
Network Working Group Lou Berger
Internet Draft LabN Consulting
Expiration Date: December 1999
 Der-Hwa Gan
 Juniper Networks, Inc.

 George Swallow
 Cisco Systems, Inc.

 Ping Pan
 Bell Labs, Lucent

 June 1999

RSVP Refresh Reduction Extensions

draft-berger-rsvp-refresh-reduct-03.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 To view the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in an Internet-Drafts Shadow
 Directory, see http://www.ietf.org/shadow.html.

Abstract

 This document describes a number of mechanisms that reduce the
 refresh overhead of RSVP. The extensions can be used to reduce
 processing requirements of refresh messages, eliminate the state
 synchronization latency incurred when an RSVP message is lost and,
 when desired, suppress the generation of refresh messages. An
 extension to support detection of when an RSVP neighbor resets its
 state is also defined. These extension present no backwards

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
http://www.ietf.org/shadow.html

 compatibility issues.

Berger, et al. [Page 1]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

Contents

1 Introduction and Background 4
1.1 Trigger and Refresh Messages 5
2 RSVP Bundle Message 5
2.1 Bundle Header ... 6
2.2 Message Formats ... 7
2.3 Sending RSVP Bundle Messages 7
2.4 Receiving RSVP Bundle Messages 8
2.5 Forwarding RSVP Bundle Messages 9
2.6 Bundle-Capable Bit .. 9
3 MESSAGE_ID Extension 10
3.1 MESSAGE_ID Object ... 11
3.2 Ack Message Format .. 13
3.3 MESSAGE_ID Object Usage 13
3.4 MESSAGE_ID ACK Object Usage 16
3.5 Multicast Considerations 16
3.5.1 Reference RSVP/Routing Interface 18
3.6 Compatibility ... 18
4 Summary Refresh Extension 19
4.1 Srefresh Message Format 20
4.2 Srefresh Message Usage 21
4.3 Srefresh NACK ... 22
4.4 Compatibility ... 23
5 Hello Extension ... 23
5.1 Hello Message Format 24
5.2 HELLO Object .. 25

Berger, et al. [Page 2]

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

5.3 Hello Message Usage 26
5.4 Multi-Link Considerations 27
5.5 Compatibility ... 27
6 Reference Exponential Back-Off Procedures 28
6.1 Outline of Operation 28
6.2 Time Parameters ... 28
6.3 Example Retransmission Algorithm 29
7 Acknowledgments ... 30
8 Security Considerations 30
9 References .. 31
10 Authors' Addresses .. 32

Berger, et al. [Page 3]

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

1. Introduction and Background

 The resource requirements (in terms of CPU processing and memory) for
 running RSVP on a router increases proportionally with the number of
 sessions. Supporting a large number of sessions can present scaling
 problems.

 This document describes mechanisms to help alleviate one set of scal-
 ing issues. RSVP Path and Resv messages must be periodically
 refreshed to maintain state. The approach described effectively
 reduces the volume of messages which must be periodically sent and
 received, as well as the resources required to process refresh mes-
 sages.

 The described mechanisms also address issues of latency and reliabil-
 ity of RSVP Signaling. The latency and reliability problem occurs
 when a non-refresh RSVP message is lost in transmission. Standard
 RSVP [RFC2205] maintains state via the generation of RSVP refresh
 messages. In the face of transmission loss of RSVP messages, the
 end-to-end latency of RSVP signaling is tied to the refresh interval
 of the node(s) experiencing the loss. When end-to-end signaling is
 limited by the refresh interval, the establishment or change of a
 reservation may be beyond the range of what is acceptable for some
 applications.

 One way to address the refresh volume problem is to increase the
 refresh period, "R" as defined in section 3.7 of [RFC2205]. Increas-
 ing the value of R provides linear improvement on transmission over-
 head, but at the cost of increasing the time it takes to synchronize
 state.

 One way to address the latency and reliability of RSVP Signaling is
 to decrease the refresh period R. Decreasing the value of R provides
 increased probability that state will be installed in the face of
 message loss, but at the cost of increasing refresh message rate and
 associated processing requirements.

 An additional issue is the time to deallocate resources after a tear
 message is lost. RSVP does not retransmit ResvTear or PathTear mes-
 sages. If the sole tear message transmitted is lost, then resources
 will only be deallocated once the "cleanup timer" interval has
 passed. This may result in resources being allocated for an unneces-
 sary period of time. Note that adjusting the refresh period has no
 impact on this issues since tear messages are not retransmitted.

 The extensions defined in this document address both the refresh vol-
 ume and the reliability issues with mechanisms other than adjusting
 refresh rate. A Bundle message is defined to reduce overall message

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205#section-3.7

Berger, et al. [Page 4]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 handling load. A Message_ID object is defined to reduce refresh mes-
 sage processing by allowing the receiver to more readily identify an
 unchanged message. A Message_ACK object is defined which can be used
 to detect message loss and, when used in combination with the Mes-
 sage_ID object, can be used to suppress refresh messages altogether.
 A summary refresh message is defined to enable refreshing state
 without the transmission of whole refresh messages, while maintaining
 RSVP's ability to indicate when state is lost or when next hops
 change. Finally, a hello protocol is defined to allow detection of
 the loss of a neighbor node or a reset of it's RSVP state informa-
 tion.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.1. Trigger and Refresh Messages

 This document categorizes RSVP messages into two types: trigger and
 refresh messages. Trigger messages are those RSVP messages that
 advertise state or any other information not previously transmitted.
 Trigger messages include messages advertising new state, a route
 change that altered the reservation paths, or a reservation modifica-
 tion by a downstream router. Trigger messages also include those
 messages that include changes in non-RSVP processed objects, such as
 changes in the Policy or ADSPEC objects.

 Refresh messages represent previously advertised state and contain
 exactly the same objects and same information as a previously trans-
 mitted message. Only Path and Resv messages can be refresh messages.
 Refresh messages are typically bit for bit identical to the corre-
 sponding previously transmitted message, with the exception of the
 flags in the MESSAGE_ID object. These flags allowed to differ in
 refresh messages.

2. RSVP Bundle Message

 An RSVP Bundle message consists of a bundle header followed by a body
 consisting of a variable number of standard RSVP messages. A Bundle
 message is used to aggregated multiple RSVP messages within a single
 PDU. The term "bundling" is used to avoid confusion with RSVP reser-
 vation aggregation. The following subsections define the formats of
 the bundle header and the rules for including standard RSVP messages
 as part of the message.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt
https://datatracker.ietf.org/doc/html/rfc2119

Berger, et al. [Page 5]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

2.1. Bundle Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vers | Flags | Msg type | RSVP checksum |
 +-+
 | Send_TTL | (Reserved) | RSVP length |
 +-+

 The format of the bundle header is identical to the format of the
 RSVP common header [RFC2205]. The fields in the header are as fol-
 lows:

 Vers: 4 bits

 Protocol version number. This is version 1.

 Flags: 4 bits

 0x01: Bundle capable

 If set, indicates to RSVP neighbors that this node is willing
 and capable of receiving bundle messages. This bit is mean-
 ingful only between adjacent RSVP neighbors.

