MEXT Working Group Internet-Draft Intended status: Informational Expires: September 8, 2011 CJ. Bernardos A. de la Oliva UC3M F. Giust IMDEA Networks and UC3M March 7, 2011

A IPv6 Distributed Client Mobility Management approach using existing mechanisms draft-bernardos-mext-dmm-cmip-00

Abstract

The use of centralized mobility management approaches -- such as Mobile IPv6 -- poses some difficulties to operators of current and future networks, due to the expected large number of mobile users and their exigent demands. All this has triggered the need for distributed mobility management alternatives, that alleviate operators' concerns allowing for cheaper and more efficient network deployments.

This draft describes a possible way of achieving a distributed mobility behavior with Client Mobile IP, based on Mobile IPv6 and the use of Cryptographic Generated Addresses.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of <u>BCP 78</u> and <u>BCP 79</u>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at <u>http://datatracker.ietf.org/drafts/current/</u>.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 8, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

Bernardos, et al. Expires September 8, 2011 [Pa

[Page 1]

This document is subject to <u>BCP 78</u> and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

<u>1</u> .	Introduction
<u>2</u> .	Terminology
<u>3</u> .	Description of the solution
<u>4</u> .	IANA Considerations
<u>5</u> .	Security Considerations
<u>6</u> .	Acknowledgments
<u>7</u> .	References
7	<u>.1</u> . Normative References
7	<u>.2</u> . Informative References
Auth	nors' Addresses

A DMM solution for CMIP

<u>1</u>. Introduction

Most of the currently standardized IP mobility solutions, like Mobile IPv6 [<u>RFC3775</u>], or Proxy Mobile IPv6 [<u>RFC5213</u>] rely to a certain extent on a centralized mobility anchor entity. This centralized network node is in charge of both the control of the network entities involved in the mobility management (i.e., it is a central point for the control signalling), and the user data forwarding (i.e., it is also a central point for the user plane). This makes centralized mobility solutions prone to several problems and limitations, as identified in [I-D.chan-distributed-mobility-ps]: longer (suboptimal) routing paths, scalability problems, signaling overhead (and most likely a longer associated handover latency), more complex network deployment, higher vulnerability due to the existence of a potential single point of failure, and lack of granularity on the mobility management service (i.e., mobility is offered on a per-node basis, not being possible to define finer granularity policies, as for example per-application).

There are basically two main approaches that are being researched now: one aimed at making Mobile IPv6 work in a distributed way, and another one doing the same exercise for Proxy Mobile IPv6. In this draft we describe a solution to achieve a DMM behavior with a CMIP (MIPv6) solution. This document is based on a research paper of the same authors, called "Flat Access and Mobility Architecture: an IPv6 Distributed Client Mobility Management solution" [GOB+11].

2. Terminology

The following terms used in this document are defined in the Mobile IPv6 specification [<u>RFC3775</u>]:

Home Agent (HA) Home Link Home Address (HoA) Care-of Address (CoA) Binding Update (BU) Binding Acknowledgement (BA)

The following terms are defined and used in this document:

- DAR (Distributed Anchor Router). First hop routers where the mobile nodes attach to. They also play the role of mobility managers for the IPv6 addresses they anchor.
- HDAR (Home Distributed Anchor Router). DAR which plays the role of Home Agent for a particular IPv6 address (i.e., DAR where that IPv6 address is anchored).

3. Description of the solution

Distributed Mobility Management approaches try to overcome the limitations of the traditional centralized mobility management, i.e., Mobile IP, by bringing the mobility anchor closer to the MN. Following this idea, in our approach -- that we call Flat Access and Mobility Architecture (FAMA) -- the MIPv6 centralized home agent is moved to the edge of the network, being deployed in the default gateway of the mobile node. That is, the first elements that provide IP connectivity to a set of MNs are also the mobility managers for those MNs. In the following we will call these access routers Distributed Anchor Routers (DARs).

