
NFSv4 B. Halevy
Internet-Draft T. Haynes
Intended status: Informational Primary Data
Expires: October 19, 2014 April 17, 2014

Parallel NFS (pNFS) Flexible Files Layout
draft-bhalevy-nfsv4-flex-files-02.txt

Abstract

 Parallel NFS (pNFS) extends Network File System version 4 (NFSv4) to
 allow clients to directly access file data on the storage used by the
 NFSv4 server. This ability to bypass the server for data access can
 increase both performance and parallelism, but requires additional
 client functionality for data access, some of which is dependent on
 the class of storage used, i.e., the Layout Type. The main pNFS
 operations and data types in NFSv4 Minor version 1 specify a layout-
 type-independent layer; layout-type-specific information is conveyed
 using opaque data structures whose internal structure is further
 defined by the particular layout type specification. This document
 specifies the NFSv4.1 Flexible Files pNFS Layout as a companion to
 the main NFSv4 Minor version 1 specification for use of pNFS with
 Data Servers over NFSv4 or higher minor versions using flexible, per-
 file striping topology.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 19, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Halevy & Haynes Expires October 19, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Flex Files Layout April 2014

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 3

2. Method of Operation . 3
2.1. Security models . 4
2.2. State and Locking Models 4

3. XDR Description of the Flexible Files Layout Protocol 5
3.1. Code Components Licensing Notice 5

4. Device Addressing and Discovery 7
4.1. pnfs_ff_device_addr 7
4.2. Data Server Multipathing 8

5. Flexible Files Layout . 9
5.1. pnfs_ff_layout . 9
5.2. Striping Topologies 13
5.2.1. PFSP_SPARSE_STRIPING 13
5.2.2. PFSP_DENSE_STRIPING 14
5.2.3. PFSP_RAID_4 . 15
5.2.4. PFSP_RAID_5 . 15
5.2.5. PFSP_RAID_PQ . 16
5.2.6. RAID Usage and Implementation Notes 17

5.3. Mirroring . 17
6. Recovering from Client I/O Errors 17
7. Flexible Files Layout Return 18
7.1. pflr_errno . 19
7.2. pnfs_ff_ioerr . 20
7.3. pnfs_ff_iostats . 21
7.4. pnfs_ff_layoutreturn 22

8. Flexible Files Creation Layout Hint 22
8.1. pnfs_ff_layouthint 22

9. Recalling Layouts . 24
9.1. CB_RECALL_ANY . 24

10. Client Fencing . 25
11. Security Considerations 25
12. Striping Topologies Extensibility 26
13. IANA Considerations . 26
14. Normative References . 26
Appendix A. Acknowledgments 27

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Halevy & Haynes Expires October 19, 2014 [Page 2]

Internet-Draft Flex Files Layout April 2014

Appendix B. RFC Editor Notes 28
 Authors' Addresses . 28

1. Introduction

 In pNFS, the file server returns typed layout structures that
 describe where file data is located. There are different layouts for
 different storage systems and methods of arranging data on storage
 devices. This document defines the layout used with file-based data
 servers that are accessed using the Network File System (NFS)
 Protocol: NFSv3 [RFC1813], NFSv4 [RFC3530], and NFSv4.1 [RFC5661].

 In contrast to the LAYOUT4_NFSV4_1_FILES layout type [RFC5661] that
 also uses NFSv4.1 to access the data server, the Flexible Files
 layout defines a model of device metadata and striping patterns that
 is inspired by the object layout [RFC5664] that provide flexible,
 per-file striping patterns and simple device information suitable
 aggregating standalone NFS servers into a centrally managed pNFS
 cluster.

 To provide a global state model equivalent to that of the files
 layout a back-end control protocol may be implemented between the
 metadata server (MDS) and NFSv4.1 data servers (DSs). It is out of
 scope for this document to specify the wire protocol of such a
 protocol, yet the requirements for the protocol are specified in
 [RFC5661] and clarified in [pNFSLayouts].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Method of Operation

 This section describes the semantics and format of flexible file-
 based layouts for pNFS. Flexible file-based layouts use the
 LAYOUT4_FLEX_FILES layout type. The LAYOUT4_FLEX_FILES type defines
 striping data across multiple NFS Data Servers.

 For the purpose of this discussion, we will distinguish between user
 files served by the metadata server, to be referred to as User Files;
 vs. user files served by Data Servers, to be referred to as Component
 Objects.

 Component Objects are addressable by their NFS filehandle. Each
 Component Object may store a whole User File or parts of it, in case
 the User File is striped across multiple Component Objects. The

https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5664
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc2119

Halevy & Haynes Expires October 19, 2014 [Page 3]

Internet-Draft Flex Files Layout April 2014

 striping pattern is provided by pfl_striping_pattern as defined
 below.

 Data Servers may be accessed using different versions of the NFS
 protocol. It is required that the server MUST use Data Servers of
 the same NFS version and minor version for striping data within each
 layout. The NFS version and minor version define the respective
 security, state, and locking models to be used, as described below.

2.1. Security models

 With NFSv3 Data Servers, the Metadata Server uses synthetic uids and
 gids for the Component Objects, where the uid owner of the Component
 Objects is allowed read/write access and the gid owner is allowed
 read only access. As part of the layout, the client is provided with
 the rpc credentials to be used (XREF pfcf_auth) to access the Object.
 Fencing off clients is achieved by using SETATTR by the server to
 change the uid and/or gid owners of the Component Objects to
 implicitly revoke the outstanding rpc credentials. Note: it is
 recommended to implement common access control methods at the Data
 Server filesystem exports level to allow only the Metadata Server
 root (super user) access to the Data Server, and to set the owner of
 all directories holding Component Objects to the root user. This
 security method, when using weak auth flavors such as AUTH_SYS,
 provides a practical model to enforce access control and fence off
 cooperative clients, but it can not protect against malicious
 clients; hence it provides a level of security equivalent to NFSv3.

 With NFSv4.x Data Servers, the Metadata Server sets the user and
 group owners, mode bits, and ACL of the Component Objects to be the
 same as the User File. And the client must authenticate with the
 Data Server and go through the same authorization process it would go
 through via the Metadata Server.

2.2. State and Locking Models

 User File OPEN, LOCK, and DELEGATION operations are always executed
 only against the Metadata Server.

