
Workgroup: SFC WG

Internet-Draft:

draft-bernardos-sfc-distributed-control-

operation-04

Published: 21 March 2022

Intended Status: Experimental

Expires: 22 September 2022

Authors: CJ. Bernardos

UC3M

A. Mourad

InterDigital

Distributed SFC control operation

Abstract

Service function chaining (SFC) allows the instantiation of an

ordered set of service functions and subsequent "steering" of

traffic through them. In order to set up and maintain SFC instances,

a control plane is required, which typically is centralized. In

certain environments, such as fog computing ones, such centralized

control might not be feasible, calling for distributed SFC control

solutions. This document describes a general framework for

distributed SFC operation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 22 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Problem statement

4. Distributed SFC control operation

4.1. P-CTRL taking over C-CTRL

4.1.1. P-CTRL taking over C-CTRL due to a local monitoring

event

4.1.2. P-CTRL taking over C-CTRL due to a C-CTRL failure

4.1.3. C-CTRL gaining back control

4.2. Inter P-CTRL seamless handover

5. IANA Considerations

6. Security Considerations

7. Acknowledgments

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

Virtualization of functions provides operators with tools to deploy

new services much faster, as compared to the traditional use of

monolithic and tightly integrated dedicated machinery. As a natural

next step, mobile network operators need to re-think how to evolve

their existing network infrastructures and how to deploy new ones to

address the challenges posed by the increasing customers' demands,

as well as by the huge competition among operators. All these

changes are triggering the need for a modification in the way

operators and infrastructure providers operate their networks, as

they need to significantly reduce the costs incurred in deploying a

new service and operating it. Some of the mechanisms that are being

considered and already adopted by operators include: sharing of

network infrastructure to reduce costs, virtualization of core

servers running in data centers as a way of supporting their load-

aware elastic dimensioning, and dynamic energy policies to reduce

the monthly electricity bill. However, this has proved to be tough

to put in practice, and not enough. Indeed, it is not easy to deploy

new mechanisms in a running operational network due to the high

dependency on proprietary (and sometime obscure) protocols and

interfaces, which are complex to manage and often require

configuring multiple devices in a decentralized way.

¶

¶

Service Functions are widely deployed and essential in many

networks. These Service Functions provide a range of features such

as security, WAN acceleration, and server load balancing. Service

Functions may be instantiated at different points in the network

infrastructure such as data center, the WAN, the RAN, and even on

mobile nodes.

Service functions (SFs), also referred to as VNFs, or just

functions, are hosted on compute, storage and networking resources.

The hosting environment of a function is called Service Function

Provider or NFVI-PoP (using ETSI NFV terminology).

Services are typically formed as a composition of SFs (VNFs), with

each SF providing a specific function of the whole service. Services

also referred to as Network Services (NS), according to ETSI

terminology.

With the arrival of virtualization, the deployment model for service

function is evolving to one where the traffic is steered through the

functions wherever they are deployed (functions do not need to be

deployed in the traffic path anymore). For a given service, the

abstracted view of the required service functions and the order in

which they are to be applied is called a Service Function Chain

(SFC). An SFC is instantiated through selection of specific service

function instances on specific network nodes to form a service

graph: this is called a Service Function Path (SFP). The service

functions may be applied at any layer within the network protocol

stack (network layer, transport layer, application layer, etc.).

The concept of fog computing has emerged driven by the Internet of

Things (IoT) due to the need of handling the data generated from the

end-user devices. The term fog is referred to any networked

computational resource in the continuum between things and cloud. A

fog node may therefore be an infrastructure network node such as an

eNodeB or gNodeB, an edge server, a customer premises equipment

(CPE), or even a user equipment (UE) terminal node such as a laptop,

a smartphone, or a computing unit on-board a vehicle, robot or

drone.