Every time a mobile node attaches to a distributed anchor router, it gets an IPv6 address which is topologically anchored at the DAR. That means that while attached to this DAR, the mobile can send and receive traffic using that address without using any tunneling nor special packet handling. Every time the mobile node moves to a different DAR, it gets a new IPv6 address from the new access router. In case the MN wants to keep the reachability of the IPv6 address(es) it obtained from the previous DAR (note that this decision is dynamic and it is out of scope of this document, it can be done on an application basis for example), the mobile has to involve its MIPv6 stack, by sending a Binding Update to the DAR where the IPv6 address is anchored, using the address obtained from the current DAR as care-of address. In this way, the IPv6 address that the node wants to maintain plays the role of home address, and the DAR from where that address was configured plays the role of Home Agent (for that particular address). Note that the FAMA approach basically enables a mobile node to simultaneously handle several IPv6 addresses -- each of them anchored at a different DAR -- ensuring their continuous reachability by using Mobile IPv6 in a distributed fashion (i.e., each access router is a potential home agent for the address it delegates, if required). This distributed address anchoring is enabled on demand and on a per-address granularity, which means that depending on the user needs, it might be the case that all, some or none of the IPv6 addresses that a mobile node configures while moving within a FAMA domain, are kept reachable and used by the mobile.

In traditional Mobile IPv6, the communication between the MN and the HA is secured through IPsec [RFC4877]. Following a similar approach in FAMA is difficult due to the large number of security associations that would be required, since any gateway of the access network can play the role of home agent for any mobile node. In order to overcome this problem and provide authentication between the DAR and the MNs, we propose the use of Cryptographically Generated Addresses [RFC3972] (CGAs), as introduced in [I-D.laganier-mext-cga]. CGAs are a powerful mechanism allowing authentication of the packets and requires no public-key infrastructure, hence it is well-suited for this application.

Following the ideas presented above, every time an MN attaches to a DAR, it configures a CGA from a prefix anchored at the DAR (e.g., by using stateless address auto-configuration mechanisms). This address can then be used by the MN to establish a communication with a remote Correspondent Node (CN) while attached to that particular DAR. If the mobile then moves to a new DAR (nDAR), the following two cases are possible: i) there is no need for the address that was configured at the previous DAR (pDAR) to survive the movement: in this case there is no further action required; ii) the mobile wants to keep the reachability of the address configured at pDAR: in this case Mobile IPv6 is triggered, and the MN sends a Binding Update (BU) message to the pDAR, using the address configured at the previous DAR as home address, and the address configured at the new DAR as care-of address. This BU includes the CGA parameters and signature [I-D.laganier-mext-cga], which are used by the receiving DAR to identify the MN as the legitimate owner of the address. Although the use of CGAs does not impose a heavy burden in terms of performance, depending on the number of MNs handled at the DAR, the processing of the CGAs can be problematic. To reduce the complexity of the proposed protocol, we suggest an alternative mechanism to authenticate any subsequent signaling packets exchanged between the MN and the DAR (in case the mobile performs a new attachment to a different DAR). This alternative method relies on the use of a Permanent Home Keygen Token (PHKT), which will be used to generate the Authorization option that the MN has to include in all next Binding Update messages. This token is forwarded to the MN in the Binding Acknowledgment message, sent on reply to the BU. The procedure is depicted in Figure 1. Once the signaling procedure is completed, a bi-directional tunnel is established between the mobile node and the DAR where the IPv6 address is anchored (the "home" DAR -- HDAR -- for that particular address), so the mobile can continue using the IPv6 address.

Bernardos, et al. Expires September 8, 2011 [Page 5]

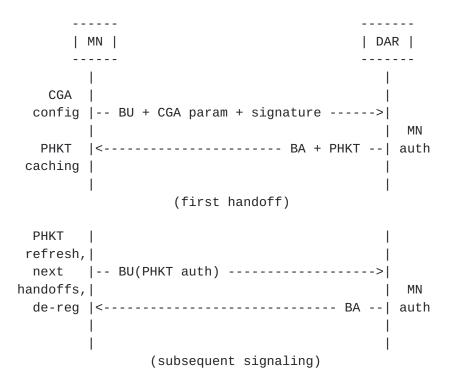


Figure 1: Signaling between the MN and the DAR

In case the MN performs any subsequent movements and it requires to maintain the reachability of an address for which it has already sent a BU, the following BU messages can be secured using the PHKT exchanged before, reducing the computational load at the receiving DAR.

