
Workgroup: Web Authorization Protocol

Internet-Draft:

draft-bertocci-oauth2-tmi-bff-00

Published: 12 February 2021

Intended Status: Standards Track

Expires: 16 August 2021

Authors: V. Bertocci

auth0.com

B. Campbell

Ping Identity

Token Mediating and session Information Backend For Frontend

Abstract

This document describes how a JavaScript frontend can delegate

access token acquisition to a backend component. In so doing, the

frontend can access resource servers directly without taking on the

burden of communicating with the authorization server, persisting

tokens, and performing operations that are fraught with security

challenges when executed in a user agent, but are safe and well

proven when executed by a confidential client running on a backend.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 August 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Topology and Roles

1.2. Protocol Flow

2. Conventions and Definitions

3. Endpoints

3.1. The bff-token Endpoint

3.2. The bff-sessioninfo Endpoint

4. Requesting Access Tokens to the Backend

4.1. Access Token Request

4.2. Access Token Response

4.3. Errors

4.3.1. No valid session found

4.3.2. Backend cannot perform a request to the authorization

server

4.3.3. The backend request to the authorization server fails

5. Requesting Session Information from the Backend

5.1. Session Information Request

5.2. Session Information Response

5.3. Error

6. Security Considerations

6.1. Frontend should not persist access tokens in local storage

6.2. Mismatch between security characteristics of token requestor

and API caller

6.3. Mismatch between scopes in a request vs cached tokens

6.4. Resource server colocated with the backend

7. IANA Considerations

8. Normative References

9. Informative References

Appendix A. Acknowledgements

Appendix B. Document History

Authors' Addresses

1. Introduction

A large portion of today's development stacks, practices and tools

for the web target the user agent itself as execution environment,

leveraging local resources to offer a rich, responsive user

experience that rivals native applications.

An important aspect of apps running in the user agent is their

reliance on HTTP APIs, served from the app's own backend component

or from third party providers on disparate domains. Whenever those

API are secured according to the OAuth2 Bearer Token Usage

[RFC6750], the user agent app needs to obtain suitable access

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

tokens: however, the task of implementing an OAuth2 [RFC6749] client

executing in a user agent is complicated by the many security

challenges inherent in the browser platform. The original OAuth2

[RFC6749] provided guidance dedicated to user agent apps in section

4.2, via the implicit grant. The approach proved to suffer from too

many challenges, however, leading subsequent documents (such as the

OAuth2 security BCP [I-D.ietf-oauth-security-topics] and OAuth 2.1

[I-D.ietf-oauth-v2-1]) to recommend a more secure approach based on

the authorization code grant with PKCE [RFC7636], and relying on

additional security measures such as refresh token rotation and

sender constraint.

Even the new guidance doesn't entirely eliminate some of the

inherent risks of implementing an OAuth2 client in a user agent. For

example, offering an acceptable experience for continuous use of the

app typically requires to persist tokens in local storage or to use

development patterns that are too complex for the average developer

to implement effectively.

In the attempt to avoid those limitations, developers are

increasingly pursuing approaches where their backend components

(when available) play a more active role. For example, there are

many solutions where the backend takes care of obtaining tokens from

the authorization server, using classic confidential client grants,

and provides a facade for every API the frontend needs to invoke: in

that way, the frontend can simply call the API via facade, securing

communications with its backend using mainstream methods such as any

cookie based web sign on technology.

That approach is not always viable, as in the absence of reverse

proxy deployments the creation and maintenance of a facade for

multiple APIs can be expensive. As a result, is is increasingly

common practice to use a simpler solution: rely on the backend

component for obtaining tokens from the authorization server, and

sending back to the frontend the resulting access tokens for direct

frontend to API communication. As long as the mechanism used for

transmitting tokens from the backend to the frontend is secure, the

approach is viable: however leaving the details of its

implementation to every application and stack developer results in

the impossibility to have frontend and backend development stacks to

interoperate out of the box. Furthermore, there are a number of

security considerations that, if disregarded in the implementation

of the pattern, might lead to elevation of privilege attacks and

other challenges.