 0x02-0x08: Reserved

 Msg type: 8 bits

 12 = Bundle

 RSVP checksum: 16 bits

 The one's complement of the one's complement sum of the entire
 message, with the checksum field replaced by zero for the pur-
 pose of computing the checksum. An all-zero value means that
 no checksum was transmitted. Because individual sub-messages
 carry their own checksum as well as the INTEGRITY object for
 authentication, this field MAY be set to zero.

 Send_TTL: 8 bits

 The IP TTL value with which the message was sent. This is used
 by RSVP to detect a non-RSVP hop by comparing the IP TTL that a
 Bundle message sent to the TTL in the received message.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt
https://datatracker.ietf.org/doc/html/rfc2205

Berger, et al. [Page 6]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 RSVP length: 16 bits

 The total length of this RSVP Bundle message in bytes, includ-
 ing the bundle header and the sub-messages that follow.

2.2. Message Formats

 An RSVP Bundle message must contain at least one sub-message. A sub-
 message MAY be any message type except for another Bundle message.
 Current valid sub-messages are RSVP Path, PathTear, PathErr, Resv,
 ResvTear, ResvErr, ResvConf, Ack or Hello messages.

 Empty RSVP Bundle messages SHOULD NOT be sent. A Bundle message MUST
 NOT include another RSVP Bundle message as a sub-message.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vers | Flags | 12 | RSVP checksum |
 +-+
 | Send_TTL | (Reserved) | RSVP length |
 +-+
 | |
 // First sub-message //
 | |
 +-+
 | |
 // More sub-messages.. //
 | |
 +-+

2.3. Sending RSVP Bundle Messages

 RSVP Bundle messages are sent hop by hop between RSVP-capable neigh-
 bors as "raw" IP datagrams with protocol number 46. Raw IP datagrams
 are also intended to be used between an end system and the first/last
 hop router, although it is also possible to encapsulate RSVP messages
 as UDP datagrams for end-system communication that cannot perform raw
 network I/O.

 RSVP Bundle messages MUST not be used if the next hop RSVP neighbor
 does not support RSVP Bundle messages. Methods for discovering such
 information include: (1) manual configuration and (2) observing the
 Bundle-capable bit (see the description that follows) in the received
 RSVP messages. If the next hop RSVP neighbor is not known or changes
 in next hops cannot be identified via routing, Bundle messages MUST

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 7]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 NOT be sent. Note that when the routing next hop is not RSVP capable
 it will typically not be possible to identify changes in next hop.

 Support for RSVP Bundle messages is optional. While message bundling
 helps in scaling RSVP, and in reducing processing overhead and band-
 width consumption, a node is not required to transmit every standard
 RSVP message in a Bundle message. A node MUST always be ready to
 receive standard RSVP messages.

 The IP source address is local to the system that originated the Bun-
 dle message. The IP destination address is the next hop node for
 which the sub-messages are intended. These addresses need not be
 identical to those used if the sub-messages were sent as standard
 RSVP messages.

 For example, the IP source address of Path and PathTear messages is
 the address of the sender it describes, while the IP destination
 address is the DestAddress for the session. These end-to-end
 addresses are overridden by hop-by-hop addresses while encapsulated
 in a Bundle message. These addresses can easily be restored from the
 SENDER_TEMPLATE and SESSION objects within Path and PathTear mes-
 sages. For Path and PathTear messages, the next hop node can be
 identified either via a received ACK or from a received corresponding
 Resv message. Path and PathTear messages for multicast sessions MUST
 NOT be sent in Bundle messages except when the outgoing interface is
 a point-to-point interface and it is known that the next hop is RSVP
 capable.

 RSVP Bundle messages SHOULD NOT be sent with the Router Alert IP
 option in their IP headers. This is because Bundle messages are
 addressed directly to RSVP neighbors.

 Each RSVP Bundle message MUST occupy exactly one IP datagram. If it
 exceeds the MTU, the datagram is fragmented by IP and reassembled at
 the recipient node. A single RSVP Bundle message MUST NOT exceed the
 maximum IP datagram size, which is approximately 64K bytes.

2.4. Receiving RSVP Bundle Messages

 If the local system does not recognize or does not wish to accept an
 Bundle message, the received messages shall be discarded without fur-
 ther analysis.

 The receiver next compares the IP TTL with which a Bundle message is
 sent to the TTL with which it is received. If a non-RSVP hop is
 detected, the number of non-RSVP hops is recorded. It is used later
 in processing of sub-messages.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 8]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 Next, the receiver verifies the version number and checksum of the
 RSVP Bundle message and discards the message if any mismatch is
 found.

 The receiver then starts decapsulating individual sub-messages. Each
 sub-message has its own complete message length and authentication
 information. Each sub-message is processed per standard RSVP.

2.5. Forwarding RSVP Bundle Messages

 When an RSVP router receives a Bundle messages which is not addressed
 to one of it's IP addresses, it SHALL forward the message. Non-RSVP
 routers will treat RSVP Bundle messages as any other IP datagram.

 When individual sub-messages are being forwarded, they MAY be encap-
 sulated in another Bundle message before sending to the next hop
 neighbor. The Send_TTL field in the sub-messages should be decre-
 mented properly before transmission.

2.6. Bundle-Capable Bit

 To support message bundling, an additional capability bit is added to
 the common RSVP header, which is defined in [RFC2205].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vers | Flags | Msg Type | RSVP Checksum |
 +-+
 | Send_TTL | (Reserved) | RSVP Length |
 +-+

 Flags: 4 bits

 0x01: Bundle capable

 If set, indicates to RSVP neighbors that this node is willing
 and capable of receiving Bundle messages. This bit is mean-
 ingful only between adjacent RSVP neighbors.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt
https://datatracker.ietf.org/doc/html/rfc2205

Berger, et al. [Page 9]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

3. MESSAGE_ID Extension

 Two new objects are defined as part of the MESSAGE_ID extension. The
 two object types are the MESSAGE_ID object and the MESSAGE_ID ACK
 object. The objects are used to support acknowledgments and, when
 used in conjunction with the Hello Extension described in Section 5,
 to indicate when refresh messages are not needed after an acknowledg-
 ment. When refreshes are normally generated, the MESSAGE_ID object
 can also be used to simply provide a shorthand indication of when a
 message represents new state. Such information can be used on the
 receiving node to reduce refresh processing requirements.

 Message identification and acknowledgment is done on a hop-by-hop
 basis. Acknowledgment is handled independent of SESSION or message
 type. Both types of MESSAGE_ID objects contain a message identifier.
 The identifier MUST be unique on a per source IP address basis across
 messages sent by an RSVP node and received by a particular node. No
 more than one MESSAGE_ID object may be included in an RSVP message.
 Each message containing an MESSAGE_ID object may be acknowledged via
 a MESSAGE_ID ACK object. MESSAGE_ID ACK objects may be sent piggy-
 backed in unrelated RSVP messages or in RSVP Ack messages.

