Internet Draft Josh Benaloh
Butler Lampson
Daniel Simon
Terence Spies
Bennet Yee
Microsoft Corp.
October 1995

The Private Communication Technology Protocol
<draft-benaloh-pct-00.txt>

1. Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress".

To learn the current status of any Internet-Draft, please check the
"lid-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ds.internic.net (US East Coast), nic.nordu.net
(Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

This Internet-Draft expires 27 March 1996.

2. Abstract

This document specifies Version 1 of the Private Communication
Technology (PCT) protocol, a security protocol that provides privacy
over the Internet. Like SSL (see [1]), the protocol is intended to
prevent eavesdropping on communications in client/server applications,
with servers always being authenticated and clients being
authenticated at the server's option. However, this protocol corrects
or improves on several weaknesses of SSL.

3. Introduction

The Private Communication Technology (PCT) Protocol is designed to
provide privacy between two communicating applications (a client and a
server), and to authenticate the server and (optionally) the client.
PCT assumes a reliable transport protocol (e.g. TCP) for data
transmission and reception.

The PCT Protocol is application protocol-independent. A "higher
level" application protocol (e.g. HTTP, FTP, TELNET, etc.) can layer

https://datatracker.ietf.org/doc/html/draft-benaloh-pct-00.txt

on top of the PCT Protocol transparently. The PCT Protocol begins
with a handshake phase that negotiates an encryption algorithm and
(symmetric) session key as well as authenticating a server to the

Benaloh/Lampson/Simon/Spies/Yee [Page 1]

Internet Draft The PCT Protocol November 1995

client (and, optionally, vice versa), based on certified asymmetric
public keys. Once transmission of application protocol data begins,
all data is encrypted using the session key negotiated during the
handshake.

It should be noted that the PCT protocol does not specify any details
about verification of certificates with respect to certification
authorities, revocation lists, and so on. Rather, it is assumed that
protocol implementations have access to a "black box" which is capable
of ruling on the validity of received certificates in a manner
satisfactory to the implementation's user. Such a ruling may, for
instance, involve remote consultation with a trusted service, or even
with the actual user through a text or graphic interface.

In addition to encryption and authentication, the PCT protocol
verifies the integrity of messages using a hash function-based message
authentication code (MAC).

The PCT protocol's record format is compatible with that of SSL (see
[1]). Servers implementing both protocols can distinguish between PCT
and SSL clients because the version number field occurs in the same
position in the first handshake message in both protocols. 1In PCT,
the most significant bit of the protocol version number is set to one.

The PCT protocol differs from SSL chiefly in the design of its
handshake phase, which differs from SSL's in a number of respects:

- The round and message structures are considerably shorter and
simpler: a reconnected session without client authentication
requires only one message in each direction, and no other type of
connection requires more than two messages in each direction.

- Negotiation for the choice of cryptographic algorithms and formats
to use in a session has been extended to cover more protocol
characteristics and to allow different characteristics to be
negotiated independently. The PCT client and server negotiate, in
addition to a cipher type and server certificate type, a hash
function type and a key exchange type. If client authentication is
requested, a client certificate type and signature type are also
negotiated.

- Message authentication has been revamped so that it now uses
different keys from the encryption keys. Thus, message
authentication keys may be much longer (and message authentication
therefore much more secure) than the encryption keys, which may be
weak or even non-existent.

- A security hole in SSL's client authentication has been repaired;
the PCT client's authentication challenge response now depends on

the type of cipher negotiated for the session. SSL's client
authentication is independent of the cipher strength used in the
session and also of whether the authentication is being performed

Benaloh/Lampson/Simon/Spies/Yee [Page 2]

Internet Draft The PCT Protocol November 1995

for a reconnection of an old session or for a new one. As a result,
a "man-in-the-middle" attacker who has obtained the session key for
a session using weak cryptography can use this broken session to
authenticate as the client in a session using strong cryptography.
If, for example, the server normally restricts certain sensitive
functions to high-security sessions, then this security hole allows
intruders to circumvent the restriction.

- A "verify-prelude" field has been added to the handshake phase,
with which the client and server can check that the cipher type
(and other) negotiations carried out in the clear have not been
tampered with. (SSL version 3 uses a similar mechanism, but its
complete version 2 compatibility negates its security function,
by allowing adversaries simply to alter version numbers as well
as cipher types.)

4. PCT Record Protocol Specification
4.1 PCT Record Header Format

For compatibility with SSL, the PCT protocol uses the same basic
record format as SSL. In PCT, all data sent is encapsulated in a
record, an object which is composed of a header and some non-zero
amount of data. Each record header contains a two- or three-byte
length code. If the most significant bit is set in the first byte of
the record length code then the record has no padding and the total
header length is two bytes; otherwise the record has padding and the
total header length is three bytes. The record header is transmitted
before the data portion of the record.

Note that in the long header case (three bytes total), the second most
significant bit in the first byte has special meaning. When zero, the
record being sent is a data record. When one, the record being sent
is a security escape, and the first byte of the record is an
ESCAPE_TYPE_CODE that indicates the type of escape. (Currently, the
two examples of security escapes are the "out-of-band data" escape and
the "redo handshake" escape.) 1In either case, the length code
describes how much data is in the record as transmitted; this may be
greater than the amount of data after decryption, particularly if
padding was used.

The record length code does not include the number of bytes consumed
by the record header (two or three). For the two-byte header, the
record length is computed by (using a "C"-like notation):

RECORD_LENGTH = ((byte[0] & 0x7f) << 8)) | byte[1],

where byte[0] represents the first byte received and byte[1] the
second byte received. When the three-byte header is used, the record
length is computed as follows (using a "C"-like notation):

Benaloh/Lampson/Simon/Spies/Yee [Page 3]

Internet Draft The PCT Protocol November 1995

RECORD_LENGTH = ((byte[0] & 0x3f) << 8)) | byte[1];
IS_ESCAPE = (byte[0] & 0x40) != 0;
PADDING_LENGTH = byte[2];

The record header defines a value called PADDING_LENGTH. The
PADDING_LENGTH value specifies how many bytes of data were appended
to the original record by the sender. The padding data is used to
make the record length a multiple of the block cipher's block size
when a block cipher is used for encryption.

The sender of a "padded" record appends the padding data to the end of
its normal data and then encrypts the total amount (which is now a
multiple of the block cipher's block size). The actual value of the
padding data is unimportant, but the encrypted form of it must be
transmitted for the receiver to decrypt the record properly. Once the
total amount being transmitted is known the header can be properly
constructed with the PADDING value set appropriately.

The receiver of a padded record uses the PADDING_LENGTH value from the
header when determining the length of the ACTUAL_DATA in the data
record (see section 4.2).

4.2 PCT Record Data Format

The format of the data portion of an encrypted PCT record is slightly
different from that of SSL. However, not only is the record header
format identical in both protocols, but the first handshake message
sent in each direction is also sent in the clear, and contains a
version number field in the same location in both protocols. (In PCT
protocol handshake messages, the most significant bit of this field is
1.) Hence, PCT is still compatible with SSL, in the sense that PCT
handshake messages can be recognized and distinguished from SSL
handshake messages by examination of the version number.

The PCT record is composed of two fields (transmitted and received in
the order shown):

ENCRYPTED_DATA[N+PADDING_LENGTH]
MAC_DATA[MAC_LENGTH]

The ENCRYPTED_DATA field contains an encryption of the concatenation
of ACTUAL_DATA (the N bytes of actual data being transmitted) and
PADDING_DATA (the use of which is explained below). The MAC_DATA
field contains the "Message Authentication Code" (MAC).

PCT handshake records are sent in the clear, and no MAC is used.
Consequently PADDING_LENGTH will be zero and MAC_LENGTH will be zero.
For non-handshake data records, the sender appends a PADDING_DATA

field containing arbitrary data, so that N + PADDING_LENGTH is the
appropriate length for the cipher being used to encrypt the data. (In
the case where a block cipher is used, PADDING_LENGTH must be the

Benaloh/Lampson/Simon/Spies/Yee [Page 4]

Internet Draft The PCT Protocol November 1995

minimum value such that the length of the concatenation of ACTUAL_DATA
and PADDING_DATA is an exact multiple of the cipher's block size.
Otherwise, PADDING_LENGTH is zero.)

MAC_DATA is computed as follows:

MAC_DATA := Hash(MAC_KEY, Hash(ACTUAL_DATA, PADDING_DATA,
SEQUENCE_NUMBER))

If the client is sending the record, then the MAC_KEY is the
CLIENT_MAC_KEY; if the server is sending the record, then the MAC_KEY
is the SERVER_MAC_KEY. (The details of the derivation of these keys
are given in section 5.3.1.) The selection of the hash function used
to compute MAC_DATA is discussed in sections 5.2.1 and 5.2.2. The
parameters of the inner invocation of the hash function are input into
the hash function in the order shown above, with SEQUENCE_NUMBER
represented in network byte order or "big endian" order. If the
length of MAC_KEY is not an exact multiple of eight bits, then MAC_KEY
is considered, for the purposes of MAC computation, to have (fewer
than eight) zero bits appended to it, to create a string of an
integral number of bytes for input into the MAC hash function.