This documents provides detailed guidance on how to implement the

pattern in which a frontend component can delegate token acquisition

to its backend component. By offering precise guidance on details

such as endpoints and messages format for each operation, this

¶

¶

¶

¶

Frontend:

Backend:

Resource Server:

Authorization Server:

specification will allow developers to create and consume off-the-

shelf components that will easily interoperate and allow mixing and

matching different frontend and backend SDKs, making it possible to

author single page apps consuming APIs on arbitrary domains without

suffering many of the security compromises normally associated to a

frontend-only approach.

Given that the pattern described here does not provide any artifact

that the frontend can use to obtain session information such as user

attributes, something traditional approaches to user agent apps

development do afford, this document also provides a mechanism for

the frontend to obtain session information from the backend.

1.1. Topology and Roles

This document describes how a single page application featuring a

backend can obtain tokens from an OAuth2 authorization server to

access a resource server, while minimizing reliance on browser

features known to suffer from security challenges. For what the

protocol flow is concerned, the topology can be broken down into

four roles:

This represents the application code executing in the

user agent, controlling presentation and invoking one or more

resource servers.

The backed represents code executing on a server, in

particular on the same domain from where the frontend code has

been served. Backend and frontend are both under the control of

the same developer.

This represents a classic OAuth2 resource server

as described in Section 1.1 of OAuth2 [RFC6749], exposing the API

the frontend needs to invoke. See Section 6 for more details

applying to notable cases.

This represents a classic OAuth2

authorization server as described in Section 1.1 of OAuth2

[RFC6749], handling authorization for the API the frontend needs

to invoke. This document does not introduce any changes in the

standard authorization server behavior, however see Section 6 for

some security considerations that might influence the policies of

individual servers.

1.2. Protocol Flow

This section provides a high level description of the way in which

the frontend can obtain and use access tokens with the help of its

backend. As a prerequisite for the flow described below, the backend

MUST have established a secure session with the user agent, so that

¶

¶

¶

¶

¶

¶

¶

all requests from that user agent toward the backend occur over

HTTPS and carry a valid session artifact (such as a cookie) that the

backend can validate. This document does not mandate any specific

mechanism to establish and maintain that session.

Figure 1: An abstract diagram of the flow followed to obtain an access

token and access a protected resource

(A) The frontend presents to the backend a request for an access

token for a given resource server

(B) If the backend does not already have a suitable access token

obtained in previous flows and cached, it requests to the

¶

 [[TODO SVG maybe someday...]]

 +---------------+

 | |

 | Authorization |

 | Server |

 | |

 +---------------+

 ^ |

 |

 |

 (B) Token |

 request | (C) Token

 | response

 |

 | v

 +-------------+ +---------------+

 | | | |

 | |---(A) bff-token request-->| |

 | Frontend | | Backend |

 | |<--(D) bff-token response--| |

 | | | |

 +-------------+ +---------------+

 ^ |

 | |

 | |

 | | +---------------+

 | | | |

 | ----(E) Protected resource request---->| Resource |

 | | Server |

 ------(F) Protected resource response-------| |

 | |

 +---------------+

*

¶

*

authorization server a new access token with the required

characteristics, using any artifacts previousy obtained (eg

refresh token) and grants that will allow the authorization

server to issue the requested token without requiring user

interaction.

(C) The authorization server returns the requested token and any

additional information according to the grant used (eg validity,

actual scopes granted, etc)

(D) The backend returns the requested access token to the

frontend

(E) The frontend presents the access token to the resource server

(F) the resource server validates the incoming token and returns

the protected resource

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Endpoints

This specification introduces bff-token and bff-sessioninfo, two

specialized endpoints that the backend exposes to support the

frontend in acquiring tokens and user session information. For the

purpose of facilitating the implementation of the pattern with

minimal configuration requirements, these endpoints are published at

a ".well-known" location according to RFC 5785 [RFC5785]. Both

endpoint are meant to be used by the applications' frontend, and the

frontend only. As such, the backend MUST verify the the call is

occurring in the context of a secure session (e.g., by mandating the

presence of a valid session cookie received via HTTPS).