 Either type of MESSAGE_ID object may be included in a bundle sub-mes-
 sage. When included, the object is treated as if it were contained
 in a standard, unbundled, RSVP message. Only one MESSAGE_ID object
 MAY be included in a (sub)message and it MUST follow any present MES-
 SAGE_ID ACK objects. When no MESSAGE_ID ACK objects are present, the
 MESSAGE_ID object MUST immediately follow the INTEGRITY object. When
 no INTEGRITY object is present, the MESSAGE_ID object MUST immedi-
 ately follow the (sub)message header.

 When present, one or more MESSAGE_ID ACK objects MUST immediately
 follow the INTEGRITY object. When no INTEGRITY object is present,
 the MESSAGE_ID ACK objects MUST immediately follow the the (sub)mes-
 sage header. An MESSAGE_ID ACK object may only be included in a mes-
 sage when the message's IP destination address matches the unicast
 address of the node that generated the message(s) being acknowledged.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 10]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

3.1. MESSAGE_ID Object

 MESSAGE_ID Class = 166 (Value to be assigned by IANA of form
 10bbbbbb)

 MESSAGE_ID object

 Class = MESSAGE_ID Class, C_Type = 1

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | Epoch |
 +-+
 | Message_ID |
 +-+

 Flags: 8 bits

 0x80 = Summary_Capable flag

 Indicates that the sender supports the summary refresh
 extension. This flag MUST be set if the node supports the
 summary refresh extension. See Section 4.4 for description
 of handling by receiver.

 0x40 = ACK_Desired flag

 Indicates that the sender is willing to accept a message
 acknowledgment. Acknowledgments MUST be silently ignored
 when they are sent in response to messages whose
 ACK_Desired flag is not set. This flag MUST be set when
 the Last_Refresh flag is set.

 0x20 = Last_Refresh flag

 Used in Resv and Path refresh messages to indicate that the
 sender will not be sending further refreshes. When set,
 the ACK_Desired flag MUST also be set. This flag MUST NOT
 be set when the HELLO messages are not being exchanged with
 the neighboring RSVP node.

 Epoch: 24 bits

 A value that indicates when the Message_ID sequence has reset.
 SHOULD be randomly generated each time a node reboots. This value
 MUST NOT be changed during normal operation.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 11]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 Message_ID: 32 bits

 When combined with the message generator's IP address, the Message_ID
 field uniquely identifies a message. This field is ordered and only
 decreases in value when the Epoch changes or the value wraps.

 MESSAGE_ID ACK object

 Class = MESSAGE_ID Class, C_Type = 2

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | Epoch |
 +-+
 | Message_ID |
 +-+

 Flags: 8 bits

 0x80 = Summary_Capable flag

 Indicates that the sender supports the summary refresh
 extension. This flag MUST be set if the node supports the
 summary refresh extension. See Section 4.4 for description
 of handling by receiver.

 0x40 = Refresh_NACK flag

 Indicates that no state was found corresponding to the
 indicated message identifier. This flag SHALL ONLY be set
 when the matching Epoch and Message_ID field values were
 received in a Summary Refresh message, and MUST NOT be set
 in response to a MESSAGE_ID object received in any other
 message. See Section 4 for details.

 Epoch: 24 bits

 The Epoch field copied from the message being acknowledged.

 Message_ID: 32 bits

 The Message_ID field copied from the message being acknowl-
 edged.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 12]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

3.2. Ack Message Format

 Ack messages carry one or more MESSAGE_ID ACK objects. They MUST NOT
 contain any MESSAGE_ID objects. Ack messages are sent hop-by-hop
 between RSVP nodes. The IP destination address of an Ack message is
 the unicast address of the node that generated the message(s) being
 acknowledged. For Path, PathTear, Resv, and RervErr messages this is
 taken from the RSVP_HOP Object. For PathErr and ResvErr messages
 this is taken from the message's source address. The IP source
 address is an address of the node that sends the Ack message.

 The Ack message format is as follows:

 <ACK Message> ::= <Common Header> [<INTEGRITY>]
 <MESSAGE_ID ACK>
 [<MESSAGE_ID ACK> ...]

 For Ack messages, the Msg Type field of the Common Header MUST be set
 to 13 (Value to be assigned by IANA).

3.3. MESSAGE_ID Object Usage

 The MESSAGE_ID object may be included in any RSVP message other than
 the Ack message. The MESSAGE_ID object is always generated and pro-
 cessed hop-by-hop. The IP address of the object generator is repre-
 sented in a per RSVP message type specific fashion. For Path and
 PathTear messages the generator's IP address is contained in the
 RSVP_HOP. For Resv, ResvTear, PathErr, ResvErr, ResvConf and Bundle
 messages the generator's IP address is the source address in the IP
 header.

 The Epoch field contains a generator selected value. The value is
 used to indicate when the sender resets the values used in the Mes-
 sage_ID field. This information is used by the receiver to detect
 out of order messages. On startup, a node SHOULD randomly select a
 value to be used in the Epoch field. The node SHOULD ensure that the
 selected value is not the same as was used when the node was last
 operational. The value MUST NOT be changed unless the node or the
 RSVP agent is restarted.

 The Message_ID field contains a generator selected value. This
 value, when combined with the generator's IP address, identifies a
 particular RSVP message and the specific state information it repre-
 sents. When a node is sending a refresh message with a MESSAGE_ID
 object, it SHOULD use the same Message_ID value that was used in the
 RSVP message that first advertised the state being refreshed. When a
 node is sending a trigger message, the Message_ID value MUST have a

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 13]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 value that is greater than any other previously used value. A value
 is considered to have been used when it has been sent in any message
 using the associated IP address. Note that this 32-bit value MAY
 wrap.

 The ACK_Desired flag is set when the MESSAGE_ID object generator is
 capable of accepting MESSAGE_ID ACK objects. Such information can be
 used to ensure reliable delivery of error and confirm messages and to
 support fast refreshes in the face of network loss. Nodes setting
 the ACK_Desired flag SHOULD retransmit unacknowledged messages at a
 more rapid interval than the standard refresh period until the mes-
 sage is acknowledged or until a "rapid" retry limit is reached.
 Rapid retransmission rate SHOULD be based on well known exponential
 back-off procedures. See Section 6 for details on one exponential
 back-off retransmission approach. Note that nodes setting the
 ACK_Desired flag for unicast sessions, do not need to track the iden-
 tify of the next hop since all that is expected is an ACK, not an ACK
 from a specific next hop. Issues relate to multicast sessions are
 covered in a later section. The ACK_Desired flag will typically be
 set only in trigger messages. The ACK_Desired flag MAY be set in
 refresh messages.

 The Last_Refresh flag may be set in Path and Resv messages when the
 MESSAGE_ID object generator is exchanging Hello messages, described
 in Section 5, with the next hop RSVP node. When a refresh message
 with the Last_Refresh flag set is generated, normal refresh genera-
 tion MUST continue until the message containing the Last_Refresh flag
 is acknowledged. Although, messages removing state advertised in
 such messages MUST be retransmit until acknowledged or a maximum
 retry limit is reached in order to cover certain packet loss condi-
 tions. Messages removing state include PathTear and ResvTear.

