
Workgroup: ANIMA WG

Internet-Draft:

draft-bernardos-anima-fog-monitoring-06

Published: 24 May 2022

Intended Status: Experimental

Expires: 25 November 2022

Authors: CJ. Bernardos, Ed.

UC3M

A. Mourad

InterDigital

P. Martinez-Julia

NICT

Autonomic setup of fog monitoring agents

Abstract

The concept of fog computing has emerged driven by the Internet of

Things (IoT) due to the need of handling the data generated from the

end-user devices. The term fog is referred to any networked

computational resource in the continuum between things and cloud. In

fog computing, functions can be stiched together composing a service

function chain. These functions might be hosted on resources that

are inherently heterogeneous, volatile and mobile. This means that

resources might appear and disappear, and the connectivity

characteristics between these resources may also change dynamically.

This calls for new orchestration solutions able to cope with dynamic

changes to the resources in runtime or ahead of time (in

anticipation through prediction) as opposed to today's solutions

which are inherently reactive and static or semi-static.

A fog monitoring solution can be used to help predicting events so

an action can be taken before an event actually takes place. This

solution is composed of agents running on the fog nodes plus a

controller hosted at another device (running in the infrastructure

or in another fog node). Since fog environments are inherently

volatile and extremely dynamic, it is convenient to enable the use

of autonomic technologies to autonomously set-up the fog monitoring

platform. This document aims at presenting this use case as well as

specifying how to use GRASP as needed in this scenario.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Problem statement

1.2. Fog monitoring framework

1.3. Supporting simple and complex monitoring metrics

2. Terminology

3. Autonomic setup of fog monitoring framework

4. IANA Considerations

5. Security Considerations

6. Acknowledgments

7. Informative References

Authors' Addresses

1. Introduction

The concept of fog computing has emerged driven by the Internet of

Things (IoT) due to the need of handling the data generated from the

end-user devices. The term fog is referred to any networked

computational resource in the continuum between things and cloud. A

fog node may therefore be an infrastructure network node such as an

eNodeB or gNodeB, an edge server, a customer premises equipment

(CPE), or even a user equipment (UE) terminal node such as a laptop,

a smartphone, or a computing unit on-board a vehicle, robot or

drone.

In fog computing, functions might be organized in service function

chains (SFCs), hosted on resources that are inherently

heterogeneous, volatile and mobile. This means that resources might

appear and disappear, and the connectivity characteristics between

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

these resources may also change dynamically. This calls for new

orchestration solutions able to cope with dynamic changes to the

resources in runtime or ahead of time (in anticipation through

prediction) as opposed to today's solutions which are inherently

reactive and static or semi-static.

1.1. Problem statement

Figure 1 shows an exemplary scenario of a (robot) network service. A

robot device has its (navigation) control application running in the

fog away from the robot, as a network service in the form of an SFC

"F1-F2" (e.g., F1 might be in charge of identifying obstacles and F2

takes decisions on the robot navigation). Initially the function F1

is assumed to be hosted at a fog node A and F2 at fog node B. At a

given point of time, fog node A becomes unavailable (e.g., due to

low battery issues or the fog node A moving away from the coverage

of the robot). There is therefore a need to predict the need of

migrating/moving the function F1 to another node (e.g., fog node C

in the figure), and this needs to be done prior to the fog/edge node

becoming no longer capable/available. Such dynamic migration cannot

be dealt with in today's orchestration solutions, which are rather

reactive and static or semi-static (e.g., resources may fail, but

this is an exceptional event, happening with low frequency, and only

scaling actions are supported to react to SLA-related events).

Figure 1: Example scenario

Existing frameworks rely on monitoring platforms that react to

resource failure events and ensure that negotiated SLAs are met.

However these are not designed to predict events likely to happen in

¶

¶

 | ==== |

 ------+F1+----------

 / | | ==== | | \

 / | +------+ | \

 | | fog node C | \

 | -------------- \

 | \

 | -------------- ---\----------

 | | ==== | | \==== |

 | -----------+F1+------------+F2| |

 |/ | | ==== | | | | ==== | |

 o | +------+ | | +------+ |

 | | fog node A | | fog node B |

--------+- -------------- --------------

| |

--0----0--

a volatile fog environment, such as resources moving away, resources

becoming unavailable due to battery issues or just changes in

availability of the resources because of variations of the use of

the local resources on the nodes. Besides, it is not feasible in

this kind of volatile and extremely mobile environment to perform a

continuous monitoring and reporting of every possible variable or

parameter from all the nodes hosting resources, as this would not

scale and would consume many resources and generate extra overhead.