In fog computing, the functions composing an SFC are hosted on

resources that are inherently heterogeneous, volatile and mobile [I-

D.bernardos-sfc-fog-ran]. This means that resources might appear and

disappear, and the connectivity characteristics between these

resources may also change dynamically. These scenarios call for

distributed SFC control solutions, where there are SFC pseudo

controllers, enabling autonomous SFC self-orchestration

capabilities. The concept of SFC pseudo controller (P-CTRL) is

described in [I-D.bernardos-sfc-distributed-control], as well

different procedures for their discovery and initialization.

¶

¶

¶

¶

¶

¶

This document introduces a framework for local distributed SFC

operation, by allowing P-CTRLs to temporarily substitute the central

controller (C-CTRL) in its task to carry out the global lifecycle

management of the given SFC.

2. Terminology

The following terms used in this document are defined by the IETF in

[RFC7665]:

Service Function (SF): a function that is responsible for

specific treatment of received packets (e.g., firewall, load

balancer).

Service Function Chain (SFC): for a given service, the abstracted

view of the required service functions and the order in which

they are to be applied. This is somehow equivalent to the Network

Function Forwarding Graph (NF-FG) at ETSI.

Service Function Forwarder (SFF): A service function forwarder is

responsible for forwarding traffic to one or more connected

service functions according to information carried in the SFC

encapsulation, as well as handling traffic coming back from the

SF.

SFI: SF instance.

Service Function Path (SFP): the selection of specific service

function instances on specific network nodes to form a service

graph through which an SFC is instantiated.

The following terms are defined and used in this document:

SFC Pseudo Controller (P-CTRL): logical entity [I-D.bernardos-

sfc-distributed-control], complementing the SFC controller/

orchestrator found in current architectures and deployments. It

is service specific, meaning that it is defined and meaningful in

the context of a given network service. Compared to existing SFC

controllers/orchestrators, which manage multiple SFCs

instantiated over a common infrastructure, pseudo controllers are

constrained to service specific lifecycle management.

SFC Central Controller (C-CTRL): central control plane logical

entity in charge of configuring and managing the SFC components

[RFC7665].

3. Problem statement

Mobile network architectures are evolving to support network

virtualization and service function orchestration. Current Service

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Function Chain (SFC) architectures [RFC7665] rely on a centralized

controller/orchestrator (C-CTRL) which shall be connected to all the

hosts participating in a given SFC. This poses issues and

inefficiencies in fog computing environments especially because of

the mobility and volatility of some hosts, as well as the associated

signaling overhead.

These problems can be alleviated by enabling autonomous SFC self-

orchestration (SOC), based on the concept of SFC pseudo controller

(P-CTRL) introduced in [I-D.bernardos-sfc-distributed-control]. A

pseudo controller is capable of substituting (at least temporarily

and partially) the centralized SFC controller in situations where

the centralized controller may not be able to perform its functions

(e.g., when the connectivity with some hosts is broken).

[I-D.bernardos-sfc-distributed-control] introduces the role of the

SFC pseudo controller and describes mechanisms to select and

initialize a service-specific SFC pseudo controller among host nodes

which are participating in the SFC. This document specifies

mechanisms to enable an SFC pseudo controller trigger and control NS

lifecycle management operations, such as migration of NS functions,

chains or parts of a chain.

Figure 1 shows an exemplary scenario where a host UE makes use of an

NS composed of the chain of SFs F1-F2-F3. These functions may be

application functions -- using 3GPP jargon -- network functions or

over-the-top functions. Non-limiting examples of these functions

are: load balancers, traffic steering, performance enhancement

proxies (PEPs), video transcoders, firewalls, etc. In this example,

F1 instance runs on a first UE (node A), F2 instance runs on a

second UE (node B), and F3 instance runs on a gNB (node D). SFC

pseudo controller instances are assumed running on UE node A and D

(which is a gNB). Node A and B are connected via D2D communications.

If all the UEs move out of the coverage of the gNB node D, the

service chain will then need to be reconfigured to maintain service

continuity as gNB node D is hosting one function (F3) of the chain

and would become disconnected. Since gNB node D is also providing

the UEs with connectivity to the network infrastructure where the

SFC central controller is hosted, this type of event cannot be

resolved by the SFC controller, as the nodes hosting the functions

would be disconnected from the central controller. Similar problems

arise in highly mobile/volatile and/or latency-demanding scenarios,

where centralized lifecycle management becomes unsuitable.