 When sending MESSAGE_ID objects with the Last_Refresh flag set, spe-
 cial care must be taken to properly advertise state. Specifically,
 refresh processing MUST continue per standard RSVP processing until
 after a acknowledgment is received. Suppression of refresh process-
 ing MAY ONLY occur after an acknowledgment is received for a MES-
 SAGE_ID object with the Last_Refresh flag set. Note that the
 Last_Refresh flag MAY ONLY be set when the RSVP next hop is exchang-
 ing Hello messages with the message generator.

 When a Path message for a new session arrives, the RSVP next hop may
 not always be known. When the RSVP next hop is not known, the
 Last_Refresh flag MUST NOT be set. Once the next hop of a unicast
 session is identified, only then may the Last_Refresh flag be set.
 (Issues relate to multicast sessions are covered in a later section.)
 There are several ways to identify the RSVP next hop of a new unicast
 session. Some are more conservative than other, e.g., waiting for a

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 14]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 Resv message versus checking if the other end of a PPP link supports
 Hello messages. Since there are no interoperability issues, the spe-
 cific mechanism used to identify the RSVP next hop of a new session
 is a specific implementation choice. In most implementations, it is
 expected that an advertiser of Path state will do standard refresh
 processing until either an ACK is received for a Path message adver-
 tising a new session, or a corresponding Resv message is received.

 Nodes processing incoming MESSAGE_ID objects SHOULD check to see if a
 newly received message is out of order and can be ignored. Out of
 order messages can be identified by examining the values in the Epoch
 and Message_ID fields. If the Epoch value differs from the value
 previously received from the message sender, the receiver MUST fully
 processes the message. If the Epoch values match and the Message_ID
 value is greater than the largest value previously received from the
 sender, the receiver MUST fully processes the message. If the value
 is less than the largest value previously received from the sender,
 then the receiver SHOULD check the value previously received for the
 state associated with the message. This check should be performed
 for the currently defined messages: Path, Resv, PathTear, ResvTear,
 PathErr and ResvErr. If no local state information can be associated
 with the message, the receiver MUST fully processes the message. If
 local state can be associated with the message and the received Mes-
 sage_ID value is less than the most recently received value associ-
 ated with the state, the message SHOULD be ignored, i.e., silently
 dropped.

 Nodes receiving messages containing MESSAGE_ID objects SHOULD use the
 information in the objects to aid in determining if a message repre-
 sents new state or a state refresh. Note that state is only
 refreshed in Path and Resv messages. If the received Epoch values
 differs from the value previously received from the message sender,
 the message is a trigger message and the receiver MUST fully pro-
 cesses the message. If a Path or Resv message contains the same Mes-
 sage_ID value that was used in the most recently received message for
 the same session and, for Path messages, SENDER_TEMPLATE then the
 receiver SHOULD treat the message as a state refresh. If the Mes-
 sage_ID value is grater than the most recently received value, the
 receiver MUST fully processes the message. If the Message_ID value
 is less than the most recently received value, the receiver SHOULD
 ignore the message.

 Nodes receiving a non-out of order message containing a MESSAGE_ID
 object with the ACK_Desired flag set, SHOULD respond with a MES-
 SAGE_ID ACK object. If a node supports the Hello extension it MUST
 also check the Last_Refresh flag of received Resv and Path messages.
 If the flag is set, the receiver MUST NOT timeout state associated
 with associated message. The receiver MUST also be prepared to

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 15]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 properly process refresh messages. Messages containing a MESSAGE_ID
 ACK object with the Last_Refresh flag set MUST NOT be acknowledged
 when either the receiving node doesn't support the Hello extension or
 Hello messages aren't being exchanged with the message generator.

3.4. MESSAGE_ID ACK Object Usage

 The MESSAGE_ID ACK object is used to acknowledge receipt of messages
 containing MESSAGE_ID objects that were sent with the ACK_Desired
 flag set. The Epoch and Message_ID fields of a MESSAGE_ID ACK object
 MUST have the same value as was received. A MESSAGE_ID ACK object
 MUST NOT be generated in response to a received MESSAGE_ID object
 when the ACK_Desired flag is not set, except as noted in Section 4.3.

 A MESSAGE_ID ACK object MAY be sent in any RSVP message that has an
 IP destination address matching the generator of the associated MES-
 SAGE_ID object. The MESSAGE_ID ACK object will not typically be
 included in the non hop-by-hop Path, PathTear and ResvConf messages.
 When no appropriate message is available, one or more MESSAGE_ID ACK
 objects SHOULD be sent in an Ack message. Implementations SHOULD
 include MESSAGE_ID ACK objects in standard RSVP messages when possi-
 ble.

 MESSAGE_ID ACK objects received with the Refresh_NACK flag set MUST
 process the object as described in Section 4.3. Upon receiving a
 MESSAGE_ID ACK object with the Refresh_NACK flag not set, a node
 SHOULD stop retransmitting the message at the "rapid" retry rate. If
 the received object also has the Last_Refresh flag set, normal
 refresh generation SHOULD be suppressed for the associated state. As
 previously mentioned, special care must be taken to properly adver-
 tise state when sending MESSAGE_ID objects with the Last_Refresh flag
 set, see section 3.3.

3.5. Multicast Considerations

 Path and PathTear messages may be sent to IP multicast destination
 addresses. When the destination is a multicast address, it is possi-
 ble that a single message containing a single MESSAGE_ID object will
 be received by multiple RSVP next hops. When the ACK_Desired flag is
 set in this case, acknowledgment processing is more complex. There
 are a number of issues to be addressed including ACK implosion, num-
 ber acknowledgments to be expected and handling of new receivers.

 ACK implosion occurs when each receiver responds to the MESSAGE_ID
 object at approximately the same time. This can lead to a poten-
 tially large number of MESSAGE_ID ACK objects being simultaneously

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 16]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 delivered to the message generator. To address this case, the
 receiver MUST wait a random interval prior to acknowledging a MES-
 SAGE_ID object received in a message destined to a multicast address.
 The random interval SHOULD be between zero (0) and a configured maxi-
 mum time. The configured maximum SHOULD be set in proportion to the
 refresh and "rapid" retransmission interval, i.e, such that the maxi-
 mum back-off time does not result in retransmission.

 A more fundamental issue is the number of acknowledgments that the
 upstream node, i.e., the message generator, should expect. The num-
 ber of acknowledgments that should be expected is the same as the
 number of RSVP next hops. In the router-to-router case, the number
 of next hops can usually be obtained from routing. When hosts are
 either the upstream node or the next hops, the number of next hops
 will typically not be readily available. Another case where the num-
 ber of RSVP next hops will typically not be known is when there are
 non-RSVP routers between the message generator and the RSVP next
 hops.

 When the number of next hops is not known, the message generator
 SHOULD only expect a single response and MUST NOT set the
 Last_Refresh flag in MESSAGE_ID objects. The result of this behavior
 will be special retransmission handling until the message is deliv-
 ered to at least one next hop, then followed by standard RSVP
 refreshes. Standard refresh messages will synchronize state with any
 next hops that don't receive the original message.