 With NFSv4 Data Servers, the Metadata Server, in response to the
 state changing operation, executes them against the respective
 Component Objects on the Data Server(s). It then sends the Data
 Server open stateid as part of the layout (see the pfcf_stateid in

Section 5.1) and it is then used by the client for executing READ/
 WRITE operations against the Data Server.

Halevy & Haynes Expires October 19, 2014 [Page 4]

Internet-Draft Flex Files Layout April 2014

 Standalone NFSv4.1 Data Servers that do not return the
 EXCHGID4_FLAG_USE_PNFS_DS flag to EXCHANGE_ID are used the same way
 as NFSv4 Data Servers.

 NFSv4.1 Clustered Data Servers that do identify themselves with the
 EXCHGID4_FLAG_USE_PNFS_DS flag to EXCHANGE_ID use a back-end control
 protocol as described in [RFC5661] to implement a global stateid
 model as defined there.

3. XDR Description of the Flexible Files Layout Protocol

 This document contains the external data representation (XDR)
 [RFC4506] description of the NFSv4.1 flexible files layout protocol.
 The XDR description is embedded in this document in a way that makes
 it simple for the reader to extract into a ready-to-compile form.
 The reader can feed this document into the following shell script to
 produce the machine readable XDR description of the NFSv4.1 objects
 layout protocol:

 #!/bin/sh
 grep '^ *///' $* | sed 's?^ */// ??' | sed 's?^ *///$??'

 That is, if the above script is stored in a file called "extract.sh",
 and this document is in a file called "spec.txt", then the reader can
 do:

 sh extract.sh < spec.txt > pnfs_flex_files_prot.x

 The effect of the script is to remove leading white space from each
 line, plus a sentinel sequence of "///".

 The embedded XDR file header follows. Subsequent XDR descriptions,
 with the sentinel sequence are embedded throughout the document.

 Note that the XDR code contained in this document depends on types
 from the NFSv4.1 nfs4_prot.x file [RFC5662]. This includes both nfs
 types that end with a 4, such as offset4, length4, etc., as well as
 more generic types such as uint32_t and uint64_t.

3.1. Code Components Licensing Notice

 Both the XDR description and the scripts used for extracting the XDR
 description are Code Components as described in Section 4 of "Legal
 Provisions Relating to IETF Documents" [LEGAL]. These Code
 Components are licensed according to the terms of that document.

 /// /*
 /// * Copyright (c) 2012 IETF Trust and the persons identified

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc5662

Halevy & Haynes Expires October 19, 2014 [Page 5]

Internet-Draft Flex Files Layout April 2014

 /// * as authors of the code. All rights reserved.
 /// *
 /// * Redistribution and use in source and binary forms, with
 /// * or without modification, are permitted provided that the
 /// * following conditions are met:
 /// *
 /// * o Redistributions of source code must retain the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer.
 /// *
 /// * o Redistributions in binary form must reproduce the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer in the documentation and/or other
 /// * materials provided with the distribution.
 /// *
 /// * o Neither the name of Internet Society, IETF or IETF
 /// * Trust, nor the names of specific contributors, may be
 /// * used to endorse or promote products derived from this
 /// * software without specific prior written permission.
 /// *
 /// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 /// * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// *
 /// * This code was derived from draft-bhalevy-nfsv4-flex-files-01.
 [[RFC Editor: please insert RFC number if needed]]
 /// * Please reproduce this note if possible.
 /// */
 ///
 /// /*
 /// * pnfs_flex_files_prot.x
 /// */
 ///
 /// /*
 /// * The following include statements are for example only.
 /// * The actual XDR definition files are generated separately

https://datatracker.ietf.org/doc/html/draft-bhalevy-nfsv4-flex-files-01

Halevy & Haynes Expires October 19, 2014 [Page 6]

Internet-Draft Flex Files Layout April 2014

 /// * and independently and are likely to have a different name.
 /// */
 /// %#include <nfs4_prot.x>
 /// %#include <rpc_prot.x>
 ///

4. Device Addressing and Discovery

 Data operations to a data server require the client to know the
 network address of the data server. The GETDEVICEINFO NFSv4.1
 operation is used by the client to retrieve that information.

4.1. pnfs_ff_device_addr

 The pnfs_ff_device_addr data structure is returned by the server as
 the storage-protocol-specific opaque field da_addr_body in the
 device_addr4 structure by a successful GETDEVICEINFO operation
 [RFC5661].

 /// struct pnfs_ff_device_addr {
 /// multipath_list4 pfda_netaddrs;
 /// uint32_t pfda_version;
 /// uint32_t pfda_minorversion;
 /// pathname4 pfda_path;
 /// };
 ///

 The pfda_netaddrs field is used to locate the data server. It MUST
 be set by the server to a list holding one or more of the device
 network addresses.

 The pfda_version and pfda_minorversion represent the NFS protocol to
 be used to access the data server. This layout specification defines
 the semantics for pfda_versions 3 and 4. If pfda_version equals 3
 then server MUST set pfda_minorversion to 0 and the client MUST
 access the data server using the NFSv3 protocol [RFC1813]. If
 pfda_version equals 4 then the server MUST set pfda_minorversion to
 either 0 or 1 and the client MUST access the data server using NFSv4
 [RFC3530] or NFSv4.1 [RFC5661], respectively.

 The pfda_path MAY be set by the server to an exported path on the
 data server for device identification. If provided, the path MUST
 exist and be accessible to the client. If the path does not exist,
 the client MUST ignore this device information and any layouts
 referring to the respective deviceid until valid device information
 is acquired.

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires October 19, 2014 [Page 7]

Internet-Draft Flex Files Layout April 2014

4.2. Data Server Multipathing

 The flexible file layout supports multipathing to multiple data
 server addresses. Data-server-level multipathing is used for
 bandwidth scaling via trunking and for higher availability of use in
 the case of a data-server failure. Multipathing allows the client to
 switch to another data server address which may be that of another
 data server that is exporting the same data stripe unit, without
 having to contact the metadata server for a new layout.

 To support data server multipathing, pfda_netaddrs contains an array
 of one more data server network addresses. This array (data type
 multipath_list4) represents a list of data servers (each identified
 by a network address), with the possibility that some data servers
 will appear in the list multiple times.