The SEQUENCE_NUMBER is a counter which is incremented by both the
sender and the receiver. For each transmission direction, a pair of
counters is kept (one by the sender, one by the receiver). Before the
first (handshake) record is sent or received in a PCT connection all
sequence numbers are initialized to zero (except in the case of a
restarting connection with a token-based exchange type, in which case
the entire cipher state is preserved; see section 5.2.2). The
sender's sender-to-receiver sequence number is incremented after every
record sent, and the receiver's sender-to-receiver sequence number is
incremented after every record received. Sequence numbers are 32-bit
unsigned quantities, and may not increment past OXFFFFFFFF. (See
section 4.3.2.)

The receiver of a record (whether PCT client or server) first uses the
sender's WRITE_KEY to decrypt the concatenated ACTUAL_DATA and
PADDING_DATA fields, then uses the sender's MAC_KEY, the ACTUAL_DATA,
the PADDING_DATA, and the expected value of the sequence number as
input into the MAC_DATA function described above (the hash function
algorithm used is determined the same way for the receiver as for the
sender). The computed MAC_DATA must agree bit for bit with the
transmitted MAC_DATA. 1If the two are not identical, then an
INTEGRITY_CHECK_FAILED error occurs, and it is recommended that the
record be treated as though it contained no data. (See section 5.4.)
The same error occurs if N + PADDING_LENGTH is not correct for the
block cipher used.

The PCT Record Layer is used for all PCT communications, including
handshake messages, security escapes and application data transfers.

The PCT Record Layer is used by both the client and the server at all
times.

Benaloh/Lampson/Simon/Spies/Yee [Page 5]

Internet Draft The PCT Protocol November 1995

For a two-byte header, the maximum record length is 32767 bytes. For
a three-byte header, the maximum record length is 16383 bytes. The
PCT Handshake Protocol messages are constrained to fit in a single PCT
Record Protocol record. Application protocol messages are allowed to
consume multiple PCT Record Protocol records.

4.3 Security Escapes
4.3.1 Out-0f-Band Data

PCT, like SSL, supports the transmission and reception of "out-of-band
data". Out of band data is normally defined at the TCP/IP protocol
level, but because of PCT's privacy enhancements and support for block
ciphers, this becomes difficult to support.

To send out-of-band data, the sender sends an escape record whose body
contains a single byte of data which is the ESCAPE_TYPE_CODE value
PCT_ET_OOB_DATA. The record following the escape record will be
interpreted as "out-of-band" data and will only be made available to
the receiver through an unspecified mechanism that is different from
the receiver's normal data reception method. The escape record and
the transmitted data record are transmitted normally (i.e. encryption,
MAC computations, and block cipher padding remain in effect).

Note that the escape record and the associated data record are sent
using normal TCP sending mechanisms, not using the "out of band"
mechanisms. Note also that a "Redo Handshake" escape record (see
below) and its associated handshake messages may be interposed between
an "Out-of-Band Data" escape record and its associated data record.

In such a case, the first non-escape, non-handshake record following
the "Out-of-Band Data" escape record is treated as out-of-band data.

4.3.2 Redo Handshake

PCT allows either the client or the server to request, at any time
after the handshake phase has been completed for a connection, that
another handshake phase be performed for that connection. For
example, either party is required to request another handshake phase
rather than allow its sequence number to "wrap" beyond OXFFFFFFFF. 1In
addition, it is recommended that implementations enforce limits on the
duration of both connections and sessions, with respect to the total
number of bytes sent, the number of records sent, the actual time
elapsed since the beginning of the connection or session, and, in the
case of sessions, the number of reconnections made. These limits
serve to ensure that keys are not used more or longer than it is safe
to do so; hence the limits may depend on the type and strength of
cipher, key exchange and authentication used, and may, at the
implementer's discretion, include indications from the application as

to the sensitivity of the data being transmitted or received.

To request a new handshake phase for this connection, the sender

Benaloh/Lampson/Simon/Spies/Yee [Page 6]

Internet Draft The PCT Protocol November 1995

(client or server) sends an escape record whose body contains a single
byte of data which is the ESCAPE_TYPE_CODE value PCT_ET_REDO_CONN.

The escape record is transmitted normally (i.e. encryption, MAC
computations, and block cipher padding remain in effect).

There are several cases to consider to ensure that the message
pipeline gets flushed and to enable handshake messages to be
distinguished from data records. The following rules ensure that the
first messages in the redone handshake are always immediately preceded
by a "Redo Handshake" escape message.

If the client initiates the "Redo Handshake", it sends the "Redo
Handshake" escape message immediately followed by a normal
CLIENT_HELLO message; the server, on receiving the "Redo Handshake"
escape message, may be in one of two states. If the last message it
sent was a "Redo Handshake" escape message, then it simply waits for
the CLIENT_HELLO message; otherwise, it sends a "Redo Handshake"
escape message in response, and then waits for the CLIENT_HELLO
message.

If the server initiates the "Redo Handshake", then the server sends
the "Redo Handshake" escape message and simply waits for a "Redo
Handshake" escape message in response; this "Redo Handshake" should be
immediately followed by a normal CLIENT_HELLO message. The client, on
receiving the server's "Redo Handshake" escape message, may be in one
of two states. If the last two messages it sent were a "Redo
Handshake" escape message followed by a CLIENT_HELLO message, then it
simply waits for a SERVER_HELLO message; otherwise, it sends a "Redo
Handshake" escape message in response, followed by a CLIENT_HELLO
message, and then waits for a SERVER_HELLO message.

In all cases, the sender of the "Redo Handshake" escape message
continues to process incoming messages, but may not send any
non-handshake messages until the new handshake completes.

The handshake phase that follows the "Redo Handshake" escape message
is a normal one in most respects; the client may request the
reconnection of an old session or request that a new session be
initiated, and the server, on receiving a reconnection request, can
accept the reconnection or demand that a new session be initiated
instead. If a new session is being established, then the server must
request client authentication if and only if client authentication
was requested during the previous session. Otherwise, client
authentication is optional. Both parties must verify that the
specifications negotiated previously in the session (cipher type, key
exchange type, certificate type, hash function type, client
certificate type, and signature type), as well as any certificates
exchanged, are identical to those found in the new handshake phase.

A mismatch results in a SPECS_MISMATCH or BAD_CERTIFICATE error (see
section 5.4.) This ensures that the security properties of the
communication channel do not change.

Benaloh/Lampson/Simon/Spies/Yee [Page 7]

Internet Draft The PCT Protocol November 1995

5. PCT Handshake Protocol Specification
5.1 PCT Handshake Protocol Flow

The PCT Handshake Protocol is used to negotiate security enhancements
to data sent using the PCT Record Protocol. The security enhancements
consist of authentication, symmetric encryption, and message
integrity. Symmetric encryption is facilitated using a "Key Exchange
Algorithm". PCT version 1 supports RSA {TM} -based key exchange (see
[13]), Diffie-Hellman key exchange, and FORTEZZA token key exchange.

The PCT Handshake Protocol consists of four messages, sent
respectively by the client, then server, then client, then server, in
that order. (Moreover, under certain circumstances, the last two
messages are omitted.) The messages are named, in order,
CLIENT_HELLO, SERVER_HELLO, CLIENT_MASTER_KEY, and SERVER_VERIFY.

The general contents of the messages depend upon two criteria: whether
the connection being made is a reconnection (a continuation of a
previous session) or a new session and whether the client is to be
authenticated. (The server is always authenticated.) The first
criterion is determined by the client and server together; the
CLIENT_HELLO will have different contents depending on whether a new
session is being initiated or an old one continued, and the
SERVER_HELLO message will either confirm a requested continuation of
an old session, or require that a new session be initiated. The
second criterion is determined by the server, whose SERVER_HELLO may
contain a demand for authentication of the client. If the server does
not require client authentication, and the reconnection of an old
session 1is requested by the client and accepted by the server, then
the CLIENT_MASTER_KEY and SERVER_VERIFY messages are unnecessary, and
are omitted.

The CLIENT_HELLO message contains a random authentication challenge
to the server and a request for the type and level of cryptography
and certification to be used for the session. If the client is
attempting to continue an old session, then it also supplies that
session's 1ID.