 Another issue is handling new receivers. It is possible that after
 sending a Path message and handling of expected number of acknowledg-
 ments that a new receiver joins the group. In this case a new Path
 message must be sent to the new receiver. When normal refresh pro-
 cessing is occurring, there is no issue. When normal refresh pro-
 cessing is suppressed, a Path message must still be generated. In
 the router-to-router case, the identification of new next hops can
 usually be obtained from routing. When hosts are either the upstream
 node or the next hops, the identification of new next hops will typi-
 cally not be possible. Another case where the identification of new
 RSVP next hops will typically not be possible is when there are non-
 RSVP routers between the message generator and the RSVP next hops.

 When identification of new next hops is not possible, the message
 generator SHOULD only expect a single response and MUST NOT set the
 Last_Refresh flag in MESSAGE_ID objects. The result of this behavior
 will be special retransmission handling until the message is deliv-
 ered to at least one next hop, then followed by standard RSVP
 refreshes. Standard refresh messages will synchronize state with any
 next hops that don't receive the original message either due to loss
 or not yet being a group member.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 17]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 There is one additional minor issue with multiple next hops. The
 issue is handling a combination of standard-refresh and non-refresh
 next hops, i.e., Hello messages are being exchanged with some neigh-
 boring nodes but not with others. When this case occurs, refreshes
 MUST be generated per standard RSVP and the Last_Refresh flag MUST
 NOT be set.

3.5.1. Reference RSVP/Routing Interface

 When using the MESSAGE_ID extension with multicast sessions it is
 preferable for RSVP to obtain the number of next hops from routing
 and to be notified when that number changes. The interface between
 routing and RSVP is purely an implementation issue. Since RSVP
 [RFC2205] describes a reference routing interface, we present a ver-
 sion of the RSVP/routing interface updated to provide number of next
 hop information. See [RFC2205] for previously defined parameters and
 function description.

 o Route Query
 Mcast_Route_Query([SrcAddress,] DestAddress,
 Notify_flag)
 -> [IncInterface,] OutInterface_list,
 NHops_list

 o Route Change Notification
 Mcast_Route_Change() -> [SrcAddress,] DestAddress,
 [IncInterface,] OutInterface_list,
 NHops_list

 NHops_list provides the number of multicast group members
 reachable via each OutInterface_list entry.

3.6. Compatibility

 There are no backward compatibility issues raised by the MESSAGE_ID
 Class. The MESSAGE_ID Class has an assigned value whose form is
 10bbbbbb. Per RSVP [RFC2205], classes with values of this form must
 be ignored and not forwarded by nodes not supporting the class. When
 the receiver of a MESSAGE_ID object does not support the class, the
 object will be silently ignored. The generator of the MESSAGE_ID
 object will not see any acknowledgments and therefore refresh mes-
 sages per standard RSVP. Lastly, since the MESSAGE_ID ACK object can
 only be issued in response to the MESSAGE_ID object, there are no
 possible issues with this object or Ack messages.

 Implementations supporting Path and Resv state refresh suppression

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205

Berger, et al. [Page 18]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 via the MESSAGE_ID object's Last_Refresh flag MUST also support the
 Hello extension. Such implementations SHOULD initiate Hello process-
 ing and MUST be able to respond to Hello messages.

4. Summary Refresh Extension

 The Summary Refresh extension enables the refreshing of RSVP state
 without the transmission of standard Path or Resv messages. The ben-
 efits of the described extension are that it reduces the amount of
 information that must be transmitted and processed in order to main-
 tain RSVP state synchronization. Importantly, the described exten-
 sion preserves RSVP's ability to handle non-RSVP next hops and to
 adjust to changes in routing. This extension cannot be used with
 Path or Resv messages that contain any change from previously trans-
 mitted messages, i.e, are not refresh messages.

 The summary refresh extension uses the previously defined MESSAGE_ID
 object class, the ACK message, and a new Srefresh message. The new
 message carries a list of MESSAGE_ID objects corresponding to the
 Path and Resv states that are to be refreshed. An RSVP node receiv-
 ing an Srefresh message, matches each received MESSAGE_ID object with
 installed Path or Resv state. All matching state is updated as if a
 normal RSVP refresh message is received. If matching state cannot be
 found, then the Srefresh message sender is notified via a refresh
 NACK.

 Since Srefresh messages can carry multiple MESSAGE_ID objects, Sre-
 fresh messages are not expected to be sent in an RSVP aggregate mes-
 sages. The flags field of MESSAGE_ID objects carried in Srefresh
 messages may be set.

 A refresh NACK is indicated by setting the Refresh_NACK flag in the
 MESSAGE_ID ACK object. The rules for sending a MESSAGE_ID ACK object
 with the Refresh_NACK flag set are the same as was described in the
 previous section. This includes sending MESSAGE_ID ACK object both
 piggy-backed in unrelated RSVP messages or in RSVP ACK messages.

 Nodes supporting the described extension can advertise their support
 and detect if an RSVP neighbor also supports the extension. This is
 accomplished via flag in the MESSAGE_ID class objects.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 19]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

4.1. Srefresh Message Format

 Srefresh messages carry one or more MESSAGE_ID objects. A single
 Srefresh message MAY refresh both Path or Resv state. Srefresh mes-
 sages carrying MESSAGE_ID objects corresponding to Path state SHOULD
 be sent with a destination IP address equal to the address carried in
 the corresponding SESSION objects. The destination IP address MAY be
 set to the RSVP next hop when the next hop is known to be RSVP capa-
 ble and the session is unicast or the outgoing interface is a point-
 to-point interface. Srefresh messages carrying MESSAGE_ID objects
 corresponding to Resv state MUST be sent with an destination IP
 address set to the Resv state's previous hop.

 The source IP address of an Srefresh message is an address of the
 node that generates the message. The source IP address MUST match
 the addressed associate with the MESSAGE_ID objects when they were
 included in a standard RSVP message. As previously mentioned, the
 address associate with a MESSAGE_ID object is represented in a per
 RSVP message type specific fashion. For Path and PathTear messages
 the associated IP address is contained in the RSVP_HOP. For Resv,
 ResvTear, PathErr, ResvErr, ResvConf and Bundle messages the associ-
 ated IP address is the source address in the IP header.

 Srefresh messages that are sent destined to a session's destination
 IP address MUST be sent the Router Alert IP option in their IP head-
 ers. Srefresh messages addressed directly to RSVP neighbors SHOULD
 NOT be sent with the Router Alert IP option in their IP headers.

 Each Srefresh message MUST occupy exactly one IP datagram. If it
 exceeds the MTU, the datagram is fragmented by IP and reassembled at
 the recipient node. A single RSVP Srefresh message MUST NOT exceed
 the maximum IP datagram size, which is approximately 64K bytes.

 The Srefresh message format is as follows:

 <Srefresh Message> ::= <Common Header> [<INTEGRITY>]
 <MESSAGE_ID>
 [<MESSAGE_ID> ...]

 For Srefresh messages, the Msg Type field of the Common Header MUST
 be set to 14 (Value to be assigned by IANA).