In volatile and mobile environments, prediction (make-before-break)

is needed, as pure reaction (break-before-make) is not enough. This

prediction is not generic, and depends on the nature of the network

service/SFC: the functions of the SFC, the connectivity between

them, the service-specific requirements, etc. Monitoring has to be

setup differently on the nodes, depending on the specifics of the

network service. Besides, in order to act proactively and predict

what might need to be done, monitoring in such a volatile and mobile

environments does not only involve the nodes currently hosting the

resources running the network service/service function chain (i.e.,

hosting a function), but also other nodes which are potential

candidates to join either in addition or in substitution to current

nodes for running the network service in accordance with the

orchestration decisions.

In the example of Figure 1, the fog node initially hosting function

F1 (fog node A) might be running out of battery and this should be

detected before the node A actually becomes unavailable, so the

function F1 can be effectively migrated in a time to a different fog

node C, capable of meeting the requirements of F1 (compute,

networking, location, expected availability, etc.). In order to be

able to predict the need for such a migration and have already

identified a target fog node where to move the function, it is

needed to have a monitoring solution in place that instructs each

node involved in the service (A and B), and also neighboring node

candidate (C) to host function (F1), to monitor and report on

metrics that are relevant for the specific network service "F1-F2"

that is currently running.

1.2. Fog monitoring framework

Fog environments differ from data-center ones on three key aspects:

heterogeneity, volatility and mobility. The fog monitoring framework

is used to predict events triggering and orchestration event (e.g.,

migrating a function to a different resource).

¶

¶

¶

¶

The monitoring framework we propose for fog environments is composed

of 2 logical components:

Fog agents running on each fog node. An agent is responsible for

sending the value of a variable or parameter to a fog monitoring

controller and to other fog agents. What variable or parameter

will be monitored and what data will be sent (including

frequency) is configured per agent considering the specifics of

the network service or SFC. A fog agent might also take some

autonomous actions (such as request migration of a function to a

neighbor node) in certain situations where connectivity with the

fog monitoring controller is temporarily unavailable.

A fog monitoring controller (e.g., running at the edge or at a

fog node). This node obtains input from the orchestration logic

(MANO stack) and autonomously decides what variables or

parameters will be monitored, where will the data be collected,

and how it will be done, based on the requirements provided by

the orchestration logic managing the network services

instantiated in the fog. This configuration is specific to a

network service, a function, or an SFC as whole.

It interacts with the orchestration logic to coordinate and

trigger orchestration events, such as function migration,

connectivity updates, etc. In some deployments, this entity

might be co-located with the orchestration logic (e.g., the

NFVO).

It interacts with the fog agents to instruct what variables

and/or parameters need to be monitored. It also interacts to

get the resulting monitoring data. This interaction is not

limited to fog agents at nodes currently involved in a given

network service or SFC, but also includes other nodes that are

suitable for hosting a function that needs to be migrated.

This allows to provide the orchestration logic with candidate

nodes in a pro-active way.

It is capable of autonomously discover and set up fog agents.

1.3. Supporting simple and complex monitoring metrics

Fog monitoring nodes will be capable of providing raw monitoring

data as well as processed data. The former are obtained directly

from the measured variables or parameters. The latter are obtained

by applying some processing function to several monitoring data

items. The fog monitoring controllers will specify the function to

be executed, which data will be collected and processed by the

functions, and the additional parameters that will control the

¶

*

¶

*

¶

-

¶

-

¶

- ¶

fog:

fog node:

orchestrator:

processing and will determine the particularities of the output of

each function.

The complexity of the functions that can be executed is arbitrary.

They can be either pre-instructed in the fog agents or dynamically

instructed by the requester (the fog monitoring controller) by

providing the sequence to execute the functions and their input

parameters.

Complex monitoring metrics, the processed data, can also be used as

part of the condition that determines the distributed and autonomic

actions. Thus, the logic that defines those actions is simplified

and the actuation components can be concentrated on their task

without requiring extra effort to process the raw monitoring data.