 The client is free to use any of the network addresses as a
 destination to send data server requests. If some network addresses
 are less optimal paths to the data than others, then the MDS SHOULD
 NOT include those network addresses in pfda_netaddrs. If less
 optimal network addresses exist to provide failover, the RECOMMENDED
 method to offer the addresses is to provide them in a replacement
 device-ID-to-device-address mapping, or a replacement device ID.
 When a client finds no response from the data server using all
 addresses available in pfda_netaddrs, it SHOULD send a GETDEVICEINFO
 to attempt to replace the existing device-ID-to-device-address
 mappings. If the MDS detects that all network paths represented by
 pfda_netaddrs are unavailable, the MDS SHOULD send a
 CB_NOTIFY_DEVICEID (if the client has indicated it wants device ID
 notifications for changed device IDs) to change the device-ID-to-
 device-address mappings to the available addresses. If the device ID
 itself will be replaced, the MDS SHOULD recall all layouts with the
 device ID, and thus force the client to get new layouts and device ID
 mappings via LAYOUTGET and GETDEVICEINFO.

 Generally, if two network addresses appear in pfda_netaddrs, they
 will designate the same data server. When the data server is
 accessed over NFSv4.1 or higher minor version the two data server
 addresses will support the implementation of client ID or session
 trunking (the latter is RECOMMENDED) as defined in [RFC5661]. The
 two data server addresses will share the same server owner or major
 ID of the server owner. It is not always necessary for the two data
 server addresses to designate the same server with trunking being
 used. For example, the data could be read-only, and the data consist
 of exact replicas.

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires October 19, 2014 [Page 8]

Internet-Draft Flex Files Layout April 2014

5. Flexible Files Layout

 The layout4 type is defined in [RFC5662] as follows:

 /// enum layouttype4 {
 /// LAYOUT4_NFSV4_1_FILES = 1,
 /// LAYOUT4_OSD2_OBJECTS = 2,
 /// LAYOUT4_BLOCK_VOLUME = 3,
 /// LAYOUT4_FLEX_FILES = 4
 [[RFC Editor: please modify the LAYOUT4_FLEX_FILES
 to be the layouttype assigned by IANA]]
 /// };
 ///
 /// struct layout_content4 {
 /// layouttype4 loc_type;
 /// opaque loc_body<>;
 /// };
 ///
 /// struct layout4 {
 /// offset4 lo_offset;
 /// length4 lo_length;
 /// layoutiomode4 lo_iomode;
 /// layout_content4 lo_content;
 /// };

 This document defines structure associated with the layouttype4 value
 LAYOUT4_FLEX_FILES. [RFC5661] specifies the loc_body structure as an
 XDR type "opaque". The opaque layout is uninterpreted by the generic
 pNFS client layers, but obviously must be interpreted by the flexible
 files layout driver. This section defines the structure of this
 opaque value, pnfs_ff_layout4.

5.1. pnfs_ff_layout

https://datatracker.ietf.org/doc/html/rfc5662
https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires October 19, 2014 [Page 9]

Internet-Draft Flex Files Layout April 2014

 /// enum pnfs_ff_striping_pattern {
 /// PFSP_SPARSE_STRIPING = 1,
 /// PFSP_DENSE_STRIPING = 2,
 /// PFSP_RAID_4 = 4,
 /// PFSP_RAID_5 = 5,
 /// PFSP_RAID_PQ = 6
 /// };
 ///
 /// enum pnfs_ff_comp_type {
 /// PNFS_FF_COMP_MISSING = 0,
 /// PNFS_FF_COMP_PACKED = 1,
 /// PNFS_FF_COMP_FULL = 2
 /// };
 ///
 /// struct pnfs_ff_comp_full {
 /// deviceid4 pfcf_deviceid;
 /// nfs_fh4 pfcf_fhandle;
 /// stateid4 pfcf_stateid;
 /// opaque_auth pfcf_auth;
 /// uint32_t pfcf_metric;
 /// };
 ///
 /// union pnfs_ff_comp switch (pnfs_ff_comp_type pfc_type) {
 /// case PNFS_FF_COMP_MISSING:
 /// void;
 ///
 /// case PNFS_FF_COMP_PACKED:
 /// deviceid4 pfcp_deviceid;
 ///
 /// case PNFS_FF_COMP_FULL:
 /// pnfs_ff_comp_full pfcp_full;
 /// };
 ///
 /// struct pnfs_ff_layout {
 /// pnfs_ff_striping_pattern pfl_striping_pattern;
 /// uint32_t pfl_num_comps;
 /// uint32_t pfl_mirror_cnt;
 /// length4 pfl_stripe_unit;
 /// nfs_fh4 pfl_global_fh;
 /// uint32_t pfl_comps_index;
 /// pnfs_ff_comp pfl_comps<>;
 /// };
 ///

 The pnfs_ff_layout structure specifies a layout over a set of
 Component Objects. The layout parameterizes the algorithm that maps
 the file's contents within the returned byte range, as represented by
 lo_offset and lo_length, over the Component Objects.

Halevy & Haynes Expires October 19, 2014 [Page 10]

Internet-Draft Flex Files Layout April 2014

 It is possible that the file is concatenated from more than one
 layout segment. Each layout segment MAY represent different striping
 parameters, applying respectively only to the layout segment byte
 range.

 This section provides a brief introduction to the layout parameters.
 See Section 5.2 for a more detailed description of the different
 striping schemes and the respective interpretation of the layout
 parameters for each striping scheme.

 In addition to mapping data using simple striping schemes where loss
 of a single component object results in data loss, the layout
 parameters support mirroring and more advanced redundancy schemes
 that protect against loss of component objects. pfl_striping_pattern
 represents the algorithm to be used for mapping byte offsets in the
 file address space to corresponding component objects in the returned
 layout and byte offsets in the component's address space.
 pfl_striping_pattern also represents methods for storing and
 retrieving redundant data that can be used to recover from failure or
 loss of component objects.

 pfl_num_comps is the total number of component objects the file is
 striped over within the returned byte range, not counting mirrored
 components (See pfl_mirror_cnt below). Note that the server MAY grow
 the file by adding more components to the stripe while clients hold
 valid layouts until the file has reached its final stripe width.

 pfl_mirror_cnt represents the number of mirrors each component in the
 stripe has. If there is no mirroring then pfm_mirror_cnt MUST be 0.
 Otherwise, the number of entries listed in pfl_comps MUST be a
 multiple of (pfl_mirror_cnt + 1).

 pfl_stripe_unit is the number of bytes placed on one component before
 advancing to the next one in the list of components. When the file
 is striped over a single component object (pfl_num_comps equals to
 1), the stripe unit has no use and the server SHOULD set it to the
 server default value or to zero; otherwise, pfl_stripe_unit MUST NOT
 be set to zero.