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 20]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

4.2. Srefresh Message Usage

 An Srefresh message MAY be generated to refresh Resv or Path state.
 If an Srefresh message is used to refresh some particular state, then
 the generation of a standard refresh message SHOULD be suppressed. A
 state's refresh interval is not affected by the use of Srefresh mes-
 sage based refreshes. An Srefresh message MUST NOT be used in place
 of a trigger Path or Resv message, i.e., one that would advertise a
 state change.

 When generating an Srefresh message, a node SHOULD refresh as much
 Path and Resv state as is possible by including as many MESSAGE_ID
 objects in the same Srefresh message. Only MESSAGE_ID objects that
 meet the previously described source and destination IP address
 restrictions may be included in the same Srefresh message. Identify-
 ing Resv state that can refreshed using the same Srefresh message is
 fairly straightforward. Identifying which Path state may be included
 is a little more complex.

 Independent of the state being refreshed, only state that was previ-
 ously advertised in Path and Resv messages containing MESSAGE_ID
 objects can be refreshed via an Srefresh message. Srefresh message
 based refreshes must also have the state synchronization properties
 of Path or Resv message based refreshes. Specifically, the use of
 Srefresh messages MUST NOT result in state being timed-out at the
 RSVP next hop. The period at which state is refreshed when using
 Srefresh messages MAY be shorter than the period that would be used
 when using Path or Resv message based refreshes, but it MUST NOT be
 longer. The particular approach used to trigger Srefresh message
 based refreshes is implementation specific. Some possibilities are
 triggering Srefresh message generation based on each state's refresh
 period or, on a per interface basis, periodically generating Srefresh
 messages to refresh all state that has not been refreshed within the
 state's refresh interval. Other approaches are also possible.

 When generating an Srefresh message, there are two methods for iden-
 tifying which Path state may be refreshed in a specific message. In
 both cases, the previously mentioned refresh interval and source IP
 address restrictions must be followed. The primary method is to
 include only those sessions that share the same destination IP
 address in the same Srefresh message. When using this method, the
 destination address of each session MUST be the same as the destina-
 tion address in the IP header of the Srefresh message.

 The secondary method for identifying which Path state may be
 refreshed within a single Srefresh message is an optimization. This
 method MAY be used when the next hop is known to support RSVP and
 either the session is unicast or the outgoing interface is a point-

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 21]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 to-point interface. This method MUST NOT be used when the next hop
 is not known to support RSVP or when the outgoing interface is to a
 multi-access network and the session is to a multicast address. When
 using this method, the destination address in the IP header of the
 Srefresh message is always the next hop's address. When the outgoing
 interface is a point-to-point interface, all Path state advertised
 out the interface SHOULD be included in the same Srefresh message.
 When the outgoing interface is not a point-to-point interface, all
 unicast session Path state SHOULD be included in the same Srefresh
 message.

 Identifying which Resv state may be refreshed within a single Sre-
 fresh message is based simply on the source and destination IP
 addresses. Any state that was previously advertised in Resv messages
 with the same IP addresses as an Srefresh message MAY be included.

 After identifying the Path and Resv state that can be included in a
 particular Srefresh message, the message generator adds to the mes-
 sage a MESSAGE_ID object matching each identified state's previously
 used object. Once the Srefresh message is composed, the message gen-
 erator transmits the message out the proper interface.

 Upon receiving an Srefresh message, a receiver MUST attempt to iden-
 tify matching Path or Resv state. Matching is done based on the
 source address in the IP header of the Srefresh message and each MES-
 SAGE_ID object contained in the message. For each received MES-
 SAGE_ID object, the receiver performs an installed state lookup based
 on the values contained in the object. If matching state can be
 found, then the receiver MUST update the matching state information
 as if a standard refresh had been received. The receiver MUST also
 process the flags contained in the MESSAGE_ID object per Sections 3
 and 4.4. If the receiver cannot identify any matching installed
 state, then a Srefresh NACK MUST be generated corresponding to the
 unmatched MESSAGE_ID object.

4.3. Srefresh NACK

 Srefresh NACKs are used to indicated that a received MESSAGE_ID
 object does not match any installed state. An Srefresh NACK is
 encoded in a MESSAGE_ID ACK object with the Refresh_NACK flag set.
 When generating an Srefresh NACK, The epoch and Message_ID fields of
 a MESSAGE_ID ACK object MUST have the same value as was received.
 Objects with the Refresh_NACK flag set are transmitted as previously
 described, see Section 3.4.

 MESSAGE_ID ACK objects received with the Refresh_NACK flag set indi-
 cate that the object generator does not have any installed state

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 22]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 matching the object. Upon receiving a MESSAGE_ID ACK object with the
 Refresh_NACK flag set, the receiver performs an installed Path or
 Resv state lookup based on the values contained in the object. If
 matching state is found, then the receiver MUST transmit the matching
 state via a standard Path or Resv message. If the receiver cannot
 identify any installed state, then no action is required.

4.4. Compatibility

 Nodes supporting the Summary Refresh extension advertise their sup-
 port via the Summary_Capable flag in all MESSAGE_ID call objects
 transmitted by the node. This enables supporting nodes to detect
 each other. When it is not known if a next hop supports the exten-
 sion, standard Path and Resv message based refreshes MUST be used.
 Note that when the routing next hop does not support RSVP, it will
 not always be possible to detect if the RSVP next hop supports the
 Summary Refresh extension. Therefore, when the routing next hop is
 not RSVP capable the Srefresh message based refresh SHOULD NOT be
 used. A node MAY be administratively configured to use Srefresh mes-
 sages in all cases when all RSVP nodes in a network are known to sup-
 port the Summary Refresh extension.

 Nodes supporting the Summary Refresh extension must also take care to
 recognize when a next hop stops sending MESSAGE_ID objects with the
 Summary_Capable flag set. To cover this case, nodes supporting the
 Summary Refresh extension MUST examine each received Summary_Capable
 flag. If the flag changes from indicating support to indicating non-
 support then Srefresh messages MUST NOT be used for subsequent state
 refreshes to that neighbor.

5. Hello Extension

 The RSVP Hello extension enables RSVP nodes to detect a loss of a
 neighboring node's state information. In standard RSVP, such detec-
 tion occurs as a consequence of RSVP's soft state model. When
 refresh message generation is suppressed via the previously discussed
 Last_Refresh flag processing, the Hello extension is needed to
 address this failure case. The Hello extensions is not intended to
 provide a link failure detection mechanism, particularly in the case
 of multiple parallel unnumbered links.

 The Hello extension is specifically designed so that one side can use
 the mechanism while the other side does not. Neighbor RSVP state
 tracking may be initiated at any time. This includes when neighbors
 first learn about each other, or just when neighbors are sharing Resv
 or Path state. As previously stated, all implementations supporting

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 23]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 state refresh suppression are required to also support the Hello
 Extension.

 The Hello extension is composed of a Hello message, a HELLO REQUEST
 object and a HELLO ACK object. Hello processing between two neigh-
 bors supports independent selection of, typically configured, failure
 detection intervals. Each neighbor can autonomously issue HELLO
 REQUEST objects. Each request is answered by an acknowledgment.
 Hello Messages also contain enough information so that one neighbor
 can suppress issuing hello requests and still perform neighbor fail-
 ure detection. A Hello message may be included as a sub-message
 within a bundle message.