¶

¶

¶

¶

Figure 1: Example scenario: disrupted SFC due to mobility

In these scenarios, an SFC pseudo controller can substitute (at

least temporarily and partially) the centralized SFC controller when

the latter is not available or able to perform a given task. This

document proposes solutions addressing the following problem: How to

enable SFC pseudo controllers to perform NS lifecycle management

operations, such as migration of functions, service chains or parts

of a chain? This requires solving the sub-problems listed below.

When a SFC centralized controller (C-CTRL) is in charge, what

mechanisms and exchanges are needed between the C-CTRL and a SFC

pseudo-controller (P-CTRL), and the nodes, so as to facilitate a

seamless transition from C-CTRL to P-CTRL (due to an event, e.g.

failure, of the C-CTRL)?

When P-CTRL takes over from the C-CTRL, what actions shall it

take towards other P-CTRLs, so as to sustain seamless transition

if a first P-CTRL fails (e.g., moving from P-CTRL A to P-CTRL B)?

When C-CTRL is back into the picture, how shall the control

transfer seamlessly back from P-CTRL to C-CTRL?

 o

 node B |

 +--------|-+ F1+-·-·-+F2+-·-·-+F3 SFC

 | ········ |

 <==== | |P-CTRL| |

 | ········ |

 +-·-·-+F2 |

 o / +---+------+ ________

 | · · _()_

+--------|-+ / / _(+--------+)_

| | · · (_ | C-CTRL | _)

| | / / (_+--------+_)

| |· | (________)

| +-·-·/ ·

| F1 | | ((oo))

+----------+ · o /\ ········

 node A | | /\/\ |P-CTRL|

 +-----·--|-+ /\/\/\········

 | | | /\/ \/\ (F3)

 | · | node D

 <==== | | |

 | + |

 | F3 |

 +----------+

 node C

¶

*

¶

*

¶

*

¶

4. Distributed SFC control operation

A key concept is to allow a P-CTRL to take over temporarily and

partially from the C-CTRL to perform NS lifecycle management

decisions. The definition, selection and initialization of a P-CTRL

is covered in [I-D.bernardos-sfc-distributed-control].

Using Figure 1, we can think of an example where a function (F3) is

migrated from node D to node C, triggered by the move of nodes A and

B hosting F1 and F2 away from the coverage of node D hosting F3

(nodes A nd B are UEs within coverage of node D which is a gNB). The

P-CTRL in node B performs OAM operations locally and monitors the

NS-specific SLAs. Upon detecting or predicting that the NS-specific

SLAs may not be met in the near future, P-CTRL A takes actions to

temporary and partially substitute C-CTRL, and starts performing

local NS lifecycle management operations (e.g., instantiating F3 on

node C, since current hosting node -- node D --is predicted to

become unreachable soon).

Note that, in the previous example, the prediction and local NS

lifecycle management operations could have been performed by P-CTRL

running at node D as well. We have assumed that the active

(designated) P-CTRL is running at node B, but could have been at

node D as well, which would imply the need to also migrate the

active P-CTRL role to node B.

Thanks to enabling P-CTRL B to perform local NS lifecycle management

decisions, service continuity will be guaranteed when C-CTRL fails

or is out of reach.

The "activation" of P-CTRL operation only occurs when C-CTRL cannot

properly operate (e.g., it is disconnected from the SFC or it is not

reacting fast enough to the local changing conditions). For example,

P-CTRL can send a scaling command to a given node, in order to adapt

the resources to the current NS demands. P-CTRL would also notify

this to C-CTRL, as soon as the connection to C-CTRL is recovered so

that both are synchronized.