 The pfl_comps field represents an array of component objects. The
 data placement algorithm that maps file data onto component objects
 assumes that each component object occurs exactly once in the array
 of components. Therefore, component objects MUST appear in the
 pfl_comps array only once. The components array may represent all
 objects comprising the file, in which case pfl_comps_index is set to
 zero and the number of entries in the pfl_comps array is equal to
 pfl_num_comps * (pfl_mirror_cnt + 1). The server MAY return fewer
 components than pfl_num_comps, provided that the returned byte range

Halevy & Haynes Expires October 19, 2014 [Page 11]

Internet-Draft Flex Files Layout April 2014

 represented by lo_offset and lo_count maps in whole into the set of
 returned component objects. In this case, pfl_comps_index represents
 the logical position of the returned components array, pfl_comps,
 within the full array of components that comprise the file.
 pfl_comps_index MUST be a multiple of (pfl_mirror_cnt + 1).

 Each component object in the pfl_comps array is described by the
 pnfs_ff_comp type.

 When a component object is unavailable pfc_type is set to
 PNFS_FF_COMP_MISSING and no other information for this component is
 returned. When a data redundancy scheme is being used, as
 represented by pfl_striping_pattern, the client MAY use a respective
 data recovery algorithm to reconstruct data that is logically stored
 on the missing component using user data and redundant data stored on
 the available components in the containing stripe.

 The server MUST set the same pfc_type for all available components to
 either PNFS_FF_COMP_PACKED or PNFS_FF_COMP_FULL.

 When NFSv4.1 Clustered Data Servers are used, the metadata server
 implements the global state model where all data servers share the
 same stateid and filehandle for the file. In such case, the client
 MUST use the open, delegation, or lock stateid returned by the
 metadata server for the file for accessing the Data Servers for READ
 and WRITE; the global filehandle to be used by the client is provided
 by pfl_global_fh. If the metadata server filehandle for the file is
 being used by all data servers then pfl_global_fh MAY be set to an
 empty filehandle.

 pfcp_deviceid or pfcf_deviceid provide the deviceid of the data
 server holding the Component Object.

 When standalone data servers are used, either over NFSv4 or NFSv4.1,
 pfl_global_fh SHOULD be set to an empty filehandle and it MUST be
 ignored by the client and pfcf_fhandle provides the filehandle of the
 Data Server file holding the Component Object, and pfcf_stateid
 provides the stateid to be used by the client to access the file.

 For NFSv3 Data Servers, pfcf_auth provides the RPC credentials to be
 used by the client to access the Component Objects. For NFSv4.x Data
 Servers, the server SHOULD use the AUTH_NONE flavor and a zero length
 opaque body to minimize the returned structure length. The client
 MUST ignore pfxf_auth in this case.

 When pfl_mirror_cnt is not zero pfcf_metric indicates the distance to
 the client the distance of the respective component object, otherwise
 the server MUST set pfcf_metric to zero. When reading data, the

Halevy & Haynes Expires October 19, 2014 [Page 12]

Internet-Draft Flex Files Layout April 2014

 client the client is advised to read from components with the lowest
 pfcf_metric. When there are several components with the same
 pfcf_metric client implementations may implement a load distribution
 algorithm to evenly distribute the read load across several devices
 and by so provide larger bandwidth.

5.2. Striping Topologies

 This section describes the different data mapping schemes in detail.

 pnfs_ff_striping_pattern determines the algorithm and placement of
 redundant data. This section defines the different redundancy
 algorithms. Note: The term "RAID" (Redundant Array of Independent
 Disks) is used in this document to represent an array of Component
 Objects that store data for an individual User File. The objects are
 stored on independent Data Servers. User File data is encoded and
 striped across the array of Component Objects using algorithms
 developed for block-based RAID systems.

5.2.1. PFSP_SPARSE_STRIPING

 The mapping from the logical offset within a file (L) to the
 Component Object C and object-specific offset O is direct and
 straight forward as defined by the following equations:

 L: logical offset into the file

 W: stripe width
 W = pfl_num_comps

 S: number of bytes in a stripe
 S = W * pfl_stripe_unit

 N: stripe number
 N = L / S

 C: component index corresponding to L
 C = (L % S) / pfl_stripe_unit

 O: The component offset corresponding to L
 O = L

 Note that this computation does not accommodate the same object
 appearing in the pfl_comps array multiple times. Therefore the
 server may not return layouts with the same object appearing multiple
 times. If needed the server can return multiple layout segments each
 covering a single instance of the object.

Halevy & Haynes Expires October 19, 2014 [Page 13]

Internet-Draft Flex Files Layout April 2014

 PFSP_SPARSE_STRIPING means there is no parity data, so all bytes in
 the component objects are data bytes located by the above equations
 for C and O. If a component object is marked as
 PNFS_FF_COMP_MISSING, the pNFS client MUST either return an I/O error
 if this component is attempted to be read or, alternatively, it can
 retry the READ against the pNFS server.

5.2.2. PFSP_DENSE_STRIPING

 The mapping from the logical offset within a file (L) to the
 component object C and object-specific offset O is defined by the
 following equations:

 L: logical offset into the file

 W: stripe width
 W = pfl_num_comps

 S: number of bytes in a stripe
 S = W * pfl_stripe_unit

 N: stripe number
 N = L / S

 C: component index corresponding to L
 C = (L % S) / pfl_stripe_unit

 O: The component offset corresponding to L
 O = (N * pfl_stripe_unit) + (L % pfl_stripe_unit)

 Note that this computation does not accommodate the same object
 appearing in the pfl_comps array multiple times. Therefore the
 server may not return layouts with the same object appearing multiple
 times. If needed the server can return multiple layout segments each
 covering a single instance of the object.

 PFSP_DENSE_STRIPING means there is no parity data, so all bytes in
 the component objects are data bytes located by the above equations
 for C and O. If a component object is marked as
 PNFS_FF_COMP_MISSING, the pNFS client MUST either return an I/O error
 if this component is attempted to be read or, alternatively, it can
 retry the READ against the pNFS server.