In the case of a new session, the SERVER_HELLO message contains a
certificate and a random connection identifier; this identifier
doubles as an authentication challenge to the client if the server
desires client authentication. The CLIENT_MASTER_KEY message sent by
the client in response includes the master key for the session (from
which session keys are derived), encrypted using the public key from
the server's certificate, as well as a certificate and response to the
server's authentication challenge, if requested. To ensure that
previous unencrypted handshake messages were not tampered with, their

keyed hash is included with the CLIENT_MASTER_KEY message. Finally,
the server sends a SERVER_VERIFY message which includes a response to
the client's challenge and a random session id for the session.

Benaloh/Lampson/Simon/Spies/Yee [Page 8]

Internet Draft The PCT Protocol November 1995

If the server accepts the old session id, then the SERVER_HELLO
message contains a response to the client's challenge, and a random
connection identifier which again doubles as a random challenge to the
client, if the server requires client authentication. If no client
authentication is requested, the handshake is finished (although an
authentication of the client is implicit in the MAC included with the
client's first data message). Otherwise, the subsequent
CLIENT_MASTER_KEY message contains the client's response, and the
SERVER_VERIFY message simply signals to the client to continue.

For a new session, the handshake phase has the following form (items
in square brackets are included only if client authentication is
required):

Client Server

CLIENT_HELLO:

client challenge;

client's cipher, hash,
server-certificate,
and key-exchange
specification lists

SERVER_HELLO:
connection id/server challenge;
server's cipher, hash,
server-certificate,
and key-exchange
specification choices;
server certificate
[; server's signature-type
and client-certificate
specification lists]

CLIENT_MASTER_KEY:

master key, encrypted with
server's public key;

authentication of previous two
messages

[; client's signature-type and
client-certificate
specification choices;

client's certificate;

client's challenge response]

SERVER_VERIFY:
session id;

server's challenge response

For a reconnection of an old session, the handshake phase has the

Benaloh/Lampson/Simon/Spies/Yee [Page 9]

Internet Draft The PCT Protocol November 1995

following form (items in square brackets are included if client
authentication is required):

Client Server

CLIENT_HELLO:

client challenge;

session id;

client's cipher, hash,
server-certificate,
and key-exchange
specification lists

SERVER_HELLO:
connection id/server challenge;
old session's cipher, hash,
server-certificate,
and key-exchange
specification choices;
server's challenge response
[; server's signature-type
and client-certificate
specification lists]

[CLIENT_MASTER_KEY:
client's certificate;
client's challenge response]

[SERVER_VERIFY]

Note that the protocol is asymmetric between client and server. The
client authenticates the server because only the server can decrypt
the master key which is encrypted with the server's public key, and
the server's challenge response depends on knowing that master key.
The server authenticates the client because the client signs its
challenge response with its public key. The reason for the asymmetry
is that when there is no client authentication there is no client
public key, so the client must choose the master key and encrypt it
with the server public key to hide it from everyone except the server.

Usually the client can safely send data on the underlying transport
immediately following the CLIENT_MASTER_KEY message, without waiting
for the SERVER_VERIFY; we call this "initial data". Sending initial
data is good because it means that PCT adds only one round trip; it is
not possible to do better without exposing the server to a replay
attack. However, it is unwise to send initial data if for some reason

it is important for the client to be sure of being in contact with the
correct server before sending any data.

Benaloh/Lampson/Simon/Spies/Yee [Page 10]

Internet Draft The PCT Protocol November 1995

5.2 PCT Handshake Protocol Messages

The PCT Handshake Protocol messages are sent using the PCT Record
Protocol and consist of a single byte message type code, followed by
some data. The client and server exchange messages as described
above, sending either one or two messages each. Once the handshake
has been completed successfully, the client sends its first actual
data.

Handshake protocol messages are sent in the clear, with the exception
of the key-exchange-related fields in the CLIENT_MASTER_KEY message,
some of which involve (public-key) encryption.

The following notation is used for PCT messages:

char MSG_EXAMPLE

char FIELD1

char FIELD2

char THING_LENGTH_MSB

char THING_LENGTH_LSB

char THING_DATA[(MSB << 8)|LSB];

This notation defines the data in the protocol message, including the
message type code. The order is presented top to bottom, with the
topmost element being transmitted first.

For the "THING_DATA" entry, the MSB and LSB values are actually
THING_LENGTH_MSB and THING_LENGTH_LSB (respectively) and define the
number of bytes of data actually present in the message. For example,
if THING_LENGTH_MSB were one and THING_LENGTH_LSB were four then the
THING_DATA array would be exactly 260 bytes long. This shorthand is
used below. Occasionally, a "THING_DATA" field is referred to as
"THING", with the word "DATA" omitted.

The names of message elements have prefixes that identify the messages
in which they appear; these prefixes are sometimes omitted in the text
when the containing messages are obvious.

Length codes are unsigned values, and when the MSB and LSB are
combined the result is an unsigned value. Length values are in bytes.

5.2.1 CLIENT_HELLO (Sent in the clear)

char CH_MSG_CLIENT_HELLO
char CH_CLIENT_VERSION_MSB
char CH_CLIENT_VERSION_LSB
char CH_PAD

char CH_SESSION_ID_DATA[32]
char CH_CHALLENGE_DATA[32]
char CH_OFFSET_MSB

Benaloh/Lampson/Simon/Spies/Yee [Page 11]

Internet Draft The PCT Protocol November 1995

char CH_OFFSET_LSB

char CH_CIPHER_SPECS_LENGTH_MSB

char CH_CIPHER_SPECS_LENGTH_LSB

char CH_HASH_SPECS_LENGTH_MSB

char CH_HASH_SPECS_LENGTH_LSB

char CH_CERT_SPECS_LENGTH_MSB

char CH_CERT_SPECS_LENGTH_LSB

char CH_EXCH_SPECS_LENGTH_MSB

char CH_EXCH_SPECS_LENGTH_LSB

char CH_KEY_ARG_LENGTH_MSB

char CH_KEY_ARG_LENGTH_LSB

char CH_CIPHER_SPECS_DATA[(MSB << 8)|LSB]
char CH_HASH_SPECS_DATA[(MSB << 8)|LSB]
char CH_CERT_SPECS_DATA[(MSB << 8)|LSB]
char CH_EXCH_SPECS_DATA[(MSB << 8)|LSB]
char CH_KEY_ARG_DATA[(MSB << 8)|LSB]

When a client first connects to a server it is required to send the
CLIENT_HELLO message. The server is expecting this message from the
client as its first message. It is an ILLEGAL_MESSAGE error for a
client to send anything else as its first message. The CLIENT_HELLO
message begins with the PCT version number, and two fixed-length
fields followed by an offset to the variable length data. The
CH_OFFSET field contains the number of bytes used by the various
fields (currently only length fields) that follow the offset field and
precede the variable-length fields. For PCT version 1, this offset
value is always PCT_CH_OFFSET_V1, i.e., ten. However, inclusion of
this field will allow future versions to be compatible with version 1,
even if the number of these fields changes: a version 1 server should
be able to find all the PCT version 1 fields in a higher-version
CLIENT_HELLO message. The CH_PAD field may contain any value.

The CLIENT_HELLO message includes a string of random bytes used as
challenge data from the client. Also, if the client finds a session
identifier in its cache for the server, then that session-identifier
data is sent. Otherwise, the special PCT_SESSION_ID_NONE value is
used. 1In either case, the client specifies in CIPHER_SPECS_DATA,
HASH_SPECS_DATA, CERT_SPECS_DATA, and EXCH_SPECS_DATA its preferred
choices of symmetric cipher, key lengths, hash function, certificate,
and asymmetric key exchange algorithm. However, if a session
identifier is sent, then these choices are only relevant in the case
where the server cannot recognize the session identifier, and a new
session must therefore be initiated. If the server recognizes the
session, then these fields are ignored by the server.

The CHALLENGE_DATA field contains 32 bytes of random bits, to be used
to authenticate the server. The CHALLENGE_DATA should be
cryptographically random, in the same sense as the MASTER_KEY (see

section 5.3.1).

The CIPHER_SPECS_DATA field contains a list of possible symmetric
ciphers supported by the client, in order of (the client's)

Benaloh/Lampson/Simon/Spies/Yee [Page 12]

Internet Draft The PCT Protocol November 1995

preference. Each element in the list is a four-byte field, of which
the first two bytes contain a code representing a cipher type, the
third byte contains the encryption key length in bits (0-255), and the
fourth byte contains the MAC key length in bits, minus 64 (values
0-255, representing lengths 64-319; this encoding enforces the
requirement that the MAC key length be at least 64 bits). The entire
list's length in bytes (four times the number of elements) is placed
in CIPHER_SPECS_LENGTH.

The HASH_SPECS_DATA field contains a list of possible hash functions
supported by the client, in order of (the client's) preference. The
server will choose one of these to be used for computing MACs and
deriving keys. Each element in the list is a two-byte field
containing a code representing a hash function choice. The entire
length of the list (twice the number of elements) is placed in
HASH_SPECS_LENGTH.

