
Network Working Group S. Bensley
Internet-Draft Microsoft
Intended status: Standards Track L. Eggert
Expires: August 18, 2014 NetApp
 D. Thaler
 Microsoft
 February 14, 2014

Datacenter TCP (DCTCP): TCP Congestion Control for Datacenters
draft-bensley-tcpm-dctcp-00

Abstract

 This memo describes Datacenter TCP (DCTCP), an improvement to TCP
 congestion control for datacenter traffic. DCTCP enhances Explicit
 Congestion Notification (ECN) processing to estimate the fraction of
 bytes that encounter congestion, rather than simply detecting that
 some congestion has occurred. DCTCP then scales the TCP congestion
 window based on this estimate. This method achieves high burst
 tolerance, low latency, and high throughput with shallow-buffered
 switches.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 18, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Bensley, et al. Expires August 18, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft DCTCP February 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. DCTCP Algorithm . 3
2.1. Marking Congestion on the Switch 3
2.2. Echoing Congestion Information on the Receiver 4
2.3. Processing Congestion Indications on the Sender 4

3. Implementation Issues . 6
4. Deployment Issues . 6
5. Security Considerations 7
6. IANA Considerations . 7
7. Acknowledgements . 7
8. References . 7
8.1. Normative References 7
8.2. Informative References 7

 Authors' Addresses . 7

1. Introduction

 Large datacenters necessarily need a large number of network switches
 to interconnect the servers in the datacenter. Therefore, a
 datacenter can greatly reduce its capital expenditure by leveraging
 low cost switches. However, low cost switches tend to have limited
 queue capacities and thus are more susceptible to packet loss due to
 congestion.

 Network traffic in the datacenter is often a mix of short and long
 flows, where the short flows require low latency and the long flows
 require high throughput. Datacenters also experience incast bursts,
 where many endpoints send traffic to a single server at the same
 time. For example, this is a natural consequence of MapReduce
 algorithms. The worker nodes complete at approximately the same
 time, and all reply to the master node concurrently.

 These factors place some conflicting demands on the switch's queue
 occupancy:

 o The queue must be short enough that it doesn't impose excessive
 latency on short flows.

Bensley, et al. Expires August 18, 2014 [Page 2]

Internet-Draft DCTCP February 2014

 o The queue must be long enough to buffer sufficient data for the
 long flows to saturate the bandwidth.

 o The queue must be short enough to absorb incast bursts without
 excessive packet loss.

 Standard TCP congestion control [RFC5681] relies on segment loss to
 detect congestion. This does not meet the demands described above.
 First, the short flows will start to experience unacceptable
 latencies before packet loss occurs. Second, by the time TCP
 congestion control kicks in on the sender, most of the incast burst
 has already been dropped.

 [RFC3168] describes a mechanism for using Explicit Congestion
 Notification from the switch for early detection of congestion,
 rather than waiting for segment loss to occur. However, this method
 only detects the presence of congestion, not the extent. In the
 presence of mild congestion, it reduces the TCP congestion window too
 aggressively and unnecessarily affects the throughput of long flows.

 Datacenter TCP (DCTCP) enhances Explicit Congestion Notification
 (ECN) processing to estimate the fraction of bytes that encounter
 congestion, rather than simply detecting that some congestion has
 occurred. DCTCP then scales the TCP congestion window based on this
 estimate. This method achieves high burst tolerance, low latency,
 and high throughput with shallow-buffered switches.

2. DCTCP Algorithm

 There are three components involved in the DCTCP algorithm:

 o The switch (or other intermediate device on the network) detects
 congestion and sets the Congestion Encountered (CE) codepoint in
 the IP header.

 o The receiver echoes the congestion information back to the sender
 using the ECN-Echo (ECE) flag in the TCP header.

 o The sender reacts to the congestion indication by reducing the TCP
 congestion window (cwnd).