 Note that the layout depends on the file size, which the client
 learns from the generic return parameters of LAYOUTGET, by doing
 GETATTR commands to the Metadata Server. The client uses the file
 size to decide if it should fill holes with zeros or return a short
 read. Striping patterns can cause cases where Component Objects are

Halevy & Haynes Expires October 19, 2014 [Page 14]

Internet-Draft Flex Files Layout April 2014

 shorter than other components because a hole happens to correspond to
 the last part of the Component Object.

5.2.3. PFSP_RAID_4

 PFSP_RAID_4 means that the last component object in the stripe
 contains parity information computed over the rest of the stripe with
 an XOR operation. If a Component Object is unavailable, the client
 can read the rest of the stripe units in the damaged stripe and
 recompute the missing stripe unit by XORing the other stripe units in
 the stripe. Or the client can replay the READ against the pNFS
 server that will presumably perform the reconstructed read on the
 client's behalf.

 When parity is present in the file, then the number of parity devices
 is taken into account in the above equations when calculating (D),
 the number of data devices in a stripe, as follows:

 P: number of parity devices in each stripe
 P = 1

 D: number of data devices in a stripe
 D = W - P

 I: parity device index
 I = D

5.2.4. PFSP_RAID_5

 PNFS_OBJ_RAID_5 means that the position of the parity data is rotated
 on each stripe. In the first stripe, the last component holds the
 parity. In the second stripe, the next-to-last component holds the
 parity, and so on. In this scheme, all stripe units are rotated so
 that I/O is evenly spread across objects as the file is read
 sequentially. The rotated parity layout is illustrated here, with
 hexadecimal numbers indicating the stripe unit.

 0 1 2 P
 4 5 P 3
 8 P 6 7
 P 9 a b

 Note that the math for RAID_5 is similar to RAID_4 only that the
 device indices for each stripe are rotated backwards. So start with
 the equations above for RAID_4, then compute the rotation as
 described below.

Halevy & Haynes Expires October 19, 2014 [Page 15]

Internet-Draft Flex Files Layout April 2014

 P: number of parity devices in each stripe
 P = 1

 PC: Parity Cycle
 PC = W

 R: The parity rotation index
 (N is as computed in above equations for RAID-4)
 R = N % PC

 I: parity device index
 I = (W + W - (R + 1) * P) % W

 Cr: The rotated device index
 (C is as computed in the above equations for RAID-4)
 Cr = (W + C - (R * P)) % W

 Note: W is added above to avoid negative numbers modulo math.

5.2.5. PFSP_RAID_PQ

 PFSP_RAID_PQ is a double-parity scheme that uses the Reed-Solomon P+Q
 encoding scheme [ErrorCorrectingCodes]. In this layout, the last two
 component objects hold the P and Q data, respectively. P is parity
 computed with XOR. The Q computation is described in detail in
 [MathOfRAID-6]. The same polynomial "x^8+x^4+x^3+x^2+1" and Galois
 field size of 2^8 are used here. Clients may simply choose to read
 data through the metadata server if two or more components are
 missing or damaged.

 The equations given above for embedded parity can be used to map a
 file offset to the correct component object by setting the number of
 parity components (P) to 2 instead of 1 for RAID-5 and computing the
 Parity Cycle length as the Lowest Common Multiple of pfl_num_comps
 and P, divided by P, as described below. Note: This algorithm can be
 used also for RAID-5 where P=1.

 P: number of parity devices
 P = 2

 PC: Parity cycle:
 PC = LCM(W, P) / P

 Q: The device index holding the Q component
 (I is as computed in the above equations for RAID-5)
 Qdev = (I + 1) % W

Halevy & Haynes Expires October 19, 2014 [Page 16]

Internet-Draft Flex Files Layout April 2014

5.2.6. RAID Usage and Implementation Notes

 RAID layouts with redundant data in their stripes require additional
 serialization of updates to ensure correct operation. Otherwise, if
 two clients simultaneously write to the same logical range of an
 object, the result could include different data in the same ranges of
 mirrored tuples, or corrupt parity information. It is the
 responsibility of the metadata server to enforce serialization
 requirements such as this. For example, the metadata server may do
 so by not granting overlapping write layouts within mirrored objects.

 Many alternative encoding schemes exist for P >= 2
 [ErasureCodingLibraries]. These involve P or Q equations different
 than those used in PFSP_RAID_PQ. Thus, if one of these schemes is to
 be used in the future, a distinct value must be added to
 pnfs_ff_striping_pattern for it. While Reed-Solomon codes are well
 understood, recently discovered schemes such as Liberation codes are
 more computationally efficient for small group_widths, and Cauchy
 Reed-Solomon codes are more computationally efficient for higher
 values of P.

5.3. Mirroring

 The pfl_mirror_cnt is used to replicate a file by replicating its
 Component Objects. If there is no mirroring, then pfs_mirror_cnt
 MUST be 0. If pfl_mirror_cnt is greater than zero, then the size of
 the pfl_comps array MUST be a multiple of (pfl_mirror_cnt + 1).
 Thus, for a classic mirror on two objects, pfl_mirror_cnt is one.
 Note that mirroring can be defined over any striping pattern.

 Replicas are adjacent in the olo_components array, and the value C
 produced by the above equations is not a direct index into the
 pfl_comps array. Instead, the following equations determine the
 replica component index RCi, where i ranges from 0 to pfl_mirror_cnt.

 FW = size of pfl_comps array / (pfl_mirror_cnt+1)

 C = component index for striping or two-level striping
 as calculated using above equations

 i ranges from 0 to pfl_mirror_cnt, inclusive
 RCi = C * (pfl_mirror_cnt+1) + i

6. Recovering from Client I/O Errors

 The pNFS client may encounter errors when directly accessing the Data
 Servers. However, it is the responsibility of the Metadata Server to
 recover from the I/O errors. When the LAYOUT4_FLEX_FILES layout type

Halevy & Haynes Expires October 19, 2014 [Page 17]

Internet-Draft Flex Files Layout April 2014

 is used, the client MUST report the I/O errors to the server at
 LAYOUTRETURN time using the pflr_ioerr4 structure (see Section 7.1).