 Neighbor state tracking is accomplished by collecting and storing a
 neighbor's state "instance" value. If a change in value is seen or
 if the neighbor is not properly reporting the locally advertised
 value, then the neighbor is presumed to have reset it's RSVP state.
 When communication is lost with a neighbor, then the instance value
 advertised to that neighbor is also changed. The HELLO objects pro-
 vide a mechanism for polling for and providing an RSVP state instance
 value. A poll request also includes the sender's instance value.
 This allows the receiver of a poll to optionally treat the poll as an
 implicit poll response. This optional handling is an optimization
 that can reduce the total number of polls and responses processed by
 a pair of neighbors. In all cases, when both sides support the opti-
 mization the result will be only one set of polls and responses per
 failure detection interval. Depending on selected intervals, the
 same benefit can occur even when only one neighbor supports the opti-
 mization.

5.1. Hello Message Format

 Hello Messages are always sent between two RSVP neighbors. The IP
 source address is the IP address of the sending node. The IP desti-
 nation address is the IP address of the neighbor node.

 HELLO messages SHOULD be exchanged between immediate RSVP neighbors.
 When HELLO messages are being the exchanged between immediate neigh-
 bors, the IP TTL field of all outgoing HELLO messages SHOULD be set
 to 1.

 The Hello message format is as follows:

 <Hello Message> ::= <Common Header> [<INTEGRITY>]
 <HELLO>

 For Hello messages, the Msg Type field of the Common Header MUST be

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 24]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 set to 14 (Value to be assigned by IANA).

5.2. HELLO Object

 HELLO Class = 22 (Value to be assigned by IANA of form 0bbbbbbb)

 HELLO REQUEST object

 Class = HELLO Class, C_Type = 1

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Src_Instance |
 +-+
 | Dst_Instance |
 +-+

 HELLO ACK object
 Class = HELLO Class, C_Type = 2

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Src_Instance |
 +-+
 | Dst_Instance |
 +-+

 Src_Instance: 32 bits

 a 32 bit value that represents the sender's RSVP agent's state.
 The advertiser maintains a per neighbor representation/value.
 This value MUST change when the agent is reset, when the node
 reboots, or when communication is lost to the neighboring node
 and otherwise remains the same. This field MUST NOT be set to
 zero (0).

 Dst_Instance: 32 bits

 The most recently received Src_Instance value received from the
 neighbor. This field MUST be be set to zero (0) when no value
 has ever been seen from the neighbor.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 25]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

5.3. Hello Message Usage

 A Hello message containing a HELLO REQUEST object MUST be generated
 for each neighbor who's state is being tracked. When generating a
 message containing a HELLO REQUEST object, the sender fills in the
 Src_Instance field with a value representing it's per neighbor RSVP
 agent state. This value MUST NOT change while the agent is maintain-
 ing any RSVP state with the corresponding neighbor. The sender also
 fills in the Dst_Instance field with the Src_Instance value most
 recently received from the neighbor. If no value has ever been
 received from the neighbor, a value of zero (0) is used. The genera-
 tion of a message SHOULD be skipped when a HELLO REQUEST object was
 received from the destination node within the failure detection
 interval.

 On receipt of a message containing a HELLO REQUEST object, the
 receiver MUST generate a Hello message containing a HELLO ACK object.
 The receiver SHOULD also verify that the neighbor has not reset.
 This is done by comparing the sender's Src_Instance field value with
 the previously received value. If the value differs, than the neigh-
 bor has reset and all state associated with the neighbor MUST be
 "expired" and cleaned up per standard RSVP processing. Additionally,
 all Path state advertised to the neighbor MUST be refreshed. The
 receiver SHOULD also verify that the neighbor is reflecting back the
 receiver's Instance value. This is done by comparing the received
 Dst_Instance field with the Src_Instance field value most recently
 transmitted to that neighbor. If the neighbor continues to advertise
 a wrong non-zero value after a configured number of intervals, then a
 node MUST treat the neighbor as if communication has been lost. In
 this case all state associated with the neighbor MUST be "expired"
 and cleaned up per standard RSVP processing. Additionally, the
 Src_Instance value advertised in the HELLO ACK object MUST be be dif-
 ferent from the previously advertised value. This new value MUST
 continue to be advertised to the corresponding neighbor until a reset
 or reboot occurs, or until another communication failure is detected.

 On receipt of a message containing a HELLO ACK object, the receiver
 MUST verify that the neighbor has not reset. This is done by compar-
 ing the sender's Src_Instance field value with the previously
 received value. If the value differs, than the neighbor has reset
 and all state associated with the neighbor MUST be "expired" and
 cleaned up per standard RSVP processing. Additionally, all Path
 state advertised to the neighbor MUST be refreshed. The receiver
 MUST also verify that the neighbor is reflecting back the receiver's
 Instance value. If the neighbor advertises a wrong value in the
 Dst_Instance field, then a node MUST treat the neighbor as if commu-
 nication has been lost. In this case all state associated with the
 neighbor MUST be "expired" and cleaned up per standard RSVP

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 26]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 processing.

 If no Instance values are received, via either REQUEST or ACK
 objects, from a neighbor within a configured number of failure detec-
 tion intervals, then a node MUST presume that it cannot communicate
 with the neighbor. When this occurs, all state associated with the
 neighbor MUST be "expired" and cleaned up per standard RSVP process-
 ing, and all Path state advertised to the neighbor MUST be refreshed.
 If any state is removed or needs to be refreshed as a result of this
 case, then a new HELLO message MUST be immediately issued with a
 Src_Instance value different then the one advertised in the previous
 HELLO message. This new value MUST continue to be advertised to the
 corresponding neighbor until a reset or reboot occurs, or until
 another communication failure is detected.

5.4. Multi-Link Considerations

 As previously noted, the Hello extension is targeted at detecting
 node failures not per link failures. When there is only one link
 between neighboring nodes or when all links between a pair of nodes
 fail, the distinction between node and link failures is not really
 meaningful and handling of such failures has already been covered.
 When there are multiple links shared between neighbors, there are
 special considerations. When the links between neighbors are num-
 bered, then Hellos MUST be run on each link and the previously
 described mechanisms apply.

 When the links are unnumbered, link failure detection MUST be pro-
 vided by some means other than Hellos. Each node SHOULD use a single
 Hello exchange with the neighbor. When a node removes state due to a
 link failure, the node MUST advertise the removal of the state, via
 appropriate Tear messages, over a non-failed link. The case where
 all links have failed, is the same as the no received value case men-
 tioned in the previous section.

5.5. Compatibility

 The Hello extension is fully backwards compatible. The Hello class
 is assigned a class value of the form 0bbbbbbb. Depending on the
 implementation, implementations that don't support the extension will
 either silently discard Hello messages or will respond with an
 "Unknown Object Class" error. In either case the sender will fail to
 see an acknowledgment for the issued Hello. When a Hello sender does
 not receive an acknowledgment, it MUST NOT send MESSAGE_ID objects
 with the Last_Refresh flag set. This restriction will preclude
 neighbors from getting out of RSVP state synchronization.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 27]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 Implementations supporting the Hello extension MUST also support the
 MESSAGE_ID extension and refresh suppression.

