
Network Working Group S. Bellovin
Internet-Draft Columbia University
Intended status: Standards Track January 4, 2012
Expires: July 7, 2012

Hashed Password Exchange
draft-bellovin-hpw-00.txt

Abstract

 Many systems (e.g., cryptographic protocols relying on symmetric
 cryptography) require that plaintext passwords be stored. Given how
 often people reuse passwords on different systems, this poses a very
 serious risk if a single machine is compromised. We propose a scheme
 to derive passwords limited to a single machine from a typed
 password, and explain how a protocol definition can specify this
 scheme.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 7, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Bellovin Expires July 7, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Hashed Password Exchange January 2012

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bellovin Expires July 7, 2012 [Page 2]

Internet-Draft Hashed Password Exchange January 2012

1. Introduction

 Today, despite the lessons of more than 30 years [[cite Morris and
 Thomson]], many systems store plaintext passwords. This is often
 done for good reasons, such as authenticating cryptographic exchanges
 or as a convenience to users with many passwords; see, for example,
 the password store in many browsers or the Keychain in MacOS. That
 said, this practice does pose a security risk to users, since their
 passwords are in danger if the system is compromised.

 The big problem is not compromise of the actual password used on that
 system; while regrettable, it is inherent in the service definition.
 Rather, the problem is that users tend to reuse passwords on
 different systems. If a password is compromised on one machine, the
 user is at risk on many different systems. Accordingly, we describe
 a scheme for storing a single-site-only password, derived from the
 user's typed password; a compromise of a service thus affects just
 that service.

 To accomplish this, we specify a "Hashed Password Exchange" standard,
 or rather, a metastandard. Rather than specifying a precise way to
 store and use hashed passwords, we give rules for specifying hashed
 passwords for use in a given protocol or application. We take
 advantage of the fact that unlike 1979, when users used very dumb
 terminals to transmit passwords directly to the receiving
 applications, most passwords these days are entered into user-
 controlled software; these programs in turn transmit the passwords to
 the verifying applications. There is thus intelligence on the user's
 side; we will use this to irreversibly transform the entered password
 into some other string. By the same token, the receiving system must
 apply the same transform to the authenticator supplied at user
 enrollment time or password change time. Because two independent
 pieces of software must apply the same transformation, the algorithm
 must be precisely specified in standards documents.

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Bellovin Expires July 7, 2012 [Page 3]

Internet-Draft Hashed Password Exchange January 2012

2. Definitions and Goals

 We use the following definitions:

 Username An arbitrary string, the syntax of which is application-
 dependent, employed by both the user and the verifying system to
 uniquely identify a given user.

 Entered Password The authenticator typed by the user to his or her
 own software. The usual quality rules (length, special
 characters, etc.) can be applied; that is out of the scope of this
 standard.

 Effective Password The actual, over-the-wire, string transmitted by
 the user's software.

 Service A particular application on a particular machine or cluster
 of machines appearing as a single machine

 Service URI A URI [RFC3986] for which this effective password should
 be valid. Only the scheme name, userinfo, and host name portions
 are discussed here; use of path information is protocol-dependent.
 In the userinfo field, only the username is used. An example is
 given below.

 Our scheme has the following goals:

 1. No two users of a given service should have the same effecive
 password, even if the entered passwords are the same.

 2. No two effective passwords for the same user should be the same
 for different services, even if the entered passwords are the
 same.

 3. It should be infeasible to invert the hashing function to
 retrieve the entered password from an effective password and
 service URI.

 4. It should be computationally expensive to mount dictionary
 attacks on compromised effective passwords.

https://datatracker.ietf.org/doc/html/rfc3986

Bellovin Expires July 7, 2012 [Page 4]

Internet-Draft Hashed Password Exchange January 2012

3. The Hashed Password Scheme

 Fundamentally, we calculate the effective password by iterating HMAC
 [RFC2104], using the entered password as the key and the service URI
 as the data. This meets all four of our goals:

 1. Since the username is part of the service URI, different users
 will have different URIs, and hence different effective
 passwords.

 2. Since the hostname is part of the URI, different services for any
 given user will have different URIs, and hence different
 effective passwords.

 3. For any reasonable underlying hash function, it is believed to be
 infeasible to invert HMAC; see [RFC2104] for details.

 4. By iterating a sufficient number of times, dictionary attacks can
 be made arbitrarily expensive.

 We do not use a salt in this scheme. The primary purposes of a salt
 are to achieve our first and second goals, which we achieve in other
 ways. A salt also protects against precomputation of possible
 passwords of known users in anticipation of a later password file
 compromise; however, since the salt must be used in calculating the
 effective password, it would have to be known to the user as well as
 the server, and users typically have multiple devices on which they
 enter passwords. Using a salt would require that users know it and
 reenter it, which we regard as infeasible and of limited benefit.

 Usernames and the hostname portions of service URIs must be
 canonicalized before applying HMAC. Legal characters in a username
 are upper and lower case US-ASCII letters, period, hyphen,
 underscore, and digits. All other characters MUST be percent-
 encoded, per section 2.1 of [RFC3986]. Hostnames MUST be
 canonicalized per [RFC5890][RFC5891] and converted to lower case.
 How usernames and hostnames are entered is application- and
 implementation-dependent, and not part of this specification. The
 hostname used is either the string users type or unambiguously
 derivable from it per specified rules.