The CERT_SPECS_DATA field contains a list of possible certificate
formats supported by the client, in order of (the client's)
preference. Each element in the list is a two-byte field containing a
code representing a certificate format. The entire length of the list
(twice the number of elements) is placed in CERT_SPECS_LENGTH.

The EXCH_SPECS_DATA field contains a list of possible asymmetric key
exchange algorithms supported by the client, in order of (the
client's) preference. Each element in the list is a two-byte field
containing a code representing a key exchange algorithm type. The
entire length of the list (twice the number of elements) is placed in
EXCH_SPECS_LENGTH.

The KEY_ARG_DATA field contains an initialization vector to be used in
a reconnected session when the cipher type is a block cipher (any
cipher type except PCT_CIPHER_RC4, and any key exchange type except
PCT_EXCH_RSA_PKCS1_TOKEN_RC4). 1If a new session is being requested
(i.e., the value of CH_SESSION_ID_DATA is PCT_SESSION_ID_NONE), then
KEY_ARG_LENGTH must be zero.

The CLIENT_HELLO message must be the first message sent by the client
to the server. After the message is sent the client waits for a
SERVER_HELLO message. Any other message returned by the server (other
than ERROR) generates the PCT_ERR_ILLEGAL_MESSAGE error.

The server, on receiving a CLIENT_HELLO message, checks the version
number and the offset field to determine where the variable-length
data fields start. (The OFFSET value should be at least
PCT_CH_OFFSET_V1.) The server then checks whether there is a non-null
SESSION_ID field, and if so, whether it recognizes the SESSION_ID. 1In
that case, the server responds with a SERVER_HELLO message containing

a non-zero RESTART_SESSION_OK field, and the appropriate value (see
below) in the RESPONSE and CONNECTION_ID fields. Otherwise, it checks
whether the CIPHER_SPECS, HASH_SPECS, CERT_SPECS and EXCH_SPECS lists
in the CLIENT_HELLO message each contain at least one type supported

Benaloh/Lampson/Simon/Spies/Yee [Page 13]

Internet Draft The PCT Protocol November 1995

by the server. If so, then the server sends a SERVER_HELLO message to
the client as described below; otherwise, the server detects a
SPECS_MISMATCH error.

5.2.2 SERVER_HELLO (Sent in the clear)

char SH_MSG_SERVER_HELLO

char SH_PAD

char SH_SERVER_VERSION_MSB

char SH_SERVER_VERSION_LSB

char SH_RESTART_SESSION_OK

char SH_CLIENT_AUTH_REQ

char SH_CIPHER_SPECS_DATA[4]

char SH_HASH_SPECS_DATA[2]

char SH_CERT_SPECS_DATA[2]

char SH_EXCH_SPECS_DATA[2]

char SH_CONNECTION_ID_DATA[32]

char SH_CERTIFICATE_LENGTH_MSB

char SH_CERTIFICATE_LENGTH_LSB

char SH_CLIENT_CERT_SPECS_LENGTH_MSB
char SH_CLIENT_CERT_SPECS_LENGTH_LSB
char SH_CLIENT_SIG_SPECS_LENGTH_MSB
char SH_CLIENT_SIG_SPECS_LENGTH_LSB
char SH_RESPONSE_LENGTH_MSB

char SH_RESPONSE_LENGTH_LSB

char SH_CERTIFICATE_DATA[(MSB << 8)|LSB]
char SH_CLIENT_CERT_SPECS_DATA[(MSB << 8)|LSB]
char SH_CLIENT_SIG_SPECS_DATA[(MSB << 8)|LSB]
char SH_RESPONSE_DATA[(MSB << 8)|LSB]

The server sends this message after receiving the client's
CLIENT_HELLO message. The PCT version number in SH_SERVER_VERSION is
always the maximum protocol version that the server supports; the
remainder of the message and all subsequent messages will conform to
the format specified by the protocol version corresponding to the
minimum of the client and server protocol version numbers. Unless
there is an error, the server always returns a random value 32 bytes
in length in the CONNECTION_ID field. This value doubles as challenge
data if the server requests client authentication, and should
therefore be random in the same sense as the challenge data in the
CLIENT_HELLO message. The SH_PAD field may contain any value.

There are two cases for RESTART_SESSION_OK. 1In the first case, the
server returns a zero RESTART_SESSION_OK flag because the CLIENT_HELLO
message did not contain a session id or because the one it contained
is unrecognized by the server. 1In this case, the server must behave
as follows:

The server selects any choice with which it is compatible, from each
of the CH_CIPHER_SPECS, CH_HASH_SPECS, CH_CERT_SPECS and CH_EXCH_SPECS
lists supplied in the CLIENT_HELLO message. (These values are
returned to the client in the SH_CIPHER_SPECS_DATA,

Benaloh/Lampson/Simon/Spies/Yee [Page 14]

Internet Draft The PCT Protocol November 1995

SH_HASH_SPECS_DATA, SH_CERT_SPECS_DATA, and SH_EXCH_SPECS_DATA fields,
respectively.) The certificate of the type specified in
SH_CERT_SPECS_DATA and SH_EXCH_SPECS_DATA is placed in the
CERTIFICATE_DATA field. The SH_RESPONSE_DATA field is empty, and its
length is zero.

In the second case, the server returns a non-zero RESTART_SESSION_OK
flag because the CLIENT_HELLO message contained a session-identifier
known by the server (i.e. in the server's session-identifier cache).
In this case, the server must behave as follows:

The server omits the CERTIFICATE_DATA field (with CERTIFICATE_LENGTH
set to zero), and sets the CIPHER_SPECS_DATA, HASH_SPECS_DATA,
CERT_SPECS_DATA and EXCH_SPECS_DATA values to the values stored along
with the session identifier. There are two subcases: (1) If the
SH_EXCH_SPECS_DATA does not refer to a TOKEN type, then the
CLIENT_MAC, SERVER_MAC, CLIENT_WRITE, and SERVER_WRITE keys are
rederived using the MASTER_KEY from the old session, as well as the
CONNECTION_ID and CH_CHALLENGE values from the SERVER_HELLO and
CLIENT_HELLO messages, respectively, for this connection. (2) If the
SH_EXCH_SPECS_DATA refers to a TOKEN type, then the keys from the
on-going session are reused. In order to obtain fresh key material or
change the sequence number, TOKEN implementations must use the redo
handshake mechanism (PCT_ET_REDO_CONN security escape). When this
mechanism is used with a TOKEN exchange type, the client must send
PCT_SESSION_ID_NONE in the CH_SESSION_ID_DATA field of the subsequent
CLIENT_HELLO message.

The RESPONSE_DATA is constructed by computing the function

Hash(SERVER_MAC_KEY, Hash("sr'", CH_CHALLENGE_DATA,
SH_CONNECTION_ID_DATA, CH_SESSION_ID_DATA)).

The CH_CHALLENGE_DATA and CH_SESSION_ID DATA values are found in the
CLIENT_HELLO message for this connection. The SH_CONNECTION_ID_DATA
value is from this SERVER_HELLO message. The SERVER_MAC_KEY is the
one rederived for this connection as described in section 5.3.1. If
the length of SERVER_MAC_KEY is not an exact multiple of eight bits,
then SERVER_MAC_KEY 1is considered, for the purposes of MAC
computation, to have (fewer than eight) zero bits appended to it, to
create a string of an integral number of bytes for input into the MAC
hash function. The hash function choice used is determined by the
SH_HASH_SPECS_DATA field in this SERVER_HELLO message. The values are
input into the interior invocation of the hash function in the exact
order specified above, with the string in quotation marks representing
actual ASCII text.

In both reconnection cases, if the server requires client

authentication, then the CLIENT_AUTH_REQ field is set to a non-zero
value. Also, a list of (client) certificate types acceptable to the
server, in order of (the server's) preference, is placed in the
CLIENT_CERT_SPECS_DATA field, and a list of (client's) signature

Benaloh/Lampson/Simon/Spies/Yee [Page 15]

Internet Draft The PCT Protocol November 1995

algorithms supported by the server, in order of (the server's)
preference, is placed in the CLIENT_SIG_SPECS_DATA field. The
certificate type values in the list are from the same set of two byte
codes used for the CERT_SPECS list appearing in the CLIENT_HELLO
message, and the signature algorithm type codes are also two bytes
long. (See section 5.3.4 and 5.3.5 below.) The lengths of the lists
in bytes (twice the number of elements) are placed in the
CLIENT_CERT_SPECS_LENGTH and CLIENT_SIG_SPECS_LENGTH fields. If no
client authentication is required, then these length fields, as well
as the CLIENT_AUTH_REQ field, are set to zero, and the corresponding
data fields are empty.