Adding support for complex monitoring metrics enables the fog

monitoring framework to avoid the transmission of unneeded data and

thus optimize its overall operation. For example, if the controller

is interested in the average of the CPU load of a fog agent for the

last 5 minutes, it can just request it, providing the period to

average as input parameter and specifying the source from which

measuring the CPU load variable.

2. Terminology

The following terms are using in ths document:

Fog goes to the Extreme Edge, that is the closest possible to

the user including on the user device itself.

Any device that is capable of participating in the Fog. A

Fog node might be volatile, mobile and constrained (in terms of

computing resources). Fog nodes may be heterogeneous and may

belong to different owners.

In this document we use orchestrator and NFVO terms

interchangeably.

3. Autonomic setup of fog monitoring framework

Fog nodes autonomously start fog agents at the bootstrapping, then

start looking for other agents and the fog monitoring controller.

This autonomic setup can be performed using GRASP. The procedure is

represented in Figure 2. The different steps are described next:

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 2: Autonomic setup of fog agents

The fog monitoring controller is regularly sending periodic

multicast advertisement messages, which include its ID as well as

+--------+ +--------+ +--------+

| fog | | fog | | fog |

| node C | | node A | | node B | +------+

| | | | | | | fog |

| | | | | | | | | | | | +------+ | mon. |

| +----+ | | +----+ | | +----+ | | NFVO | | ctrl |

+--------+ +--------+ +--------+ +------+ +------+

 | | | |

 (fog nodes A & B bootstrap) | |

 | | | |

 | | periodic mcast advertisement|

 | | (ID, fog_scope) |

 | | <----------------------------+

 | Mcast discovery (fog_node_ID, scope) |

 +-->|

 +------------>| | |

 | Mcast discovery (fog_node_ID, scope) |

 | +------------------------------>|

 |<------------+ | |

 | | | |

 | Unicast advertisement (ID, fog_scope) |

 | |<------------------------------+

 |<--+

 | | | |

 | Unicast registration (ID, fog_node_ID |

 | | fog_scope, capab.) |

 | +------------------------------>|

 +-->|

 | | | |

 (fog nodes A & B registered) | |

 | | | |

(fog node C bootstraps) | | |

 | | | | |

 | Mcast discovery (fog_node_ID, scope) | |

 +-->|

 +-------------------------->| | |

 +------------>| Unicast advertisement (ID, fog_scope) |

 |<--+

 |<--------------------------+ | |

 |<------------+ Unicast registration (ID, fog_node_ID |

 | | | fog_scope, capab.) |

 +-->|

(fog node C registered) | | |

 | | | | |

*

the scope for the advertisement messages (i.e., the scope of

where the messages have to be flooded).

M_DISCOVERY messages are used, with new objectives and objective

options. GRASP specifies that "an objective option is used to

identify objectives for the purposes of discovery, negotiation or

synchronization". New objective options are defined for the

purposes of discovering potential fog agents with certain

characteristics. Non-limiting examples of these options are

listed below (note that the names are just examples, and the ones

used have to be registered by the IANA):

FOGNODERADIO: used to specify a given type of radio

technology, e.g.,: WiFi (version), D2D, LTE, 5G, Bluetooth

(version), etc.

FOGNODECONNECTIVITY: used to specify a given type of

connectivity, e.g., layer-2, IPv4, IPv6.

FOGNODEVIRTUALIZATION: used to specify a given type of

virtualization supported by the node where the agent runs.

Examples are: hypervisor (type), container, micro-kernel,

bare-metal, etc.

FOGNODEDOMAIN: used to specify the domain/owner of the node.

This is useful to support operation of multiple domains/

operators simultaneously on the same fog network.

An example of discovery message using GRASP would be the

following (in this example, the fog monitoring controller is

identified by its IPv6 address:

2001:DB8:1111:2222:3333:4444:5555:6666):

[M_DISCOVERY, 13948745, h'20010db8111122223333444455556666',

["FOGDOMAIN", F_SYNCH_bits, 2, "operator1"]]

GRASP is used to allow the fog agents and the controller

discovery in an autonomic way. The extensions defined above,

together with the use of properly scoped multicast addresses (as

explained below), allow to precisely define which nodes

participate in the monitoring and to gather their principal

characteristics.