3.1. The bff-token Endpoint

The bff-token endpoint is exposed by the backend to allow the

frontend to request access tokens. By default, it is exposed at the

well-known relative URI /.well-known/bff-token. The bff-token

endpoint URI MUST use the https scheme. The backend MUST support the

use of the HTTP GET method for the bff-token endpoint and MAY

support the use of the POST method as well. The backend MUST ignore

unrecognized request parameters. See Section 4 for more details on

how to use the bff-token endpoint.

¶

*

¶

*

¶

* ¶

*

¶

¶

¶

¶

3.2. The bff-sessioninfo Endpoint

The bff-sessioninfo endpoint is exposed by the backend to allow the

frontend to obtain information about the current user, so that it

can be accessed my the presentation code.

By default, it is exposed at the well-known relative URI /.well-

known/bff-sessioninfo. The backend MUST support the use of the HTTP

GET method for the bff-sessioninfo endpoint. The backend MUST ignore

unrecognized request parameters. See Section 5 for more details on

how to use the bff-sessioninfo endpoint.

4. Requesting Access Tokens to the Backend

To obtain an access token, the frontend makes a request to the

backend at the bff-token endpoint URI. The flow includes the

following steps, as shown in Figure 1.

[[TODO more granular error refs]]

The frontend generates the request and sends it to the bff-

token endpoint as described in Section 4.1 (leg A in Figure 1).

The backend examines the request, validating whether it

includes a valid user session: if it doesn't, it rejects the

request as described in Section 4.3.1.

The backend extracts user information from the session, using

whatever mechanism it deems suitable, and verifies whether it

already has in storage a suitable access token satisfying the

request (see Section 6 for more details). If it does, it

returns it as described in (5).

If there is no suitable access token stored, the backend

verifies whether it has the necessary artifacts to request it

to the authorization server without requiring user interaction-

for example, by using a refresh token previously stored for the

current user. If it does, the backed contacts the authorization

server with a token request using the grant of choice (leg B in

Figure 1). In the absence of a suitable artifact required to

perform a request toward the authorization server, the backend

returns an error to the frontend as described in Section 4.3.2.

If the authorization server returns the requested token as

expected (leg C in Figure 1), the backend returns it to the

frontend, as shown in Leg D of Figure 1 and described in

Section 4.2. If the authorization server denies the request,

the backend returns an error to the frontend as described in

Section 4.3.3.

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

resource :

scope :

access_token :

The following sections provide more details for each of the messages

described.

4.1. Access Token Request

The frontend requests an access token from the backend by specifying

the requirements the resulting token must meet. To do so, the

following parameters may be added to to the query component (or

request payload in the case of 'POST') of the /.well-known/bff-token

request URI using the application/x-www-form-urlencoded format with

a character encoding of UTF-8 as described in Appendix B of

[RFC6749].

The identifier of the desired resource server, as

defined in [RFC8707]. This parameter is OPTIONAL.

The scope of the access request resulting in the desired

access token. This parameter follows the syntax described in

section 3.3 of [RFC6749]. This parameter is OPTIONAL.

Both parameters MAY be absent from the request. Given that the

frontend and the backend are components of the same application, it

is possible in some scenarios for the backend to determine what

token to return to the frontend without any specific requirement.

For example, the application might be consuming only one resource,

with a fixed set of scopes: that would make specifying that

information in the request from the frontend unnecessary.

The following is an example of request where both resource and

scopes are specified.

Note that the request does not need to specify any client

attributes, as those are all handled by the backend- and the

presence of a pre-existing session provides the context necessary

for the backend to select the right settings when crafting requests

for the authorization server.

4.2. Access Token Response

If the backend successfully obtains a suitable token, or has one

already cached, it returns it to the frontend in a message featuring

the following parameters.