 The metadata server analyzes the error and determines the required
 recovery operations such as repairing any parity inconsistencies,
 recovering media failures, or reconstructing missing objects.

 The metadata server SHOULD recall any outstanding layouts to allow it
 exclusive write access to the stripes being recovered and to prevent
 other clients from hitting the same error condition. In these cases,
 the server MUST complete recovery before handing out any new layouts
 to the affected byte ranges.

 Although it MAY be acceptable for the client to propagate a
 corresponding error to the application that initiated the I/O
 operation and drop any unwritten data, the client SHOULD attempt to
 retry the original I/O operation by requesting a new layout using
 LAYOUTGET and retry the I/O operation(s) using the new layout, or the
 client MAY just retry the I/O operation(s) using regular NFS READ or
 WRITE operations via the metadata server. The client SHOULD attempt
 to retrieve a new layout and retry the I/O operation using the Data
 Server first and only if the error persists, retry the I/O operation
 via the metadata server.

7. Flexible Files Layout Return

 layoutreturn_file4 is used in the LAYOUTRETURN operation to convey
 layout-type specific information to the server. It is defined in
 [RFC5661] as follows:

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires October 19, 2014 [Page 18]

Internet-Draft Flex Files Layout April 2014

 struct layoutreturn_file4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 /* layouttype4 specific data */
 opaque lrf_body<>;
 };

 union layoutreturn4 switch(layoutreturn_type4 lr_returntype) {
 case LAYOUTRETURN4_FILE:
 layoutreturn_file4 lr_layout;
 default:
 void;
 };

 struct LAYOUTRETURN4args {
 /* CURRENT_FH: file */
 bool lora_reclaim;
 layoutreturn_stateid lora_recallstateid;
 layouttype4 lora_layout_type;
 layoutiomode4 lora_iomode;
 layoutreturn4 lora_layoutreturn;
 };

 If the lora_layout_type layout type is LAYOUT4_FLEX_FILES, then the
 lrf_body opaque value is defined by the pnfs_ff_layoutreturn4 type.

 The pnfs_ff_layoutreturn4 type allows the client to report I/O error
 information or layout usage statistics back to the metadata server as
 defined below.

7.1. pflr_errno

 /// enum pflr_errno {
 /// PNFS_FF_ERR_EIO = 1,
 /// PNFS_FF_ERR_NOT_FOUND = 2,
 /// PNFS_FF_ERR_NO_SPACE = 3,
 /// PNFS_FF_ERR_BAD_STATEID = 4,
 /// PNFS_FF_ERR_NO_ACCESS = 5,
 /// PNFS_FF_ERR_UNREACHABLE = 6,
 /// PNFS_FF_ERR_RESOURCE = 7
 /// };
 ///

 pflr_errno4 is used to represent error types when read/write errors
 are reported to the metadata server. The error codes serve as hints

Halevy & Haynes Expires October 19, 2014 [Page 19]

Internet-Draft Flex Files Layout April 2014

 to the metadata server that may help it in diagnosing the exact
 reason for the error and in repairing it.

 PNFS_FF_ERR_EIO indicates the operation failed because the Data
 Server experienced a failure trying to access the object. The
 most common source of these errors is media errors, but other
 internal errors might cause this as well. In this case, the
 metadata server should go examine the broken object more closely;
 hence, it should be used as the default error code.

 PNFS_FF_ERR_NOT_FOUND indicates the object ID specifies a Component
 Object that does not exist on the Data Server.

 PNFS_FF_ERR_NO_SPACE indicates the operation failed because the Data
 Server ran out of free capacity during the operation.

 PNFS_FF_ERR_BAD_STATEID indicates the stateid is not valid.

 PNFS_FF_ERR_NO_ACCESS indicates the RPC credentials do not allow the
 requested operation. This may happen when the client is fenced
 off. The client will need to return the layout and get a new one
 with fresh credentials.

 PNFS_FF_ERR_UNREACHABLE indicates the client did not complete the I/
 O operation at the Data Server due to a communication failure.
 Whether or not the I/O operation was executed by the Data Server
 is undetermined.

 PNFS_FF_ERR_RESOURCE indicates the client did not issue the I/O
 operation due to a local problem on the initiator (i.e., client)
 side, e.g., when running out of memory. The client MUST guarantee
 that the Data Server WRITE operation was never sent.

7.2. pnfs_ff_ioerr

 /// struct pnfs_ff_ioerr {
 /// deviceid4 ioe_deviceid;
 /// nfs_fh4 ioe_fhandle;
 /// offset4 ioe_comp_offset;
 /// length4 ioe_comp_length;
 /// bool ioe_iswrite;
 /// pnfs_ff_errno ioe_errno;
 /// };
 ///

 The pnfs_ff_ioerr4 structure is used to return error indications for
 Component Objects that generated errors during data transfers. These
 are hints to the metadata server that there are problems with that

Halevy & Haynes Expires October 19, 2014 [Page 20]

Internet-Draft Flex Files Layout April 2014

 object. For each error, "ioe_deviceid", "ioe_fhandle",
 "ioe_comp_offset", and "ioe_comp_length" represent the Component
 Object and byte range within the object in which the error occurred;
 "ioe_iswrite" is set to "true" if the failed Data Server operation
 was data modifying, and "ioe_errno" represents the type of error.

 Component byte ranges in the optional pnfs_ff_ioerr4 structure are
 used for recovering the object and MUST be set by the client to cover
 all failed I/O operations to the component.

7.3. pnfs_ff_iostats

 /// struct pnfs_ff_iostats {
 /// offset4 ios_offset;
 /// length4 ios_length;
 /// uint32_t ios_duration;
 /// uint32_t ios_rd_count;
 /// uint64_t ios_rd_bytes;
 /// uint32_t ios_wr_count;
 /// uint64_t ios_wr_bytes;
 /// };
 ///

 With pNFS, the data transfers are performed directly between the pNFS
 client and the data servers. Therefore, the metadata server has no
 visibility to the I/O stream and cannot use any statistical
 information about client I/O to optimize data storage location.
 pnfs_ff_iostats4 MAY be used by the client to report I/O statistics
 back to the metadata server upon returning the layout. Since it is
 infeasible for the client to report every I/O that used the layout,
 the client MAY identify "hot" byte ranges for which to report I/O
 statistics. The definition and/or configuration mechanism of what is
 considered "hot" and the size of the reported byte range is out of
 the scope of this document. It is suggested for client
 implementation to provide reasonable default values and an optional
 run-time management interface to control these parameters. For
 example, a client can define the default byte range resolution to be
 1 MB in size and the thresholds for reporting to be 1 MB/second or 10
 I/O operations per second. For each byte range, ios_offset and
 ios_length represent the starting offset of the range and the range
 length in bytes. ios_duration represents the number of seconds the
 reported burst of I/O lasted. ios_rd_count, ios_rd_bytes,
 ios_wr_count, and ios_wr_bytes represent, respectively, the number of
 contiguous read and write I/Os and the respective aggregate number of
 bytes transferred within the reported byte range.