In order to support the operation of P-CTRLs complementing or

replacing the operation of the C-CTRL, the following operations are

needed:

When an NS is onboarded, the C-CTRL receives an NS descriptor

(NSD), together with the VNF descriptors (VNFDs) of the functions

composing the service, and the Operations, Administration and

Maintenance Descriptor (OAMD), which includes the information of

what needs to be monitored to ensure a given SLA.

When the NS is instantiated, in addition to the regular

orchestration decisions (e.g., placement of functions on

¶

¶

¶

¶

¶

¶

*

¶

*

available resources, etc.), the C-CTRL, based on its knowledge of

existing P-CTRLs, decides how monitoring is going to be

performed. This includes: (i) What is monitored by each P-CTRL

node (e.g., vCPU load, bandwidth of a certain link, etc.) and how

(e.g., active, passive or hybrid monitoring); (ii) Which

orchestrators are in charge of collecting and processing the

measurements.

Currently defined mechanisms assume a semi-static environment and

the standardized message flows do not support dynamic migration of

the SFC controller role to other entities. Therefore, new signaling

flows need to be defined between C-CTRL and P-CTRLs and in-between

P-CTRLs: (i) allowing prediction of events via local monitoring and

faster reaction, (ii) enabling orchestration when C-CTRL is

temporarily unreachable, and (iii) supporting migrating CTRL role to

P-CTRLs.

4.1. P-CTRL taking over C-CTRL

There are two main triggers for a P-CTRL to take over from the C-

CTRL: a local monitoring event or a C-CTRL failure. We specify next

the procedures for each of these two triggers.

4.1.1. P-CTRL taking over C-CTRL due to a local monitoring event

In this case, the C-CTRL has delegated some monitoring actions to

the P-CTRL, as indicated in the OAMD sent by the C-CTRL to the P-

CTRL.

¶

¶

¶

¶

Figure 2: P-CTRL taking over C-CTRL due to a local monitoring event

A detailed message sequence chart is shown in Figure 2. The

different steps are described next:

(We assume that the network service has been instantiated and

there is traffic: F1@A--F2@B--F3@D).

C-CTRL runs overall OAM monitoring of the network services. This

can be done for example by contacting the 3GPP network to obtain

different network analytics via NEF. This is shown in the figure

as A.

P-CTRLs are running service specific OAM monitoring actions, as

indicated in the OAMD sent by the C-CTRL in the network service

+---------+ +----+ +---------+ +---------+ +----------+ +------+

| node A | | C | | node B | | node D | | 3GPP | | SFC |

|P-CTRL F1| | F3 | |P-CTRL F2| |P-CTRL F3| |ctrl plane| |C-CTRL|

+--+----+-+ +----+ +--+----+-+ +--+----+-+ +----------+ +------+

 | | | | | | | | |

 | F1@A<->F2@B<->F3@D SFC network service | |

 | |<-·-·-·-·-·-·-·-·-·>|<-·-·-·-·->| |A.Serv. OAM |

 | | | | | | | |<-·-·-·-·-·>|

 | | | | |B.Serv. OAM monitor. | |

 | | | | |-·-·-·-·-·-·-·-·-·-·>| |

 | | | | |<-·-·-·-·-·-·-·-·-·-·| |

 | | | | | | | | |

 | | | | |C.Serv. OAM monitor. | |

 | | | | |<-·-·-| | | |

 | | | | |-·-·-·-·-·-·-·-·-·-·>| |

 | | | | |<-·-·-·-·-·-·-·-·-·-·| |

 | | | | |-·-·->| | | |

 | | D.Serv. OAM monitor. | | | |

 | | |<-·-·->| | | | | |

 | | | |<-·-·-·-·->| | | |

 |<-·>|<-·-·-·-·-·-·->| | | | | |

 |<-·-·-·-·-·-·-·-·-·>| | | | | |

 | | | | | | | | |

 | | P-CTRL@B detects that it's | | |

 | | loosing connectivity with D | | |

 | | | | | | | | |

 | | Orch. signal. | | | | | |

 | | |<-·-·->| | | | | |

 | |<-·-·-·-·-·-·->| | | | | |

 | | | | | Sync. with C-CTRL | |

 | | | | |<·-·-·-·-·-·-·-·-·-·>| |

 | | | | | | | | |

¶

*

¶

*

¶

*

instantiation procedure. This requires signaling procedures.