The requested access token. This parameter is

REQUIRED.

¶

¶

¶

¶

¶

¶

GET /.well-known/bff-token?scope=buy+sell

 &resource=https%3A%2F%2Fapi.example.org%2Fstocks HTTP/1.1

Host: myapp.example.com

¶

¶

¶

¶

expires_in :

scope :

error :

error_description :

The lifetime in seconds of the access token, as

defined in section 5.1 of [RFC6749]. This parameter is REQUIRED,

if the information was made available from the authorization

server that originally issued the access token.

The scope of the access token being returned as list of

space-delimited, case-sensitive strings, as defined in Section

3.3 of [RFC6749]. If the request contained a scope parameter, and

the scope of resulting token is different from the requested

value, this parameter is REQUIRED. In all other cases, the

presence of scope in the response is OPTIONAL.

The following is an example of access token response.

Note that if the backend elects to cache tokens, to serve future

requests from the frontend without contacting the authorization

server if still within the useful lifetime, it must also cache

expiration information and scopes in accordance to the requirements

expressed in this section.

4.3. Errors

When the backend fails to deliver to the frontend the requested

token, it responds with an HTTP 400 (Bad Request) status code and

includes the following parameters with the response:

An ASCII error code identifying the circumstances of the

error. See the next sections for details. This parameter is

REQUIRED.

OPTIONAL. A human-readable message describing

the error for troubleshooting purposes.

4.3.1. No valid session found

All requests to the backend MUST be performed in the context of a

valid authenticated session, typically by presenting a session

cookie over a TLS channel. If the backend cannot find or validate a

session, it must reject the request and return a message as

¶

¶

¶

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-cache, no-store

{

 "access_token":"4bWc0ESC9aCc77LTC8EjR1pCfE4WxfNg",

 "expires_in":3596,

 "scope":"buy sell"

}

¶

¶

¶

¶

¶

described in Section 4.3, with an error parameter value of

invalid_session.

4.3.2. Backend cannot perform a request to the authorization server

If the backend doesn't have the necessary artifacts (e.g., a refresh

token for the current user and/or requested resource) to request a

suitable access token to the authorization server without requiring

user interaction, it will reject the request and return a message as

described in Section 4.3, with an error parameter value of

backend_not_ready.

4.3.3. The backend request to the authorization server fails

If the backend request to the authorization server fails, the

backend will return to the frontend a message as described in

Section 4.3, with as error parameter value the error parameter

received in the authorization server response (as described by

section 5.2 of [RFC6749] and, if present in the authorizations

server response, will include the error_description parameter with

the same parameter value as received by the authorization server. [[

TODO wow this sentence is ugly.]]

5. Requesting Session Information from the Backend

Application developers will often need to obtain information about

the current session (such as user attributes, session expiration,

etc) to display it to the end user, drive application behavior and

any other operation it would perform if the frontend would be in

charge of obtaining tokens directly. In the topology described in

this specification, most of the user experience is driven by the

frontend: however, the session information is inaccessible to the

user agent, as it is either kept in artifacts that the user agent

cannot inspect (opaque sessions cookies) or on the backend side. The

/.well-known/bff-sessioninfo endpoint is meant to restore the

developer's ability to access the session information they need,

without compromising the security of the solution. At any time, the

frontend can leverage the current secure session to send to the bff-

sessioninfo endpoint a request, and receive the needed session

information. The following sections provide details on request and

response messages.

5.1. Session Information Request

The frontend sends a request for session information via an HTTP

GET, using the https scheme in the context of a secure session. The

request has no parameters. The following is an example of session

information request.

¶

¶

¶

¶

¶

5.2. Session Information Response

If the request is executed in the context of a secure session, the

backend returns a JSON object containing any information it deems

appropriate to share with the frontend about the content of the

session. For example, if the session was established via OpenID

Connect [OIDC] the response might contain the session and user

attribute claims as defined in sections 2 and 5.1 of [OIDC]. The

following is a non-normative example of such a session information

response.