Halevy & Haynes Expires October 19, 2014 [Page 21]

Internet-Draft Flex Files Layout April 2014

7.4. pnfs_ff_layoutreturn

 /// struct pnfs_ff_layoutreturn {
 /// pnfs_ff_ioerr pflr_ioerr_report<>;
 /// pnfs_ff_iostats pflr_iostats_report<>;
 /// };
 ///

 When object I/O operations failed, "pflr_ioerr_report<>" is used to
 report these errors to the metadata server as an array of elements of
 type pnfs_ff_ioerr4. Each element in the array represents an error
 that occurred on the Component Object identified by <ioe_deviceid,
 ioe_fhandle>. If no errors are to be reported, the size of the
 pflr_ioerr_report<> array is set to zero. The client MAY also use
 "pflr_iostats_report<>" to report a list of I/O statistics as an
 array of elements of type pnfs_ff_iostats4. Each element in the
 array represents statistics for a particular byte range. Byte ranges
 are not guaranteed to be disjoint and MAY repeat or intersect.

8. Flexible Files Creation Layout Hint

 The layouthint4 type is defined in the [RFC5661] as follows:

 struct layouthint4 {
 layouttype4 loh_type;
 opaque loh_body<>;
 };

 The layouthint4 structure is used by the client to pass a hint about
 the type of layout it would like created for a particular file. If
 the loh_type layout type is LAYOUT4_FLEX_FILES, then the loh_body
 opaque value is defined by the pnfs_ff_layouthint type.

8.1. pnfs_ff_layouthint

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires October 19, 2014 [Page 22]

Internet-Draft Flex Files Layout April 2014

 /// union pnfs_ff_max_comps_hint switch (bool pfmx_valid) {
 /// case TRUE:
 /// uint32_t omx_max_comps;
 /// case FALSE:
 /// void;
 /// };
 ///
 /// union pnfs_ff_stripe_unit_hint switch (bool pfsu_valid) {
 /// case TRUE:
 /// length4 osu_stripe_unit;
 /// case FALSE:
 /// void;
 /// };
 ///
 /// union pnfs_ff_mirror_cnt_hint switch (bool pfmc_valid) {
 /// case TRUE:
 /// uint32_t omc_mirror_cnt;
 /// case FALSE:
 /// void;
 /// };
 ///
 /// union pnfs_ff_striping_pattern_hint switch (bool pfsp_valid) {
 /// case TRUE:
 /// pnfs_ff_striping_pattern pfsp_striping_pattern;
 /// case FALSE:
 /// void;
 /// };
 ///
 /// struct pnfs_ff_layouthint {
 /// pnfs_ff_max_comps_hint pflh_max_comps_hint;
 /// pnfs_ff_stripe_unit_hint pflh_stripe_unit_hint;
 /// pnfs_ff_mirror_cnt_hint pflh_mirror_cnt_hint;
 /// pnfs_ff_striping_pattern_hint pflh_striping_pattern_hint;
 /// };
 ///

 This type conveys hints for the desired data map. All parameters are
 optional so the client can give values for only the parameters it
 cares about, e.g. it can provide a hint for the desired number of
 mirrored components, regardless of the striping pattern selected for
 the file. The server should make an attempt to honor the hints, but
 it can ignore any or all of them at its own discretion and without
 failing the respective CREATE operation.

Halevy & Haynes Expires October 19, 2014 [Page 23]

Internet-Draft Flex Files Layout April 2014

9. Recalling Layouts

 The Flexible Files metadata server should recall outstanding layouts
 in the following cases:

 o When the file's security policy changes, i.e., Access Control
 Lists (ACLs) or permission mode bits are set.

 o When the file's layout changes, rendering outstanding layouts
 invalid.

 o When there are sharing conflicts. For example, the server will
 issue stripe-aligned layout segments for RAID-5 objects. To
 prevent corruption of the file's parity, multiple clients must not
 hold valid write layouts for the same stripes. An outstanding
 READ/WRITE (RW) layout should be recalled when a conflicting
 LAYOUTGET is received from a different client for LAYOUTIOMODE4_RW
 and for a byte range overlapping with the outstanding layout
 segment.

9.1. CB_RECALL_ANY

 The metadata server can use the CB_RECALL_ANY callback operation to
 notify the client to return some or all of its layouts. The
 [RFC5661] defines the following types:

 const RCA4_TYPE_MASK_FF_LAYOUT_MIN = -2;
 const RCA4_TYPE_MASK_FF_LAYOUT_MAX = -1;
 [[RFC Editor: please insert assigned constants]]

 struct CB_RECALL_ANY4args {
 uint32_t craa_objects_to_keep;
 bitmap4 craa_type_mask;
 };

 Typically, CB_RECALL_ANY will be used to recall client state when the
 server needs to reclaim resources. The craa_type_mask bitmap
 specifies the type of resources that are recalled and the
 craa_objects_to_keep value specifies how many of the recalled objects
 the client is allowed to keep. The Flexible Files layout type mask
 flags are defined as follows. They represent the iomode of the
 recalled layouts. In response, the client SHOULD return layouts of
 the recalled iomode that it needs the least, keeping at most
 craa_objects_to_keep object-based layouts.

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires October 19, 2014 [Page 24]

Internet-Draft Flex Files Layout April 2014

 /// enum pnfs_ff_cb_recall_any_mask {
 /// PNFS_FF_RCA4_TYPE_MASK_READ = -2,
 /// PNFS_FF_RCA4_TYPE_MASK_RW = -1
 [[RFC Editor: please insert assigned constants]]
 /// };
 ///

 The PNFS_FF_RCA4_TYPE_MASK_READ flag notifies the client to return
 layouts of iomode LAYOUTIOMODE4_READ. Similarly, the
 PNFS_FF_RCA4_TYPE_MASK_RW flag notifies the client to return layouts
 of iomode LAYOUTIOMODE4_RW. When both mask flags are set, the client
 is notified to return layouts of either iomode.