 The URI scheme name is given by the protocol specification and MUST
 NOT be entered directly by the user.

 The iteration count is protocol- and use-dependent, and given in the
 protocol specification.

 The effective password, then, is calculated by iterating HMAC some

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3986#section-2.1
https://datatracker.ietf.org/doc/html/rfc5890

Bellovin Expires July 7, 2012 [Page 5]

Internet-Draft Hashed Password Exchange January 2012

 number of times over the message

 scheme://username@hostname

 with the entered password as the key.

3.1. Examples

 ipsec://someuser@gw.example.net
 imap://someuser@mail.example.com
 submission://someuser@mail.example.com

 Note that although someuser can specify the same entered password for
 both 'imap' and 'submission' on mail.example.com, the effective
 passwords will be different.

Bellovin Expires July 7, 2012 [Page 6]

Internet-Draft Hashed Password Exchange January 2012

4. Specifying Hashed Password Exchange

 The following elements must be in any protocol specification that
 uses Hashed Password Exchange.

 o The scheme name MUST be specified. Generally, this will be taken
 from the IANA name assigned to the port, but this is not required.
 Thus, a mail submission URI (TCP port 587) might use the scheme
 name "submission".

 o The rules for deriving the hostname from what users enter MUST be
 specified. They may be as simple as "use the name the user
 specifies, e.g., imap.example.com", or they may account for common
 alternatives: "If the specified host name does not begin with
 'www.', prepend it; thus, both 'example.com' and 'www.example.com'
 would use the hostname 'www.example.com' in forming the URI.

 o The iteration count MUST be specified. The value -- typically in
 the hundreds of thousands with today's technology -- SHOULD be
 different for different services, and MAY be adjusted based on the
 platforms on which the calculations are typically done. Note that
 the iteration is done at password change time rather than run-
 time, so expense is not a major concern. (Just how long the
 iterations should take will depend on the protocol designers'
 understanding of likely platforms and usage patterns. Something
 that will be run exclusively on fast devices and with stored
 hashed passwords should use a higher count; something where run-
 time user password entry on a slow device is considered likely
 should use a lower count.)

 o The rules, if any, for canonicalizing the entered password MUST be
 specified. It is perfectly acceptable to accept an arbitrary
 octet string here, but that is not required.

 o The hash function to be used with HMAC MUST be specified. MD5
 [RFC1321] is more than sufficient; however, the tradeoff is likely
 to be between what code is likely to be available in
 implenetations versus the iteration count. SHA-512 [RFC6234] is
 much slower than MD5, but since the goal is constant time, this
 matters very little; thus, MD5 would have a higher iteration count
 than SHA-512 would for the same protocol.

 o The encoding rules for sending the effective password over the
 wire. The output of HMAC is an arbitrary byte string. Given the
 length of typical HMAC output and the infrequency with which they
 are sent, transmission efficiency is not a major concern, so a
 simple hexadecimal encoding is fine. Implementations MAY specify
 truncation; however, they SHOULD NOT use effective passwords

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc6234

Bellovin Expires July 7, 2012 [Page 7]

Internet-Draft Hashed Password Exchange January 2012

 shorter than 16 octets before encoding.

 o If the protocol permits negotiation of authentication methods, a
 separate code point MUST be assigned to this scheme.

 How passwords are changed -- that is, how new effective passwords are
 supplied to the verifying machine -- is beyond the scope of this
 specification. If the entered password is sent directly at password
 change time, quality checks can be enforced; however, this exposes
 entered passwords to attacks who have compromised the verifying
 machine. This is not a major risk, since the rate of password change
 is low. Conversely, client-side code (e.g., Javascript) can make
 advisory recommendations on password strength; while the server
 cannot enforce this, since it will see only effective passwords, very
 few users will have the will and the skill to override this.

 If effective passwords are used only for the usual password
 verification and not for cryptographic purposes, they should be
 treated with the care used for ordinary password, i.e., salted,
 hashed, etc. There is little need for extra iterations, though,
 since the iteration used in calculating them already provides strong
 protection against dictionary attacks, and it is unlikely that the
 extra server-side iterations will be significantly larger than the
 iterations already performed to comply with this specification.

Bellovin Expires July 7, 2012 [Page 8]

Internet-Draft Hashed Password Exchange January 2012

5. Security Considerations

 To be written.

Bellovin Expires July 7, 2012 [Page 9]

Internet-Draft Hashed Password Exchange January 2012

6. Normative References

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, August 2010.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891, August 2010.

 [RFC6234] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc6234

Bellovin Expires July 7, 2012 [Page 10]

Internet-Draft Hashed Password Exchange January 2012

Author's Address

 S.M. Bellovin
 Columbia University
 1214 Amsterdam Avenue
 MC 0401
 New York, NY 10027
 US

 Phone: +1 212 939 7149
 Email: bellovin@acm.org

Bellovin Expires July 7, 2012 [Page 11]