Note that on every attachment of a node to a DAR, the terminal also obtains a new IPv6 address which is topologically anchored at that DAR, and that this address can be used for new communications (avoiding in this way the tunneling required when using an address anchored at a different DAR). A mobile can keep multiple IPv6 addresses active and reachable at a given time, and that requires to send -- every time the MN moves -- a BU message to all the previous DARs that are anchoring the IP flows that the MN wish to maintain.

<u>4</u>. IANA Considerations

TBD.

<u>5</u>. Security Considerations

Although the approach documented in this document is attractive for the reduced signaling overhead caused by the mobility support, it can

be misused in some particular scenarios by malicious nodes that wish to export an incorrect CoA in the BU message, since it does provide proof of the MN's reachability at the visited network. Indeed, the CGA approach assures that the BU message has been sent by the legitimate HoA's owner but it does not make sure that same MN to be reachable at the CoA indicated. This requires further analysis.

A possible approach to provide a more secure solution is the following: a Return Routability procedure similar to the one defined in MIPv6 Route Optimization can be used to mitigate the aforementioned security issue. The Return Routability procedure starts after the handoff. Instead of sending the BU message, the MN sends a Care-of Test Init message (CoTI). This message is replied by the DAR with a Care-Of Test message containing a CoA Keygen Token. The MN can now send a BU using both Home and CoA Keygen tokens to proof its reachability at both the HoA and the CoA. The message and the knowledge of both tokens is a proof that the MN is the legitimate node who has sent the BU and also is reachable at the CoA indicated. As all security improvements, the one proposed incurs in a performance penalty, in this case an increase in the handover delay. Specifically this enhanced security approach requires four messages to be exchanged between the MN and the DAR instead of the two messages of the original solution. In terms of handover delay, it increases it by a factor of two, as the new solution requires to two Round Trip Times (RTTs) to conclude, instead of one.

6. Acknowledgments

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7-ICT-2009-5) under grant agreement n. 258053 (MEDIEVAL project). The work of Carlos J. Bernardos has also been partially supported by the Ministry of Science and Innovation of Spain under the QUARTET project (TIN2009-13992-C02-01).

7. References

7.1. Normative References

- [RFC3775] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in IPv6", <u>RFC 3775</u>, June 2004.
- [RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)", <u>RFC 3972</u>, March 2005.
- [RFC4877] Devarapalli, V. and F. Dupont, "Mobile IPv6 Operation with

IKEv2 and the Revised IPsec Architecture", <u>RFC 4877</u>, April 2007.

[RFC5213] Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., and B. Patil, "Proxy Mobile IPv6", <u>RFC 5213</u>, August 2008.

<u>7.2</u>. Informative References

[GOB+11] Giust, F., de la Oliva, A., and CJ. Bernardos, "Flat Access and Mobility Architecture: an IPv6 Distributed Client Mobility Management solution", 3rd IEEE International Workshop on Mobility Management in the Networks of the Future World (MobiWorld 2011), colocated with IEEE INFOCOM 2011 , 2011.

[I-D.chan-distributed-mobility-ps]

Chan, A., Liu, D., Seite, P., Yokota, H., Perkins, C., Melia, T., Haddad, W., Demaria, E., Deng, H., and Z. Cao, "Problem statement for distributed and dynamic mobility management", <u>draft-chan-distributed-mobility-ps-00</u> (work in progress), October 2010.

[I-D.laganier-mext-cga]

Laganier, J., "Authorizing Mobile IPv6 Binding Update with Cryptographically Generated Addresses", <u>draft-laganier-mext-cga-01</u> (work in progress), October 2010.

Authors' Addresses

Carlos J. Bernardos Universidad Carlos III de Madrid Av. Universidad, 30 Leganes, Madrid 28911 Spain

Phone: +34 91624 6236 Email: cjbc@it.uc3m.es URI: <u>http://www.it.uc3m.es/cjbc/</u>

Bernardos, et al. Expires September 8, 2011 [Page 8]

Antonio de la Oliva Universidad Carlos III de Madrid Av. Universidad, 30 Leganes, Madrid 28911 Spain

Phone: +34 91624 8803 Email: aoliva@it.uc3m.es URI: <u>http://www.it.uc3m.es/aoliva/</u>

Fabio Giust Institute IMDEA Networks and Universidad Carlos III de Madrid Av. del Mar Mediterraneo, 22 Leganes, Madrid 28918 Spain

Email: fabio.giust@imdea.org