When the client receives a SERVER_HELLO message, it checks whether the
server has accepted a reconnection of an old session or is
establishing a new session. If a new session is being initiated, and
client authentication is requested, then the client checks whether it
is compatible with any of the certificate and signature types listed
in the CLIENT_CERT_SPECS and CLIENT_SIG_SPECS lists. (Note that the
server can make client authentication optional for the client simply
by including PCT_CERT_NONE and PCT_SIG_NONE as a "last resort".) If
the client can provide a compatible certificate, then it sends a
CLIENT_MASTER_KEY message as described below; otherwise, it generates
a SPECS_MISMATCH error.

If the session is an old one, then the client establishes the new
CLIENT_WRITE_KEY, SERVER_WRITE_KEY, CLIENT_MAC_KEY and SERVER_MAC_KEY
according to the cipher-specific rules described below in section
5.3.1. The client then checks the contents of the RESPONSE_DATA field
in the SERVER_HELLO message for correctness. If the response matches
the value calculated by the client (exactly as described above for the
server), then the handshake is finished, and the client begins sending
data; otherwise, a SERVER_AUTH_FAILED error occurs.

5.2.3 CLIENT_MASTER_KEY (sent in the clear, except for encrypted keys)

char CMK_MSG_CLIENT_MASTER_KEY
char CMK_PAD

char CMK_CLIENT_CERT_SPECS_DATA[2]
char CMK_CLIENT_SIG_SPECS_DATA[2]
char CMK_CLEAR_KEY_LENGTH_MSB

char CMK_CLEAR_KEY_LENGTH_LSB

char CMK_ENCRYPTED_KEY_LENGTH_MSB
char CMK_ENCRYPTED_KEY_LENGTH_LSB
char CMK_KEY_ARG_LENGTH_MSB

char CMK_KEY_ARG_LENGTH_LSB

char CMK_VERIFY_PRELUDE_LENGTH_MSB
char CMK_VERIFY_PRELUDE_LENGTH_LSB

char CMK_CLIENT_CERT_LENGTH_MSB
char CMK_CLIENT_CERT_LENGTH_LSB
char CMK_RESPONSE_LENGTH_MSB
char CMK_RESPONSE_LENGTH_LSB

Benaloh/Lampson/Simon/Spies/Yee

[Page 16]

Internet Draft The PCT Protocol November 1995

char CMK_CLEAR_KEY_DATA[(MSB << 8)|LSB]

char CMK_ENCRYPTED_KEY_DATA[(MSB << 8)|LSB]
char CMK_KEY_ARG_DATA[(MSB << 8)|LSB]

char CMK_VERIFY_PRELUDE_DATA[(MSB << 8)|LSB]
char CMK_CLIENT_CERT_DATA[(MSB << 8)|LSB]
char CMK_RESPONSE_DATA[(MSB << 8)|LSB]

The client sends this message after receiving the SERVER_HELLO message
from the server if a new session is being started or if client
authentication has been requested. If no client authentication has
been requested in the SERVER_HELLO message and an old session is being
reconnected (i.e., if the CLIENT_AUTH_REQ field is zero and the
RESTART_SESSION_OK field is nonzero), then the CLIENT_MASTER_KEY
message is not sent.

For TOKEN exchange types, both client and server (re)set the sequence
numbers to zero when this message is sent/received.

The contents of the CLEAR_KEY_DATA, ENCRYPTED_KEY_DATA, and
KEY_ARG_DATA fields depend on the contents of the SH_CIPHER_SPECS_DATA
and SH_EXCH_SPECS_DATA fields in the preceding SERVER_HELLO message.
These will be described for each possible choice of these values in
section 5.3.1 and 5.3.2, along with how the various keys
(CLIENT_WRITE_KEY, SERVER_WRITE_KEY, CLIENT_MAC_KEY, and
SERVER_MAC_KEY) are derived in each case. The CMK_PAD field may
contain any value.

The CMK_VERIFY_PRELUDE_DATA field contains the value
Hash(CLIENT_MAC_KEY, Hash("cvp", CLIENT_HELLO, SERVER_HELLO)).

If the length of CLIENT_MAC_KEY is not an exact multiple of eight
bits, then CLIENT_MAC_KEY is considered, for the purposes of MAC
computation, to have (fewer than eight) zero bits appended to it, to
create a string of an integral number of bytes for input into the MAC
hash function. The hash function used is the one specified in
SH_HASH_SPECS_DATA. The parameters are input into the hash function
in the order presented above, with the strings in quotation marks
representing ASCII text. Note that the client need only keep a
"running hash" of all the values passed in these first two messages as
they appear, then hash the result using the CLIENT_MAC_KEY when
generated, to compute the value of VERIFY_PRELUDE.

If SH_CLIENT_AUTH_REQ is zero, then CMK_CLIENT_CERT_SPECS_DATA and
CMK_CLIENT_SIG_SPECS_DATA are both zero, and the CMK_CLIENT_CERT and
CMK_RESPONSE_DATA fields are empty. Otherwise, the CMK_RESPONSE_DATA
field contains the client's authentication response, and the
CMK_CLIENT_CERT_SPECS_DATA and CMK_CLIENT_SIG_SPECS_DATA fields

contain the client's choices from the SH_CLIENT_CERT_SPECS_DATA and
SH_CLIENT_SIG_SPECS_DATA lists, respectively. The
CMK_CLIENT_CERT_DATA field contains the client's certificate, which
must match the certificate type specified in the

Benaloh/Lampson/Simon/Spies/Yee [Page 17]

Internet Draft The PCT Protocol November 1995

CMK_CLIENT_CERT_SPECS_DATA field. Also, the public key in the
certificate must be a signature key of the type specified in
CMK_CLIENT_SIG_SPECS_DATA, which in turn must match one of the types
in the SH_CLIENT_SIG_SPECS_DATA list.

CMK_RESPONSE_DATA is simply a digital signature, using the private
signature key associated with the public key in the client's
certificate, of the value in the CMK_VERIFY_PRELUDE_DATA field. The
signature algorithm is determined by the CMK_CLIENT_SIG_SPECS_DATA
field. (Note that the signature algorithm may itself require that a
hash function be applied to the data being signed, apart from the one
used to compute the value in CMK_VERIFY_PRELUDE_DATA.)

Upon receiving a CLIENT_MASTER_KEY message, the server performs the
cipher-specific functions described in section 5.3 to establish the
new CLIENT_WRITE_KEY, SERVER_WRITE_KEY, CLIENT_MAC_KEY and
SERVER_MAC_KEY. The server then checks the VERIFY_PRELUDE_DATA value,
the client certificate, and the client response for correctness and
validity (the latter two only if client authentication had been
requested). The checks of the VERIFY_PRELUDE_DATA and RESPONSE_DATA
are performed by recomputing their correct value, and comparing with
the values received. The certificate is verified using whatever
mechanism has been implemented to validate certificates, and the
signature in the RESPONSE_DATA field is verified using the
verification algorithm associated with the signature scheme being
used. If all of these values pass their checks, then the server sends
the SERVER_VERIFY message; otherwise, an error occurs
(INTEGRITY_CHECK_FAILED, BAD_CERTIFICATE, or CLIENT_AUTH_FAILED,
respectively).

5.2.4 SERVER_VERIFY (Sent in the clear)

char SV_MSG_SERVER_VERIFY

char SV_PAD

char SV_SESSION_ID_DATA[32]

char SV_RESPONSE_LENGTH_MSB

char SV_RESPONSE_LENGTH_LSB

char SV_RESPONSE_DATA[(MSB << 8)|LSB]

The server sends this message upon receiving a valid CLIENT_MASTER_KEY
message from the client. The SV_PAD field may contain any value. If
an old session is being reconnected, then the RESPONSE_DATA field is
empty, its length is zero, and the SESSION_ID_DATA field may contain
any value. Otherwise, the SV_SESSION_ID_DATA field contains a value
32 bytes in length, which should be generated randomly (in the same
sense as the CHALLENGE_DATA field in the CLIENT_HELLO message). The
value PCT_SESSION_ID_NONE should not be used as a SV_SESSION_ID_DATA
value. The contents of the SV_RESPONSE_DATA field are constructed by

computing the function

Hash(SERVER_MAC_KEY, Hash("sr'", CH_CHALLENGE_DATA,
SH_CONNECTION_ID_DATA, SV_SESSION_ID_DATA)).

Benaloh/Lampson/Simon/Spies/Yee [Page 18]

Internet Draft The PCT Protocol November 1995

The CH_CHALLENGE_DATA and SH_CONNECTION_ID_DATA values, the choice of
hash function used, and the value of SERVER_MAC_KEY are determined by
the CLIENT_HELLO, SERVER_HELLO, SERVER_HELLO and CLIENT_MASTER_KEY
messages, respectively, immediately preceding the SERVER_VERIFY
message. The values are input into the interior invocation of the
hash function in the exact order specified above, with the string in
gquotation marks representing actual ASCII text. If the length of
SERVER_MAC_KEY is not an exact multiple of eight bits, then
SERVER_MAC_KEY is considered, for the purposes of MAC computation, to
have (fewer than eight) zero bits appended to it, to create a string
of an integral number of bytes for intput into the MAC hash function.

