17]

Internet-Draft Gateway Crash Recovery March 2021

6. Security Considerations

 We assume a trusted, secure communication channel between gateways
 (i.e., messages cannot be spoofed and/or altered by an adversary)
 using TLS 1.3 or higher. Clients support ?acceptable? credential
 schemes such as OAuth2.0.

 The present protocol is crash fault-tolerant, meaning that it handles
 gateways that crash for several reasons (e.g., power outage). The
 present protocol does not support Byzantine faults, where gateways
 can behave arbitrarily (including being malicious). This implies
 that both gateways are considered trusted. We assume logs are not
 tampered with or lost.

 Log entries need integrity, availability, and confidentiality
 guarantees, as they are an attractive point of attack [BVC19]. Every
 log entry contains a hash of its payload for guaranteeing integrity.
 If extra guarantees are needed (e.g., non-repudiation), a log entry
 might be signed by its creator. Availability is guaranteed by the
 usage of the log storage API that connects a gateway to a dependable
 storage (local, external, or DLT-based). Each underlying storage
 provides different guarantees. Access control can be enforced via
 the access control profile that each log can have associated with,
 i.e., the profile can be resolved, indicating who can access the log
 entry in which condition. Access control profiles can be implemented
 with access control lists for simple authorization. The
 authentication of the entities accessing the logs is done at the Log
 Storage API level (e.g., username+password authentication in local
 storage vs. blockchain-based access control in a DLT).

 For extra guarantees, the nodes running the log storage API (or the
 gateway nodes themselves) can be protected by hardening technologies
 such as Intel SGX [CD16].

7. References

7.1. Normative References

 [ODAP] Hargreaves, M. and T. Hardjono, "Open Digital Asset
 Protocol, October 2020, IETF, draft-hargreaves-odap-00.",
 October 2020,
 <https://datatracker.ietf.org/doc/draft-hargreaves-odap/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/draft-hargreaves-odap-00
https://datatracker.ietf.org/doc/draft-hargreaves-odap/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Belchior, et al. Expires September 11, 2021 [Page 18]

Internet-Draft Gateway Crash Recovery March 2021

 [TLS] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3?, RFC 8446.", 2018,
 <https://tools.ietf.org/rfc/rfc8446>.

7.2. Informative References

 [AD76] Alsberg, P. and D. Day, "A principle for resilient sharing
 of distributed resources. In Proc. of the 2nd Int. Conf.
 on Software Engineering", 1976, <978-0-201-10715-9>.

 [BHG87] Bernstein, P., Hadzilacos, V., and N. Goodman,
 "Concurrency Control and Recovery in Database Systems,
 Chapter 7. Addison Wesley Publishing Company", 1987,
 <https://doi.org/10.3389/fbloc.2019.00024>.

 [BVC19] Belchior, R., Vasconcelos, A., and M. Correia, "Towards
 Secure, Decentralized, and Automatic Audits with
 Blockchain. European Conference on Information Systems",
 2019, <https://aisel.aisnet.org/ecis2020_rp/68/>.

 [Clar88] Clark, D., "The Design Philosophy of the DARPA Internet
 Protocols, ACM Computer Communication Review, Proc SIGCOMM
 88, vol. 18, no. 4, pp. 106-114", August 1988.

 [HS2019] Hardjono, T. and N. Smith, "Decentralized Trusted
 Computing Base for Blockchain Infrastructure Security,
 Frontiers Journal, Special Issue on Blockchain Technology,
 Vol. 2, No. 24", December 2019,
 <https://doi.org/10.3389/fbloc.2019.00024>.

 [OIDC] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [SRC84] Saltzer, J., Reed, D., and D. Clark, "End-to-End Arguments
 in System Design, ACM Transactions on Computer Systems,
 vol. 2, no. 4, pp. 277-288", November 1984.

Authors' Addresses

 Rafael Belchior
 INESC-ID, Instituto Superior Tecnico

 Email: rafael.belchior@tecnico.ulisboa.pt

https://datatracker.ietf.org/doc/html/rfc8446
https://tools.ietf.org/rfc/rfc8446
https://doi.org/10.3389/fbloc.2019.00024
https://aisel.aisnet.org/ecis2020_rp/68/
https://doi.org/10.3389/fbloc.2019.00024
http://openid.net/specs/openid-connect-core-1_0.html

Belchior, et al. Expires September 11, 2021 [Page 19]

Internet-Draft Gateway Crash Recovery March 2021

 Miguel Correia
 INESC-ID, Instituto Superior Tecnico

 Email: miguel.p.correia@tecnico.ulisboa.pt

 Thomas Hardjono
 MIT

 Email: hardjono@mit.edu

Belchior, et al. Expires September 11, 2021 [Page 20]