2.1. Marking Congestion on the Switch

 The switch indicates congestion to the end nodes by setting the CE
 codepoint in the IP header as specified in Section 5 of [RFC3168].
 For example, the switch may be configured with a congestion
 threshold. When a packet arrives at the switch and the switch's
 queue length is greater than the congestion threshold, the switch

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3168#section-5

Bensley, et al. Expires August 18, 2014 [Page 3]

Internet-Draft DCTCP February 2014

 sets the CE codepoint in the packet. However, the actual algorithm
 for marking congestion is an implementation detail of the switch and
 will generally not be known to the sender and receiver.

2.2. Echoing Congestion Information on the Receiver

 According to Section 6.1.3 of [RFC3168], the receiver sets the ECE
 flag if any of the packets being acknowledged had the CE code point
 set. The receiver then continues to set the ECE flag until it
 receives a packet with the Congestion Window Reduced (CWR) flag set.
 However, the DCTCP algorithm requires more detailed congestion
 information. In particular, the sender must be able to determine the
 number of sent bytes that encountered congestion. Thus, the scheme
 described in [RFC3168] does not suffice.

 One possible solution is to ACK every packet and set the ECE flag in
 the ACK if and only if the CE code point was set in the packet being
 acknowledged. However, this prevents the use of delayed ACKs, which
 are an important performance optimization in datacenters. Instead,
 we introduce a new Boolean TCP state variable, DCTCP Congestion
 Encountered (DCTCP.CE), which is initialized to false and stored in
 the Transmission Control Block (TCB). When sending an ACK, the ECE
 flag is set if and only if DCTCP.CE is true. When receiving packets,
 the CE codepoint is processed as follows:

 1. If the CE codepoint is set and DCTCP.CE is false, send an ACK for
 any previously unacknowledged packets and set DCTCP.CE to true.

 2. If the CE codepoint is not set and DCTCP.CE is true, send an ACK
 for any previously unacknowledged packets and set DCTCP.CE to
 false.

 3. Otherwise, the CE codepoint is ignored.

2.3. Processing Congestion Indications on the Sender

 The sender estimates the fraction of sent bytes that encountered
 congestion. The current estimate is stored in a new TCP state
 variable, DCTCP.Alpha, which is initialized to 1 and updated as
 follows:

 DCTCP.Alpha = DCTCP.Alpha * (1 - g) + g * M

 where

 o g is the estimation gain, a real number between 0 and 1. The
 selection of g is left to the implementation.

https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.3
https://datatracker.ietf.org/doc/html/rfc3168

Bensley, et al. Expires August 18, 2014 [Page 4]

Internet-Draft DCTCP February 2014

 o M is the fraction of sent bytes that encountered congestion during
 the previous observation window, where the observation window is
 chosen to be approximately the Round Trip Time (RTT).

 Whenever the TCP congestion estimate is updated, the sender also
 updates the TCP congestion window as follows:

 cwnd = cwnd * (1 - DCTCP.Alpha / 2)

 Thus, when there is no congestion at all, Alpha equals zero, and the
 congestion window is left unchanged. When there is total congestion,
 Alpha equals one, and the congestion window is reduced by half.
 Lower levels of congestion will result in correspondingly lesser
 reductions to the congestion window.

 In order to update DCTCP.Alpha, we make use of the TCP state
 variables defined in [RFC0793], and introduce three additional TCP
 state variables:

 o DCTCP.WindowEnd - The TCP sequence number threshold for beginning
 a new observation window -- initialized to SND.UNA.

 o DCTCP.BytesSent - The number of bytes sent during the current
 window -- initialized to zero.

 o DCTCP.BytesMarked - The number of bytes sent during the current
 window that encountered congestion -- initialized to zero.

 The congestion estimator on the sender processes acceptable ACKs as
 follows:

 1. Compute the bytes acknowledged:

 BytesAcked = SEG.ACK - SND.UNA

 2. Update the bytes sent:

 DCTCP.BytesSent += BytesAcked

 3. If the ECE flag is set, update the bytes marked:

 DCTCP.BytesMarked += BytesAcked

 4. If the sequence number is less than or equal to DCTCP.WindowEnd,
 then stop processing. Otherwise, we've reached the end of the
 observation window, so proceed to update the congestion estimate.