When the client receives this message, it verifies the correctness of
the response data, by computing the hash value as described above and
comparing it with the one received. 1If it is correct, then the client
proceeds with the first data record transmission; otherwise, a
SERVER_AUTH_FAILED error occurs. An implementation may choose to send
initial data immediately after the CLIENT_MASTER_KEY message, without
waiting for the SERVER_VERIFY message to arrive, if verifying the
server's identity before sending it any data is unimportant.

5.3 Algorithm and Certificate Types
5.3.1 Key Exchange Algorithms
PCT version 1 permits the following key exchange types:

PCT_EXCH_RSA_PKCS1
PCT_EXCH_RSA_PKCS1_TOKEN_DES
PCT_EXCH_RSA_PKCS1_TOKEN_DES3
PCT_EXCH_RSA_PKCS1_TOKEN_RC2
PCT_EXCH_RSA_PKCS1_TOKEN_RC4
PCT_EXCH_DH_PKCS3
PCT_EXCH_DH_PKCS3_TOKEN_DES
PCT_EXCH_DH_PKCS3_TOKEN_DES3
PCT_EXCH_FORTEZZA_TOKEN

Note that the token-based key exchange types specify cipher as well
(including, implicitly, the FORTEZZA key exchange type); if one of
these is chosen, then its choice of cipher overrides whatever choice
of cipher appears in the SH_CIPHER_SPECS_DATA field of the
SERVER_HELLO message.

For the PCT_EXCH_RSA_PKCS1 key exchange type, a MASTER_KEY value is
generated by the client, which should be random in the following
strong sense: attackers must not be able to predict any of the bits in
the MASTER_KEY. It is recommended that the bits used be either truly
random and uniformly generated (using some random physical process) or

else generated using a cryptographically secure pseudorandom number
generator, which was in turn seeded with a truly random and uniformly
generated seed. This MASTER_KEY value is encrypted using the server's

Benaloh/Lampson/Simon/Spies/Yee [Page 19]

Internet Draft The PCT Protocol November 1995

public encryption key, as obtained from the server's certificate in
the SH_CERTIFICATE_DATA field of the SERVER_HELLO message. The
encryption must follow the RSA PKCS#1 standard format (see [2]), block
type 2. This encryption is sent to the server in the
CMK_ENCRYPTED_KEY_DATA field of the CLIENT_MASTER_KEY message, and is
decrypted by the server to obtain the MASTER_KEY.

For the PCT_EXCH_DH_PKCS3 key exchange type, a random private value x
(generated in the same way as the MASTER_KEY above) and corresponding
public value y are generated by the client following RSA PKCS#3
standard format (see [3]). The value y is then sent to the server in
the CMK_ENCRYPTED_KEY_DATA field of the CLIENT_MASTER_KEY message.

The client's private value x, along with the public value y' included
in the server's certificate in the SH_CERTIFICATE_DATA field of the
SERVER_HELLO message, is used to generate the MASTER_KEY. The server
uses its private value, x', along with the y value sent by the client,
to obtain the same MASTER_KEY value.

For the various TOKEN key exchange types, all the key material is
contained in the CMK_ENCRYPTED_KEY_DATA field, but the format of the
data is defined by the token implementation, or by other future
documents.

The length of the MASTER_KEY depends on the key exchange type. For
the PCT_EXCH_RSA_PKCS1 and PCT_EXCH_DH_PKCS3 exchange types, the
MASTER_KEY is a 128-bit value. The CLIENT_WRITE_KEY and
SERVER_WRITE_KEY are computed as follows:

CLIENT_WRITE_KEY_i = Hash(i, "cw", MASTER_KEY, "cw"Ai,
SH_CONNECTION_ID_DATA, "cw"Ai, SH_CERTIFICATE_DATA,"cw"A1i,
CH_CHALLENGE_DATA, "cw"Ai)

SERVER_WRITE_KEY_i = Hash(i, "svw", MASTER_KEY, "svw"Ai,
SH_CONNECTION_ID_DATA, "svw"Ai, CH_CHALLENGE_DATA, "svw"Ai)

The values in quotation marks are treated as (sequences of) ASCII
characters; "x"Ai denotes i copies of the string "x" concatenated
together. The function "Hash" is the one determined by the value of
SH_HASH_SPECS_DATA. The parameters are input into the hash function
in the order presented above; the variable i is input as a single-byte
unsigned integer. The WRITE_KEYs (i.e., CLIENT_WRITE_KEY and
SERVER_WRITE_KEY) are obtained by concatenating WRITE_KEY_1 through
WRITE_KEY_m, where m is the negotiated encryption key length (the
value in the third byte of the SH_CIPHER_SPECS_DATA field) divided by
the hash output length, in bits, rounded up to the nearest integer.
This resulting string is then truncated if necessary (by removing bits
from the end) to produce a string of the correct length.

The CLIENT_MAC_KEY and SERVER_MAC_KEY are computed as follows:

CLIENT_MAC_KEY_i = Hash(i, MASTER_KEY, "cmac"Ai,
SH_CONNECTION_ID_DATA, "cmac"Ai, SH_CERTIFICATE_DATA, '"cmac"/i,

Benaloh/Lampson/Simon/Spies/Yee [Page 20]

Internet Draft The PCT Protocol November 1995

CH_CHALLENGE_DATA, "cmac"Ai)

SERVER_MAC_KEY_i = Hash(i, MASTER_KEY, "svmac"Ai,
SH_CONNECTION_ID_DATA, "svmac'"Ai, CH_CHALLENGE_DATA, "svmac"Ai)

The values in quotation marks are treated as (sequences of) ASCII
characters; "x"Ai denotes i copies of the string "x" concatenated
together. The function "Hash" is the one determined by the value of
SH_HASH_SPECS_DATA. The parameters are input into the hash function
in the order presented above; the variable i is input as a single-byte
unsigned integer. The MAC_KEYs (ie., CLIENT_MAC_KEY and
SERVER_MAC_KEY) are obtained by concatenating MAC_KEY_1 through
MAC_KEY_m, where m is the negotiated MAC key length (64 plus the value
in the fourth byte of the SH_CIPHER_SPECS_DATA field) divided by the
hash output length, in bits, rounded up to the nearest integer. This
resulting string is then truncated if necessary (by removing bits from
the end) to produce a string of the correct length.

Note that tokens which are capable of deriving keys using "keyed
hashes", as described above, are free to use the PCT_EXCH_RSA_PKCS1
or PCT_EXCH_DH_PKCS3 key exchange type to exchange the MASTER_KEY,
and then to derive the rest of the keys normally. The TOKEN key
exchange types are for tokens that cannot do such keyed-hash key
derivation, and can only use an exchanged key for bulk encryption
(of, for example, other keys). Such tokens can exchange multiple
keys by using an initially exchanged MASTER_KEY to encrypt other
keys, as described above.

5.3.2 Cipher Types
PCT version 1 permits the following cipher types to be specified:

PCT_CIPHER_DES
PCT_CIPHER_IDEA
PCT_CIPHER_RC2
PCT_CIPHER_RC4
PCT_CIPHER_DES_112
PCT_CIPHER_DES_168

Each of these types is denoted by a two-byte code, and is followed in
CIPHER_SPECS_DATA fields by two one-byte length specifications, as
described in section 5.2.1. An encryption length specification of
zero associated with any cipher denotes the choice of no encryption; a
key exchange is performed in such cases solely to share keys for MAC
computation. The MAC key length must always be at least 64 bits (see
section 5.2.1).

The CLEAR_KEY_DATA field is used only when encryption keys of length
less than the standard length for the specified cipher are used;

otherwise, the field is empty. When a key length is specified which
is less than the standard key length for the specified cipher, then
keys of the specified length are derived normally as described in

Benaloh/Lampson/Simon/Spies/Yee [Page 21]

Internet Draft The PCT Protocol November 1995

section 5.3.1, and then "expanded" to derive standard-length keys.
The expansion proceeds as follows:

1. Assign to d the result of dividing the standard key length for
the cipher, in bits, by the output length of the hash function, in
bits, rounded up to the nearest integer.

2. Divide CLEAR_KEY_DATA sequentially into d equal subsegments.

(Note that the length of the CLEAR_KEY_DATA field must therefore be a
multiple of d bytes, and that no two of its d equal parts, when so
divided, may be identical.) Denote these subsegments CLEAR_KEY_DATA_ 1
through CLEAR_KEY_DATA_d.