When a fog node bootstraps, such as nodes A and B in the figure,

they start sending multicast discovery messages within a given

scope, that is, the intended area that composes the fog. The

definition of the scope depends on the scenario, and examples of

possible scopes are:

All-resources of a given manufacturer.

¶

¶

-

¶

-

¶

-

¶

-

¶

¶

¶

¶

*

¶

- ¶

All-resources of a given type.

All-resources of a given administrative domain.

All-resources of a given user.

All-resources within a topological network distance (e.g.,

number of hops).

All-resources within a geographical location.

Etc.

Combination of previous scopes are also possible.

The discovery messages are multicast within the scope, reaching

all the nodes that compose the specified fog resources. This can

be done for example using well defined IPv6 multicast addresses,

specified for each of the different scopes. This signaling is

based on GRASP. Different IPv6 multicast addresses need to be

defined to reach each different scope, using scopes equal or

larger than Admin-Local according to [RFC7346].

In response to multicast fog discovery messages, the fog

monitoring controller replies with unicast messages providing its

information.

Fog agents can then register with a controller. The registration

message is unicast, and includes information on the capabilities

of the fog node, such as:

Type of node.

Vendor.

Energy source: battery-powered or not.

Connectivity (number of network interfaces and information

associated to them, such as radio technology type, layer-2 and

layer-3 addresses, etc.).

Etc.

Note that registration to multiple fog monitoring controller

instances could also be possible if a fog node wants to belong to

several fog domains at the same time (but note that how the

orchestration of the same resource is done by multiple

orchestrators is not covered by this invention). The defined

mechanisms support this via the use of fog IDs and FOGNODEDOMAIN

options.

- ¶

- ¶

- ¶

-

¶

- ¶

- ¶

¶

¶

*

¶

*

¶

- ¶

- ¶

- ¶

-

¶

- ¶

¶

[RFC7346]

A fog node C bootstraps after nodes A and B are already

registered. The same discovery process is followed by fog node C,

but in addition to the regular advertisement, registration

procedures described before, existing neighboring fog agents

(such as A and B in this example), might also respond to

discovery messages sent by bootstrapping nodes to provide

required information. This makes the procedure faster, more

efficient and reliable. In addition to helping the fog monitoring

controller in the fog agent discovery process, fog agents learn

themselves about the existence and associated capabilities of

other fog agents. This can be used to allow autonomous monitoring

by the fog agents without the involvement of the central

controller.

4. IANA Considerations

TBD.

5. Security Considerations

TBD.

6. Acknowledgments

The work in this draft will be further developed and explored under

the framework of the H2020 5G-DIVE project (Grant 859881).

7. Informative References

Droms, R., "IPv6 Multicast Address Scopes", RFC 7346, DOI

10.17487/RFC7346, August 2014, <https://www.rfc-

editor.org/info/rfc7346>.

Authors' Addresses

Carlos J. Bernardos (editor)

Universidad Carlos III de Madrid

Av. Universidad, 30

28911 Leganes, Madrid

Spain

Phone: +34 91624 6236

Email: cjbc@it.uc3m.es

URI: http://www.it.uc3m.es/cjbc/

Alain Mourad

InterDigital Europe

Email: Alain.Mourad@InterDigital.com

URI: http://www.InterDigital.com/

*

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc7346
https://www.rfc-editor.org/info/rfc7346
tel:+34%2091624%206236
mailto:cjbc@it.uc3m.es
http://www.it.uc3m.es/cjbc/
mailto:Alain.Mourad@InterDigital.com
http://www.InterDigital.com/

Pedro Martinez-Julia

NICT

4-2-1, Nukui-Kitamachi, Koganei, Tokyo

184-8795

Japan

Phone: +81 42 327 7293

Email: pedro@nict.go.jp

tel:+81%2042%20327%207293
mailto:pedro@nict.go.jp

	Autonomic setup of fog monitoring agents
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Problem statement
	1.2. Fog monitoring framework
	1.3. Supporting simple and complex monitoring metrics

	2. Terminology
	3. Autonomic setup of fog monitoring framework
	4. IANA Considerations
	5. Security Considerations
	6. Acknowledgments
	7. Informative References
	Authors' Addresses