Various non-limiting example options are possible:

The P-CTRL may directly obtain information metrics from

different network functions through the network exposure

function (NEF). This is shown in the figure as B.

The P-CTRL may indirectly obtain the information metrics

through the local AF or NF hosted on the UE, which interacts

with any other entity inside or outside 3GPP (e.g., AF to AF,

NF to AF, or NF to NF) and then parse these on the interface

to the P-CTRL. If the function hosted on the UE is an NF, and

the info is about 3GPP network data analytics, then the NF

will go get some data from NWDAF and locally at the UE, expose

these to the P-CTRL. This is shown in the figure as C.

In addition to the former (mutually exclusive approaches), it

is also possible to perform local OAM monitoring via

standalone procedures, such as local OAM monitoring and the

use of SFC OAM. This is shown in the figure as D.

The interface between the P-CTRL and the SFC functions running on

the UE to obtain OAM metrics may be a local API, or standard

interface like IETF SFC OAM, or like the interface between 3GPP

NWDAF and an NWDAF service consumer.

At a certain point in time, a local monitoring event, which

cannot be detected by the C-CTRL, triggers the whole process. In

the example of the figure P-CTRL@node B detects that B is losing

connectivity with node D.

The P-CTRL takes an orchestration decision based on its local

knowledge and signals it to the involved nodes. The decision

consists in migrating/moving F3 from node D to C. New extensions

to MIPv6 are used, as described in TBD. Alternatively, extensions

to IETF SFC NSH can also be used, as described in TBD.

The P-CTRL also informs the C-CTRL to keep it synchronized.

Similarly, the C-CTRL can then update other P-CTRLs if needed.

New extensions to NSH are used (NS lifecycle management), as

described in TBD.

4.1.2. P-CTRL taking over C-CTRL due to a C-CTRL failure

In this case, the P-CTRL detects/predicts a C-CTRL failure (e.g., it

becomes unreachable).

¶

-

¶

-

¶

-

¶

¶

*

¶

*

¶

*

¶

¶

Figure 3: P-CTRL taking over C-CTRL due to a C-CTRL failure

A detailed message sequence chart is shown in Figure 3. The

different steps are described next:

(We assume that the network service has been instantiated and

there is traffic: F1@A--F2@B--F3@D).

A failure can be detected by a P-CTRL via multiple mechanisms,

such as: (i) Sending periodic keep-alive messages to the C-CTRL;

(ii) Transport-layer mechanisms that allow detecting connectivity

failures; (iii) Observing a lack of action from the C-CTRL upon

an event that requires an orchestration action.

A failure can also be predicted by a P-CTRL, by using local

monitoring information.

When a C-CTRL failure is detected, the designated backup P-CTRL

takes over the orchestration of the network service, by:

Notifying other P-CTRLs, as well as selecting a new designated

backup P-CTRL. This involves the synchronization of relevant

+---------+ +----+ +---------+ +---------+ +----------+ +------+

| node A | | C | | node B | | node D | | 3GPP | | SFC |

|P-CTRL F1| | F3 | |P-CTRL F2| |P-CTRL F3| |ctrl plane| |C-CTRL|

+--+----+-+ +----+ +--+----+-+ +--+----+-+ +----------+ +------+

 | | | | | | | | |

 | F1@A<->F2@B<->F3@D SFC network service | |

 | |<-·-·-·-·-·-·-·-·-·>|<-·-·-·-·->| | |

 | | | | | | | | |

 | | | | | C-CTRL connectivity failure |

 | | | | |<·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·->|

 | P-CTRL@B detects that connectivity | |

 | with C-CTRL is lost (or about to be) | |

 | | | | | | | | |

 | | | | | Sync with C-CTRL (if |

 | | | | | failure is predicted) |

 | | | | |<·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·->|

 | | P-CTRL@B becomes the | | | |

 | | CTRL for the service | | | |

 | | | | | | | | |

 | P-CTRL activation | | | | | |

 |<-·-·-·-·-·-·-·-·-·>| | | | | |

 | | | | | | | | |

 | | Orch. signal. | | | | | |

 | | |<-·-·->| | | | | |

 | |<-·-·-·-·-·-·->| | | | | |

 | | | | | | | | |

¶

*

¶

*

¶

*

¶

*

¶

-

information (orchestration DBs, descriptors, etc.) with C-CTRL

(if the failure is predicted). This is done through new IETF

SFC NSH extensions (NS lifecycle management), as described in

TBD.

The P-CTRL becoming the SFC controller/orchestrator. From this

point of time on, the P-CTRL can send orchestration signaling.

Extensions to IETF NSH or MIPv6 can be used, as described in

TBD and TBD.

4.1.3. C-CTRL gaining back control

We describe next, using an example, how a C-CTRL may get back the

orchestration control, temporarily delegated to a P-CTRL.

Figure 4: C-CTRL gaining back control

A detailed message sequence chart is shown in Figure 4. The

different steps are described next:

When a C-CTRL loses connectivity with the nodes involved in a

service, it enters into recovery mode, waiting for the

connectivity to be recovered. C-CTRL can learn that connectivity

has been regained using NSH OAM signaling or 3GPP signaling from

the NEF or the P-CTRL itself.

When connectivity is gained back to a P-CTRL, the C-CTRL signals

its availability so the P-CTRL can give back the control of the

¶

-

¶

¶

+---------+ +----+ +---------+ +---------+ +----------+ +------+

| node A | | C | | node B | | node D | | 3GPP | | SFC |

|P-CTRL F1| | F3 | |P-CTRL F2| |P-CTRL F3| |ctrl plane| |C-CTRL|

+--+----+-+ +----+ +--+----+-+ +--+----+-+ +----------+ +------+

 | | | | | | | | |

 | | | | | Connectivity OK notification |

 | | | | | | | |-·-·-·-·-·->|

 | | | |-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·>|

 | | | | | | | | |

 | | | | Request to take over SFC control |

 | | | |<·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-|

 | | | | Orchestration state sync. |

 | | | |-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·>|

 | | | | | | | | |

 | | | | | | | | C-CTRL

 | | | | | | | | regains

 | | | | | | | | control

 | | | | Notification C-CTRL back in control |

 |<-·-|

 | | | | | | | | |

¶

*

¶

*

service. To do so, IETF SFC NSH extensions (NS lifecycle

management) can be used, as described in TBD.

The C-CTRL becomes now the active SFC controller/orchestrator for

the service.

The C-CTRL notifies to other P-CTRLs that it is back in control

of the service, using IETF SFC NSH extensions (NS lifecycle

management), as described in TBD.

4.2. Inter P-CTRL seamless handover

In scenarios with no C-CTRL reachability, it might be needed to

transition from one P-CTRL to another one (e.g., because of mobility

of the nodes while the C-CTRL is not reachable).

Reactive transition is supported as for the case of C-CTRL failure.

Proactive/seamless transition is addressed as follows.

Figure 5: Inter P-CTRL seamless handover

A detailed message sequence chart is shown in Figure 5. The

different steps are described next:

(We assume that the network service has been instantiated and

there is traffic: F1@A--F2@B--F3@D).