6. Reference Exponential Back-Off Procedures

 This section is based on [Pan] and provides an example of how to
 implement exponential back-off. Implementations MAY choose to use
 the described procedures.

6.1. Outline of Operation

 We propose the following feedback mechanism for exponential back-off
 retransmission of an RSVP message: When sending such a message, a
 node inserts a MESSAGE_ID object with the the ACK_Desired flag set.
 Upon reception, a receiving node acknowledges the arrival of the mes-
 sage by sending back an message acknowledgment (that is, a corre-
 sponding MESSAGE_ID ACK object.) When the sending node receives this
 message acknowledgment for a Path or Resv message, it will automati-
 cally scale back the retransmission rate for these messages for the
 flow. If the trigger message was for a different message type, no
 other further action is required.

 Until the message acknowledgment is received, the sending node will
 retransmit the message. The interval between retransmissions is gov-
 erned by a rapid retransmission timer. The rapid retransmission
 timer starts at a small interval which increases exponentially until
 it reaches a threshold. From that point on, the sending node will
 use a fixed timer to refresh Path and Resv messages and stop re-
 transmitting other messages. This mechanism is designed so that the
 message load is only slightly larger than in the current specifica-
 tion even when the receiving node does not support message acknowl-
 edgment.

6.2. Time Parameters

 The described procedures make use of the following time parameters.
 All parameters are per interface.

 Rapid retransmission interval Rf:

 Rf is the initial retransmission interval for unacknowledged
 messages. After sending the message for the first time, the
 sending node will schedule a retransmission after Rf seconds.
 The value of Rf could be as small as the round trip time (RTT)
 between a sending and a receiving node, if known. Unless a node

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 28]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 knows that all receiving nodes support echo-replies, a slightly
 larger configurable value is suggested.

 Slow refresh interval Rs:

 The sending node retransmits Path and Resv messages with this
 interval after it has determined that the receiving node will
 generate MESSAGE_ID ACK objects. To reduce the number of
 unnecessary retransmissions in a stable network, Rs can be set
 to a large value. The value of Rs should be configurable per
 each egress interface.

 Fixed retransmission interval R:

 A node retransmits the trigger message with the interval Rf*(1 +
 Delta)**i until the retransmission interval reaches the fixed
 retransmission interval R or a message acknowledgment has been
 received. If no acknowledgment has been received, the node
 continues to retransmit Resv and Path messages every R seconds.
 By default R should be the same value as the retransmission
 interval in the current RSVP specification.

 Increment value Delta:

 Delta governs the speed with which the sender increases the
 retransmission interval. The ratio of two successive
 retransmission intervals is (1 + Delta).

6.3. Example Retransmission Algorithm

 After a sending node transmits a message containing a MESSAGE_ID
 object with the ACK_Desired flag set, it should immediately schedule
 a retransmission after Rf seconds. If a corresponding MESSAGE_ID ACK
 object is received earlier than Rf seconds, then retransmission
 SHOULD be canceled. Otherwise, it will retransmit the message after
 (1 + Delta)*Rf seconds. The staged retransmission will continue
 until either an appropriate MESSAGE_ID ACK object is received, or the
 retransmission interval has been increased to R. Once the retrans-
 mission interval has been increased to R, Path and Resv messages will
 be refreshed within the interval R. Other messages will not be
 retransmitted.

 The implementation of exponential back-off retransmission is simple.
 A sending node can use the following algorithm after transmitting a
 message containing a MESSAGE_ID object with the ACK_Desired flag set:

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 29]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

 if (Rk < R) {
 Rk = Rk * (1 + Delta);
 retransmit the message;
 wake up after Rk seconds;
 exit;
 }
 else { /* no reply from receivers for too long: */
 Rk = R;
 if (message is a Path or Resv Message) {
 send out a refresh message;
 wake up after Rk seconds;
 exit;
 }
 else {
 clean up any associated state and resources;
 exit;
 }
 }

 Asynchronously, when a sending node receives a corresponding MES-
 SAGE_ID ACK object, it will change the retransmission interval Rk to
 Rs and, for non Path or Resv messages, clean up any associated state
 and resources.

7. Acknowledgments

 This document represents ideas and comments from the MPLS-TE design
 team and participants in the RSVP Working Group's interim meeting.
 Thanks to Yoram Bernet, Fred Baker, Roch Guerin, Henning Schulzrinne,
 Andreas Terzis, David Mankins and Masanobu Yuhara for specific feed-
 back on the document.

 Portions of this work are based on work done by Masanobu Yuhara and
 Mayumi Tomikawa [Yuhara].

8. Security Considerations

 No new security issues are raised in this document. See [RFC2205]
 for a general discussion on RSVP security issues.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt
https://datatracker.ietf.org/doc/html/rfc2205

Berger, et al. [Page 30]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

9. References

[Awduche] Awduche, D. et al. Requirements for Traffic Engineering
 over MPLS, Internet Draft,

draft-awduche-mpls-traffic-eng-00.txt, April 1998.

[Pan] Pan, P., Schulzrinne, H., "Staged Refresh Timers for RSVP,"
 Global Internet'97, Phoenix, AZ, Nov. 1997.

http://www.ctr.columbia.edu/~pan/papers/timergi.ps

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels," RFC 2119.

[RFC2205] Braden, R. Ed. et al, "Resource ReserVation Protocol
 -- Version 1 Functional Specification", RFC 2205,
 September 1997.

[Yuhara] Yuhara, M., Tomikawa, M. "RSVP Extensions for ID-based
 Refreshes," Internet Draft,

draft-yuhara-rsvp-refresh-00.txt, April 1999.

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt
https://datatracker.ietf.org/doc/html/draft-awduche-mpls-traffic-eng-00.txt
http://www.ctr.columbia.edu/~pan/papers/timergi.ps
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/draft-yuhara-rsvp-refresh-00.txt

Berger, et al. [Page 31]

Internet Draft draft-berger-rsvp-refresh-reduct-03.txt June 1999

10. Authors' Addresses

 Lou Berger
 LabN Consulting
 Voice: +1 301 468 9228
 Email: lberger@labn.net

 Der-Hwa Gan
 Juniper Networks, Inc.
 385 Ravendale Drive
 Mountain View, CA 94043
 Voice: +1 650 526 8074
 Email: dhg@juniper.net

 George Swallow
 Cisco Systems, Inc.
 250 Apollo Drive
 Chelmsford, MA 01824
 Voice: +1 978 244 8143
 Email: swallow@cisco.com

 Ping Pan
 Bell Labs, Lucent
 101 Crawfords Corner Road, Room 4C-508
 Holmdel, NJ 07733
 USA
 Phone: +1 732 332 6744
 Email: pingpan@dnrc.bell-labs.com

https://datatracker.ietf.org/doc/html/draft-berger-rsvp-refresh-reduct-03.txt

Berger, et al. [Page 32]