 5. Compute the congestion for the current window:

https://datatracker.ietf.org/doc/html/rfc0793

Bensley, et al. Expires August 18, 2014 [Page 5]

Internet-Draft DCTCP February 2014

 M = DCTCP.BytesMarked / DCTCP.BytesSent

 6. Update the congestion estimate:

 DCTCP.Alpha = DCTCP.Alpha * (1 - g) + g * M

 7. Set the end of the new window:

 DCTCP.WindowEnd = SND.NXT

 8. Reset the byte counters:

 DCTCP.BytesSent = DCTCP.BytesMarked = 0

3. Implementation Issues

 As noted in Section 2.3, the implementation must choose a suitable
 estimation gain. [DCTCP10] provides a theoretical basis for
 selecting the gain. However, it may be more practical to use
 experimentation to select a suitable gain for a particular network
 and workload. The Microsoft implementation of DCTCP in Windows
 Server 2012 uses a fixed estimation gain of 1/16.

 The implementation must also decide when to use DCTCP. Datacenter
 servers may need to communicate with endpoints outside the
 datacenter, where DCTCP is unsuitable or unsupported. Thus, a global
 configuration setting to enable DCTCP will generally not suffice.
 DCTCP may be configured based on the IP address of the remote
 endpoint. Microsoft Windows Server 2012 also supports automatic
 selection of DCTCP if the estimated RTT is less than 10 msec, under
 the assumption that if the RTT is low, then the two endpoints are
 likely on the same datacenter network.

4. Deployment Issues

 Since DCTCP relies on congestion marking by the switch, DCTCP can
 only be deployed in datacenters where the network infrastructure
 supports ECN. The switches may also support configuration of the
 congestion threshold used for marking. [DCTCP10] provides a
 theoretical basis for selecting the congestion threshold, but as with
 estimation gain, it may be more practical to rely on experimentation
 or simply to use the device's default configuration.

 DCTCP requires changes on both the sender and the receiver, so in a
 heterogeneous datacenter, all the endpoints should support DCTCP and
 should be configured to use it.

Bensley, et al. Expires August 18, 2014 [Page 6]

Internet-Draft DCTCP February 2014

5. Security Considerations

 DCTCP enhances ECN and thus inherits the security considerations
 discussed in [RFC3168]. The processing changes introduced by DCTCP
 do not exacerbate these considerations or introduce new ones. In
 particular, with either algorithm, the network infrastructure or the
 remote endpoint can falsely report congestion and thus cause the
 sender to reduce its congestion window. However, this is no worse
 than what can be achieved by simply dropping packets.

6. IANA Considerations

 This document has no actions for IANA.

7. Acknowledgements

 The DCTCP algorithm was originally proposed and analyzed in [DCTCP10]
 by Mohammad Alizadeh, Albert Greenberg, Dave Maltz, Jitu Padhye,
 Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
 Sridharan.

8. References

8.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC

3168, September 2001.

8.2. Informative References

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [DCTCP10] Alizadeh, M., Greenberg, A., Maltz, D., Padhye, J., Patel,
 P., Prabhakar, B., Sengupta, S., and M. Sridharan, "Data
 Center TCP (DCTCP)", December 2010,
 <http://www.sigcomm.org/ccr/papers/2010/October/

1851275.1851192/>.

Authors' Addresses

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5681
http://www.sigcomm.org/ccr/papers/2010/October/1851275.1851192/
http://www.sigcomm.org/ccr/papers/2010/October/1851275.1851192/

Bensley, et al. Expires August 18, 2014 [Page 7]

Internet-Draft DCTCP February 2014

 Stephen Bensley
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 703 5570
 Email: sbens@microsoft.com

 Lars Eggert
 NetApp
 Sonnenallee 1
 Kirchheim 85551
 Germany

 Phone: +49 151 120 55791
 Email: lars@netapp.com

 Dave Thaler
 Microsoft

 Phone: +1 425 703 8835
 Email: dthaler@microsoft.com

Bensley, et al. Expires August 18, 2014 [Page 8]