¶

*

¶

*

¶

¶

¶

+---------+ +----+ +----+ +---------+ +----------+ +------+

| node A | | C | | B | | node D | | 3GPP | | SFC |

|P-CTRL F1| | F3 | | F2 | |P-CTRL F3| |ctrl plane| |C-CTRL|

+--+----+-+ +----+ +----+ +--+----+-+ +----------+ +------+

 | | | | | | | |

 | F1@A<->F2@B<->F3@D SFC network service | |

 | |<-·-·-·-·-·-·->|<-·-·-·-·->| | |

 | | | | | | | |

 | | | | P-CTRL@D can no | |

 | | | | longer act as CTRL | |

 | | | | | | | |

 Notification to other P-CTRLs| | | |

 |<-·-·-·-·-·-·-·-·-·-·-·-·-·| | | |

 Request to take over control | | | |

 |-·-·-·-·-·-·-·-·-·-·-·-·-·>| | | |

 Orchestration state sync | | | |

 |<-·-·-·-·-·-·-·-·-·-·-·-·-·| | | |

 | | | | | | | |

P-CTRL@A becomes| | | | | |

 the CTRL for | | | | | |

 the service | | | | | |

 | | | | | | | |

¶

*

¶

[I-D.bernardos-sfc-distributed-control]

[I-D.bernardos-sfc-fog-ran]

[RFC7665]

When the active (designated) P-CTRL detects that it might not be

able to operate in the near future (lack of resources, battery,

moving away, etc.), a notification is sent to other P-CTRLs using

new IETF SFC NSH extensions (NS lifecycle management), as

described in TBD.

Each P-CTRL receiving the notification message that is ready to

take over the role of active P-CTRL sends a message to the

current P-CTRL, which selects one. New IETF SFC NSH extensions

are used to convey this signaling.

At this point, the new P-CTRL becomes the SFC controller/

orchestrator of the service.

5. IANA Considerations

N/A.

6. Security Considerations

TBD.

7. Acknowledgments

The work in this draft has been partially supported by the H2020

5Growth (Grant 856709) and 5G-DIVE projects (Grant 859881).

8. References

8.1. Normative References

Bernardos, C. J. and A.

Mourad, "Distributed SFC control for fog environments",

Work in Progress, Internet-Draft, draft-bernardos-sfc-

distributed-control-05, 27 January 2022, <https://

www.ietf.org/archive/id/draft-bernardos-sfc-distributed-

control-05.txt>.

8.2. Informative References

Bernardos, C. J. and A. Mourad, "Service

Function Chaining Use Cases in Fog RAN", Work in

Progress, Internet-Draft, draft-bernardos-sfc-fog-ran-10,

22 October 2021, <https://www.ietf.org/archive/id/draft-

bernardos-sfc-fog-ran-10.txt>.

Halpern, J., Ed. and C. Pignataro, Ed., "Service Function

Chaining (SFC) Architecture", RFC 7665, DOI 10.17487/

RFC7665, October 2015, <https://www.rfc-editor.org/info/

rfc7665>.

*

¶

*

¶

*

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-bernardos-sfc-distributed-control-05.txt
https://www.ietf.org/archive/id/draft-bernardos-sfc-distributed-control-05.txt
https://www.ietf.org/archive/id/draft-bernardos-sfc-distributed-control-05.txt
https://www.ietf.org/archive/id/draft-bernardos-sfc-fog-ran-10.txt
https://www.ietf.org/archive/id/draft-bernardos-sfc-fog-ran-10.txt
https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7665

Authors' Addresses

Carlos J. Bernardos

Universidad Carlos III de Madrid

Av. Universidad, 30

28911 Leganes, Madrid

Spain

Phone: +34 91624 6236

Email: cjbc@it.uc3m.es

URI: http://www.it.uc3m.es/cjbc/

Alain Mourad

InterDigital Europe

Email: Alain.Mourad@InterDigital.com

URI: http://www.InterDigital.com/

tel:+34%2091624%206236
mailto:cjbc@it.uc3m.es
http://www.it.uc3m.es/cjbc/
mailto:Alain.Mourad@InterDigital.com
http://www.InterDigital.com/

	Distributed SFC control operation
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Problem statement
	4. Distributed SFC control operation
	4.1. P-CTRL taking over C-CTRL
	4.1.1. P-CTRL taking over C-CTRL due to a local monitoring event
	4.1.2. P-CTRL taking over C-CTRL due to a C-CTRL failure
	4.1.3. C-CTRL gaining back control

	4.2. Inter P-CTRL seamless handover

	5. IANA Considerations
	6. Security Considerations
	7. Acknowledgments
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