3. Compute the d hash values

STANDARD_LENGTH_KEY_i := Hash(i, "sl1"Ai, WRITE_KEY, "sl"Ai,
CLEAR_KEY_DATA i).

The values in quotation marks are treated as (sequences of) ASCII
characters; "x"Ai denotes i copies of the string "x" concatenated
together. The function "Hash" is the one determined by the value of
SH_HASH_SPECS_DATA. The parameters are input into the hash function
in the order presented above; the variable i is input as a
single-byte unsigned integer. The WRITE_KEY is the encryption key
(CLIENT_WRITE_KEY or SERVER_WRITE_KEY) being expanded to standard
length. If the length of the WRITE_KEY is not an exact number of
bytes, then its final byte is padded with zeroes to increase its
length to an exact number of bytes.

4. Concatenate STANDARD LENGTH_KEY_ 1 through STANDARD_LENGTH_KEY_ d,
and then truncate as necessary (by removing bits from the end) to
produce the STANDARD_LENGTH_KEY which is actually used for encryption.

The KEY_ARG_DATA field contains a random eight-byte value to be used
as an initialization vector (IV) for the first encrypted message when
a block cipher (any cipher except RC4) is used. The IV for the first
block encrypted in any subsequent encrypted message is simply the last
encrypted block of the previous message. The KEY_ARG_DATA field is
empty when cipher type PCT_CIPHER_RC4 (or key exchange type
PCT_EXCH_RSA_PKCS1_TOKEN_RC4) is used.

PCT_CIPHER_DES denotes DES (see [4]). 1Its standard key length is 56
bits. PCT_CIPHER_DES_112 and PCT_CIPHER_DES_168 denote ciphers in
which the input is first encrypted under DES with a first key, then
"decrypted" under DES with a second key, then encrypted under DES with
a third key. For PCT_CIPHER_DES_112, the first and third keys are
identical, and correspond to the initial 56 bits of the 112-bit
WRITE_KEY. The second key corresponds to the final 56 bits of the
WRITE_KEY. For PCT_CIPHER_DES_168, the three keys are distinct, and

correspond to the first, second, and third 56-bit subsegments of the
WRITE_KEY. All three of these DES-based cipher types have 64-bit data
blocks and are used with cipher block chaining (CBC).

Benaloh/Lampson/Simon/Spies/Yee [Page 22]

Internet Draft The PCT Protocol November 1995

The standard key lengths for PCT_CIPHER_DES_112 and PCT_CIPHER_DES_168
are 112 bits and 168 bits, respectively. If a key length less than
the standard length is specified for one of these ciphers (or for
PCT_CIPHER_DES), then the WRITE_KEY is expanded to the standard length
as described above.

Note that before use, each 56-bit DES key must be "adjusted" to add
eight parity bits to form an eight-byte DES key (see [4]). Similarly,
if the specified WRITE_KEY length is less than its corresponding
standard length, then each WRITE_KEY is expanded to the standard
length using CLEAR_KEY_DATA as described above, to produce one, two,
or three keys of 56 bits each, which are then each "adjusted" by
adding parity bits to form an eight-byte key.

PCT_CIPHER_IDEA denotes the IDEA block cipher (see [5]), with 64-bit
data blocks and cipher block chaining. This cipher has a standard key
length of 128 bits.

PCT_CIPHER_RC2 denotes the RC2 block cipher, with 64-bit blocks and
cipher block chaining. Like IDEA, this cipher has a standard key
length of 128 bits.

PCT_CIPHER_RC4 denotes the RC4 stream cipher. Like the IDEA and RC2
block ciphers, this cipher has a standard key length of 128 bits.

5.3.3 Hash Types

PCT version 1 permits the following hash function types to be
specified:

PCT_HASH_MD5
PCT_HASH_MDS5_TRUNC_64
PCT_HASH_SHA
PCT_HASH_SHA_TRUNC_86
PCT_HASH_DES_DM

PCT_CIPHER_MD5 denotes the MD5 hash function (see [6]), with 128-bit
output. PCT_CIPHER_MD5_TRUNC_64 denotes the MD5 hash function, with
its 128-bit output truncated to 64 bits. PCT_HASH_SHA denotes the
Secure Hash Algorithm (see [7]), with 160-bit output.
PCT_HASH_SHA_TRUNC_80 denotes the Secure Hash Algorithm, with its
160-bit output truncated to 80 bits. PCT_HASH_DES_DM denotes the
DES-based Davies-Meyer hash algorithm (see [8]), with 64-bit output.

5.3.4 Certificate Types

PCT version 1 permits the following certificate types to be specified:

PCT_CERT_NONE
PCT_CERT_X509
PCT_CERT_PKCS7

Benaloh/Lampson/Simon/Spies/Yee [Page 23]

Internet Draft The PCT Protocol November 1995

These types apply equally to the client's and server's certificates.
PCT_CERT_NONE denotes that no certificate is necessary; this type can
be included by, say, the server as a choice, thereby making
authentication optional for the client. PCT_CERT_X509 denotes a
CCITT X.509 standard-conformant certificate (see [9]).

PCT_CERT_PKCS7 denotes an RSA PKCS#7 standard-conformant certificate
(see [10]).

5.3.5 Signature Types

PCT version 1 permits the following signature key types to be
specified:

PCT_SIG_NONE

PCT_SIG_RSA_MD5
PCT_SIG_RSA_SHA
PCT_SIG_DSA_SHA

PCT_SIG_NONE denotes that no signature is necessary; this type can be
included by the server as a choice, thereby making authentication
optional for the client. PCT_SIG_RSA_MD5 denotes the signature scheme
consisting of hashing the data to be signed using the MD5 hash
algorithm, and then performing an RSA private-key signature function
(the inverse of RSA encryption) on the result. The signature must
conform to RSA PKCS#1, block type 1 (see [2]). PCT_SIG_RSA_SHA
denotes the same signature scheme with SHA substituted for MD5.
PCT_SIG_DSA_SHA denotes the signature scheme consisting of hashing the
data to be signed using the SHA hash algorithm, then computing a
signature of the resulting value using the Digital Signature Algorithm
(DSA; see [11]).

5.4 Errors

Error handling in the PCT protocol is very simple. When an error is
detected during the handshake phase, the detecting party sends a
message to the other party indicating the error so that both parties
will know about it, and then closes the connection. If a party
detects an error after it has sent its last handshake message, the
detecting party simply closes the connection without sending an error
message. In the second case there are only two possible errors, and
the party that does not detect the error can distinguish them as
follows: if the server sees an aborted connection and the most recent
message it sent the client was a handshake message, then the error was
SERVER_AUTH_FAILED; otherwise, the error was INTEGRITY_CHECK_FAILED.

Receiving an error message also causes the receiving party to close
the connection. Servers and clients should not make any further use

of any keys, challenges, connection identifiers, or session
identifiers associated with such an aborted connection.

Benaloh/Lampson/Simon/Spies/Yee [Page 24]

Internet Draft The PCT Protocol November 1995

It is recommended that implementations perform some kind of alert or
logging function when errors are generated to facilitate monitoring of
various types of attack on the system.

The message sent in the event of a handshake-phase error has the
following form:

char MSG_ERROR

char ERROR_CODE_MSB

char ERROR_CODE_LSB

char ERROR_INFO_LENGTH_MSB

char ERROR_INFO_LENGTH_LSB

char ERROR_INFO_DATA[(MSB << 8)|LSB]

The ERROR_INFO_LENGTH field is zero except in the case of the
SPECS_MISMATCH error message, which has a six-byte ERROR_INFO_DATA
field.

The PCT Handshake Protocol defines the following errors:
PCT_ERR_BAD_CERTIFICATE

This error occurs when the client receives a SERVER_HELLO message in
which the certificate is invalid, either because one or more of the
signatures in the certificate is invalid, or because the identity or
attributes on the certificate are in some way incorrect.

PCT_ERR_CLIENT_AUTH_FAILED

This error occurs when the server receives a CLIENT_MASTER_KEY message
from the client in which the client's authentication response is
incorrect. The certificate may be invalid, the signature may be
invalid, or the contents of the signed response may be incorrect.

PCT_ERR_ILLEGAL_MESSAGE

This error occurs under a number of circumstances. For example, it
occurs when an unrecognized security escape code is received, when an
unrecognized handshake message is encountered, or when the value of
CH_OFFSET is to large for its CLIENT_HELLO message.

PCT_ERR_INTEGRITY_CHECK_FAILED

This error occurs when either the client or the server receives a
message in which the MAC_DATA 1is incorrect. It is also recommended
that the record be treated as if it contained no data, in order to
ensure that applications do not receive and process invalid data
before learning that it has failed its integrity check.