10. Client Fencing

 In cases where clients are uncommunicative and their lease has
 expired or when clients fail to return recalled layouts within a
 lease period, at the least the server MAY revoke client layouts and/
 or device address mappings and reassign these resources to other
 clients (see "Recalling a Layout" in [RFC5661]). To avoid data
 corruption, the metadata server MUST fence off the revoked clients
 from the respective objects as described in Section 2.1.

11. Security Considerations

 The pNFS extension partitions the NFSv4 file system protocol into two
 parts, the control path and the data path (storage protocol). The
 control path contains all the new operations described by this
 extension; all existing NFSv4 security mechanisms and features apply
 to the control path. The combination of components in a pNFS system
 is required to preserve the security properties of NFSv4 with respect
 to an entity accessing data via a client, including security
 countermeasures to defend against threats that NFSv4 provides
 defenses for in environments where these threats are considered
 significant.

 The metadata server enforces the file access-control policy at
 LAYOUTGET time. The client should use suitable authorization
 credentials for getting the layout for the requested iomode (READ or
 RW) and the server verifies the permissions and ACL for these
 credentials, possibly returning NFS4ERR_ACCESS if the client is not
 allowed the requested iomode. If the LAYOUTGET operation succeeds
 the client receives, as part of the layout, a set of credentials
 allowing it I/O access to the specified objects corresponding to the
 requested iomode. When the client acts on I/O operations on behalf
 of its local users, it MUST authenticate and authorize the user by
 issuing respective OPEN and ACCESS calls to the metadata server,
 similar to having NFSv4 data delegations. If access is allowed, the

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires October 19, 2014 [Page 25]

Internet-Draft Flex Files Layout April 2014

 client uses the corresponding (READ or RW) credentials to perform the
 I/O operations at the object storage devices. When the metadata
 server receives a request to change a file's permissions or ACL, it
 SHOULD recall all layouts for that file and it MUST fence off the
 clients holding outstanding layouts for the respective file by
 implicitly invalidating the outstanding credentials on all Component
 Objects comprising before committing to the new permissions and ACL.
 Doing this will ensure that clients re-authorize their layouts
 according to the modified permissions and ACL by requesting new
 layouts. Recalling the layouts in this case is courtesy of the
 server intended to prevent clients from getting an error on I/Os done
 after the client was fenced off.

12. Striping Topologies Extensibility

 New striping topologies that are not specified in this document may
 be specified using @@@. These must be documented in the IETF by
 submitting an RFC augmenting this protocol provided that:

 o New striping topologies MUST be wire-protocol compatible with the
 Flexible Files Layout protocol as specified in this document.

 o Some members of the data structures specified here may be declared
 as optional or manadatory-not-to-be-used.

 o Upon acceptance by the IETF as a RFC, new striping topology
 constants MUST be registered as describe in Section 13.

13. IANA Considerations

 As described in [RFC5661], new layout type numbers have been assigned
 by IANA. This document defines the protocol associated with the
 existing layout type number, LAYOUT4_FLEX_FILES.

 A new IANA registry should be assigned to register new data map
 striping topologies described by the enumerated type: @@@.

14. Normative References

 [ErasureCodingLibraries]
 Plank, James S., and Luo, Jianqiang and Schuman, Catherine
 D. and Xu, Lihao and Wilcox-O'Hearn, Zooko, , "A
 Performance Evaluation and Examination of Open-source
 Erasure Coding Libraries for Storage", 2007.

 [ErrorCorrectingCodes]
 MacWilliams, F. and N. Sloane, "The Theory of Error-
 Correcting Codes, Part I", 1977.

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires October 19, 2014 [Page 26]

Internet-Draft Flex Files Layout April 2014

 [LEGAL] IETF Trust, "Legal Provisions Relating to IETF Documents",
 November 2008, <http://trustee.ietf.org/docs/

IETF-Trust-License-Policy.pdf>.

 [MathOfRAID-6]
 Anvin, H., "The Mathematics of RAID-6", May 2009,
 <http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf>.

 [RFC1813] IETF, "NFS Version 3 Protocol Specification", RFC 1813,
 June 1995.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, April 2003.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, January 2010.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",

RFC 5662, January 2010.

 [RFC5664] Halevy, B., Ed., Welch, B., Ed., and J. Zelenka, Ed.,
 "Object-Based Parallel NFS (pNFS) Operations", RFC 5664,
 January 2010.

 [pNFSLayouts]
 Haynes, T., "Considerations for a New pNFS Layout Type",

draft-haynes-nfsv4-layout-types-02 (Work In Progress),
 April 2014.

Appendix A. Acknowledgments

 The pNFS Objects Layout was authored and revised by Brent Welch, Jim
 Zelenka, Benny Halevy, and Boaz Harrosh.

 Those who provided miscellaneous comments to early drafts of this
 document include: Matt W. Benjamin, Adam Emerson, Tom Haynes, J.
 Bruce Fields, and Lev Solomonov.

http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf
https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5662
https://datatracker.ietf.org/doc/html/rfc5664
https://datatracker.ietf.org/doc/html/draft-haynes-nfsv4-layout-types-02

Halevy & Haynes Expires October 19, 2014 [Page 27]

Internet-Draft Flex Files Layout April 2014

Appendix B. RFC Editor Notes

 [RFC Editor: please remove this section prior to publishing this
 document as an RFC]

 [RFC Editor: prior to publishing this document as an RFC, please
 replace all occurrences of RFCTBD10 with RFCxxxx where xxxx is the
 RFC number of this document]

Authors' Addresses

 Benny Halevy
 Primary Data, Inc.

 Email: bhalevy@primarydata.com
 URI: http://www.primarydata.com

 Thomas Haynes
 Primary Data, Inc.
 4300 El Camino Real Ste 100
 Los Altos, CA 94022
 USA

 Phone: +1 408 215 1519
 Email: thomas.haynes@primarydata.com

http://www.primarydata.com

Halevy & Haynes Expires October 19, 2014 [Page 28]