It is worth noting that the backend isn't bound to any specific rule

and is free to return any information it deems necessary in this

message in the context of the application (frontend and backend) own

requirements.

5.3. Error

In case the frontend sends a request to bff-sessioninfo in the

absence of a valid secure session, the backend will return an error

as described in Section 4.3.2. For any other error situation, the

backend is free to determine what to signal to the frontend. [[TODO

seems a bit weak... maybe a generic error?]]

6. Security Considerations

The simplicity of the described pattern notwithstanding, there are a

number of important considerations that frontend, backend and SDK

implementers should keep in mind while implementing this approach.

GET /.well-known/bff-sessioninfo HTTP/1.1

Host: myapp.example.com

¶

¶

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-cache, no-store

{

 "iss": "https://as.example.com",

 "sub": "24400320",

 "exp": 1311281970,

 "auth_time": 1311280969,

 "preferred_username": "johnny",

 "email_verified: "johnny@foo.com",

 "given_name": "Jonathan",

 "family_name" : "Swift"

}

¶

¶

¶

¶

6.1. Frontend should not persist access tokens in local storage

Part of the reason for which the pattern herein described was

devised is to help application developers to limit the attack

surface of their code executing in the user agent. Access tokens

SHOULD NOT be saved in local storage: they SHOULD be kept in memory,

and retrieved anew when necessary from the backend following Section

4.

6.2. Mismatch between security characteristics of token requestor and

API caller

Some authorization servers might express in their access tokens

whether the client obtaining it authenticated itself, or it behaved

as a public client. Resource servers might rely on that information

to infer the nature and security characteristics of the application

presenting the access token to them, and use that to drive

authorization decisions (e.g., only allow certain operations if the

caller is a confidential client). The pattern described here obtains

an access token through the backend, a confidential client, but the

access token is ultimately used by code executing in a far less

secure environment. Resource servers knowing that their clients will

use this pattern SHOULD refrain from using the client authentication

type as a factor in authorization decision, or, whenever possible,

should use whatever extensions the authorization server of choice

offers to signal that the requested access tokens will not be used

by a confidential client. As there are no standards to express in an

access token the nature of the client authentication used in

obtaining the token itself, this document does not provide a

specific mechanism to influence the authorization server and leaves

the task, in the rare cases it might be necessary, to individual

implementations.

6.3. Mismatch between scopes in a request vs cached tokens

The backend will likely cache token responses from the authorization

server, so that the backend can promptly serve equivalent requests

from the frontend without further roundtrips toward the

authorization server. That is a powerful optimization, but it

presents scopes elevation risks if applied indiscriminately. If the

token cached by the authorization server features a superset of the

scopes requested by the frontend, the backend SHOULD NOT return it

to the frontend and perform a new request with the smaller scopes

set to the authorization server.

6.4. Resource server colocated with the backend

If the only API invoked by the frontend happens to be colocated with

the backend, the frontend doesn't need to obtain access tokens to

¶

¶

¶

[RFC5785]

it: it can simply use the same secure session leveraged to protect

requests to the token endpoints described here. The bff-token isn't

necessary in that scenario, although bff-sessioninfo retains its

usefulness to surface session and user information to the user agent

code. Also note that the presence of the bff-token endpoint makes it

possible to easily accommodate possible future evolutions where the

frontend needs to invoke APIs protected by resource servers hosted

elsewhere, without engendering changes in the security property of

the application.

7. IANA Considerations

This specification requests registration of the following two well-

known URIs in the IANA "Well-Known URIs" registry [IANA.well-known]

established by [RFC5785].

The bff-token Endpoint

URI suffix: bff-token

Change Controller: IESG

Specification Document: Section 3.1 [[of this specification]]

Related information: (none)

The bff-sessioninfo Endpoint

URI suffix: bff-sessioninfo

Change Controller: IESG

Specification Document: Section 3.2 [[of this specification]]

Related information: (none)

Miscellaneous

[[TODO Should we say something about: Requests could be more

complicated than just scopes (think RAR) and the frontend might need

to tell more than scopes to the backend. In that case, just add

custom params and stir.]]