This error also occurs when the VERIFY_PRELUDE_DATA value sent by the
client in the CLIENT_MASTER_KEY message (during the handshake phase)

Benaloh/Lampson/Simon/Spies/Yee [Page 25]

Internet Draft The PCT Protocol November 1995

is incorrect. 1In this case, an error message is sent.
PCT_ERR_SERVER_AUTH_FAILED

This error occurs when the client receives a SERVER_HELLO or
SERVER_VERIFY message in which the authentication response is
incorrect.

PCT_ERR_SPECS_MISMATCH

This error occurs when a server cannot find a cipher, hash function,
certificate type, or key exchange algorithm it supports in the lists
supplied by the client in the CLIENT_HELLO message. It also occurs
when the client cannot find a certificate or signature type it
supports in the list supplied by the server in a SERVER_HELLO message
that requests client authentication. (Note that the client or server
can select the "NONE" option as the last resort for any security
feature it wishes to make optional. For example, the server can make
client authentication optional for the client by passing a list of
certificate and signature types, each list containing the "NONE" type
as the last entry.) This error may also occur as a result of a
mismatch in cipher specifications or client authentication requests
between the initial specifications and those that resulted from a redo
handshake sequence.

The error message for this error includes a six-byte informational
field, defined as follows:

char SPECS_MISMATCH_CIPHER

char SPECS_MISMATCH_HASH

char SPECS_MISMATCH_CERT

char SPECS_MISMATCH_EXCH

char SPECS_MISMATCH_CLIENT_CERT
char SPECS_MISMATCH_CLIENT_SIG

Each field is set to a non-zero value if and only if the corresponding
list resulted in a mismatch. For example, if and only if the
SPECS_MISMATCH error message is being sent because server failed to
find a certificate type it supports in the list supplied by the client
in the CH_CERT_SPECS_DATA field, then the SPECS_MISMATCH_CERT field in
the error message would be non-zero.

5.5 Constants

Following is a list of constant values used in the PCT protocol
version 1.

5.5.1 Message type codes

These codes are each placed in the first byte of the corresponding
PCT handshake phase message.

Benaloh/Lampson/Simon/Spies/Yee [Page 26]

Internet Draft

PCT_MSG_CLIENT_HELLO
PCT_MSG_SERVER_HELLO

PCT_MSG_CLIENT_MASTER_KEY

PCT_MSG_SERVER_VERIFY
PCT_MSG_ERROR

5.5.2 Specification Type Codes

These are codes used to specify types of cipher,

The PCT Protocol

0x01
0x02
0x03
0x04
0x05

November 1995

key exchange, hash

function, certificate, and digital signature in the protocol.

PCT_EXCH_RSA_PKCS1

PCT_EXCH_RSA_PKCS1_TOKEN_DES
PCT_EXCH_RSA_PKCS1_TOKEN_DES3
PCT_EXCH_RSA_PKCS1_TOKEN_RC2
PCT_EXCH_RSA_PKCS1_TOKEN_RC4

PCT_EXCH_DH_PKCS3

PCT_EXCH_DH_PKCS3_TOKEN_DES
PCT_EXCH_DH_PKCS3_TOKEN_DES3

PCT_EXCH_FORTEZZA_TOKEN

PCT_CIPHER_DES
PCT_CIPHER_IDEA
PCT_CIPHER_RC2
PCT_CIPHER_RC4
PCT_CIPHER_DES_112
PCT_CIPHER_DES_168

PCT_HASH_MD5
PCT_HASH_MD5_TRUNC_64
PCT_HASH_SHA
PCT_HASH_SHA_TRUNC_80
PCT_HASH_DES_DM

PCT_CERT_NONE
PCT_CERT_X509
PCT_CERT_PKCS7

PCT_SIG_NONE

PCT_SIG_RSA_MD5
PCT_SIG_RSA_SHA
PCT_SIG_DSA_SHA

5.5.3 Error Codes

0x0001
Ox0002
Ox0003
0x0004
Ox0005
OXx0006

0x0001
0x0002
Ox0003
Ox0004
OX0005

Ox0000
0x0001
0X0002

Ox0000
0x0001
0x0002
0Xx0003

0x0001
0Xx0002
OX0003
0Ox0004
OXx0005
OXx0006
0x0007
Ox0008
Ox0009

These codes are used to identify errors, when they occur, in error

messages.

PCT_ERR_BAD_CERTIFICATE

0x0001

PCT_ERR_CLIENT_AUTH_FAILED 0x0002
PCT_ERR_ILLEGAL_MESSAGE = 0Xx0003
PCT_ERR_INTEGRITY_CHECK_FAILED Ox0004

Benaloh/Lampson/Simon/Spies/Yee [Page 27]

Internet Draft The PCT Protocol November 1995

PCT_ERR_SERVER_AUTH_FAILED
PCT_ERR_SPECS_MISMATCH

OXx0005
OX0006

5.5.4 Miscellaneous Codes

These include escape type codes, version numbers, and assorted
constants associated with the PCT protocol.

PCT_SESSION_ID_NONE = 0x00 (32 bytes of zeros)
PCT_ET_OOB_DATA 1= 0x01

PCT_ET_REDO_CONN 1= 0x02

PCT_VERSION_1 1= 0x8001

PCT_CH_OFFSET_V1 1= OXOO0A
PCT_MAX_RECORD_LENGTH_2_BYTE_HEADER := 32767
PCT_MAX_RECORD_LENGTH_3_BYTE_HEADER := 16383

6. Security Considerations

This entire document is about security.

References

[1] K. Hickman and T. Elgamal. The SSL Protocol. 1Internet-draft,
June 1995.

[2] RSA Laboratories, "PKCS #1: RSA Encryption Standard", Version
1.5, November 1993.

[3] RSA Laboratories, "PKCS #3: "Diffie-Hellman Key-Agreement
Standard", Version 1.4, November 1993.

[4] NBS FIPS PUB 46, "Data Encryption Standard", National Bureau of
Standards, US Department of Commerce, Jan. 1977.

[6] X. Lai, "On the Design and Security of Block Ciphers", ETH Series
in Information Processing, v. 1, Konstanz: Hartung-Gorre Verlag, 1992.

[6] R. Rivest, RFC 1321: "The MD5 Message Digest Algorithm", April
1992.

[7] NIST FIPS PUB 180-1, "Secure Hash Standard", National Institute
of Standards and Technology, US Department of Commerce, Apr. 1995.

[8] ISO/IEC 9797, "Data Cryptographic Techniques--Data Integrity

https://datatracker.ietf.org/doc/html/rfc1321

Mechanism Using a Cryptographic Check Function Employing a Block
Cipher Algorithm", 1989.

Benaloh/Lampson/Simon/Spies/Yee [Page 28]

Internet Draft The PCT Protocol November 1995

[9] CCITT. Recommendation X.509: "The Directory - Authentication
Framework". 1988.

[10] RSA Laboratories, "PKCS #7: Cryptographc Message Syntax
Standard", Version 1.5, November 1993.

[11] NIST FIPS PUB 186, "Digital Signature Standard", National
Institute of Standards and Technology, US Department of Commerce, May
1994,

[12] B. Schneier, "Applied Cryptography: Protocols, Algorithms, and
Source Code in C", John Wiley & Sons, Inc., 1994.

[13] R.L. Rivest, A. Shamir, L. Adelman, "A Method for Obtaining
Digital Signatures and Public Key Cryptosystems" MIT Laboratory for
Computer Science and Department of Mathematics, S.L. Graham,

R.L. Rivest ed. Communications of the ACM, February 1978 (Vol 21,
No. 2) pages 120-126.

Patent Statement

This version of the PCT protocol relies on the use of patented public
key encryption technology for authentication and encryption. The
Internet Standards Process as defined in RFC 1310 requires a written
statement from the Patent holder that a license will be made
available to applicants under reasonable terms and conditions prior
to approving a specification as a Proposed, Draft or Internet
Standard.

See existing RFCs, including RFC 1170, that discuss known public key
cryptography patents and licensing terms and conditions.

The Internet Society, Internet Architecture Board, Internet
Engineering Steering Group and the Corporation for National Research
Initiatives take no position on the validity or scope of the patents
and patent applications, nor on the appropriateness of the terms of
the assurance. The Internet Society and other groups mentioned above
have not made any determination as to any other intellectual property
rights which may apply to the practice of this standard. Any further
consideration of these matters is the user's own responsibility.

Author's Address

Josh Benaloh/Butler Lampson/Daniel R. Simon/Terence Spies/Bennet Yee
Microsoft Corp.

One Microsoft Way

Redmond WA 98052

USA

https://datatracker.ietf.org/doc/html/rfc1310
https://datatracker.ietf.org/doc/html/rfc1170

pct@microsoft.com

This Internet-Draft expires 27 March 1996.

Benaloh/Lampson/Simon/Spies/Yee [Page 29]