[[TODO We mentioned another thing, but I can't remember now.]]

8. Normative References

Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known

Uniform Resource Identifiers (URIs)", RFC 5785, DOI

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

[RFC6750]

[RFC6749]

[RFC2119]

[OIDC]

[RFC8174]

[RFC8707]

[IANA.well-known]

[I-D.ietf-oauth-security-topics]

[I-D.ietf-oauth-v2-1]

10.17487/RFC5785, April 2010, <https://www.rfc-

editor.org/info/rfc5785>.

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

9. Informative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,

and C. Mortimore, "OpenID Connect Core 1.0 incorporating

errata set 1", 8 November 2014, <http://openid.net/specs/

openid-connect-core-1_0.html>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Campbell, B., Bradley, J., and H. Tschofenig, "Resource

Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/

RFC8707, February 2020, <https://www.rfc-editor.org/info/

rfc8707>.

IANA, "Well-Known URIs", <https://www.iana.org/

assignments/well-known-uris>.

Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,

"OAuth 2.0 Security Best Current Practice", Work in

Progress, Internet-Draft, draft-ietf-oauth-security-

topics-16, 5 October 2020, <https://tools.ietf.org/html/

draft-ietf-oauth-security-topics-16>.

Hardt, D., Parecki, A., and T. Lodderstedt,

"The OAuth 2.1 Authorization Framework", Work in

Progress, Internet-Draft, draft-ietf-oauth-v2-1-00, 30

https://www.rfc-editor.org/info/rfc5785
https://www.rfc-editor.org/info/rfc5785
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707
https://www.iana.org/assignments/well-known-uris
https://www.iana.org/assignments/well-known-uris
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16

[RFC7636]

July 2020, <https://tools.ietf.org/html/draft-ietf-oauth-

v2-1-00>.

Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof

Key for Code Exchange by OAuth Public Clients", RFC 7636,

DOI 10.17487/RFC7636, September 2015, <https://www.rfc-

editor.org/info/rfc7636>.

Appendix A. Acknowledgements

I wanted to thank the Academy, the viewers at home, etc..

Appendix B. Document History

[[To be removed from the final specification]]

-00

Literally willed into existence by a long haired gentleman from

the Seattle area

Authors' Addresses

Vittorio Bertocci

auth0.com

Email: vittorio@auth0.com

Brian Campbell

Ping Identity

Email: bcampbell@pingidentity.com

¶

¶

¶

*

¶

https://tools.ietf.org/html/draft-ietf-oauth-v2-1-00
https://tools.ietf.org/html/draft-ietf-oauth-v2-1-00
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7636
mailto:vittorio@auth0.com
mailto:bcampbell@pingidentity.com

	Token Mediating and session Information Backend For Frontend
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Topology and Roles
	1.2. Protocol Flow

	2. Conventions and Definitions
	3. Endpoints
	3.1. The bff-token Endpoint
	3.2. The bff-sessioninfo Endpoint

	4. Requesting Access Tokens to the Backend
	4.1. Access Token Request
	4.2. Access Token Response
	4.3. Errors
	4.3.1. No valid session found
	4.3.2. Backend cannot perform a request to the authorization server
	4.3.3. The backend request to the authorization server fails

	5. Requesting Session Information from the Backend
	5.1. Session Information Request
	5.2. Session Information Response
	5.3. Error

	6. Security Considerations
	6.1. Frontend should not persist access tokens in local storage
	6.2. Mismatch between security characteristics of token requestor and API caller
	6.3. Mismatch between scopes in a request vs cached tokens
	6.4. Resource server colocated with the backend

	7. IANA Considerations
	8. Normative References
	9. Informative References
	Appendix A. Acknowledgements
	Appendix B. Document History
	Authors' Addresses

