
NFSv4 B. Halevy
Internet-Draft T. Haynes
Intended status: Informational Primary Data
Expires: December 12, 2014 June 10, 2014

Parallel NFS (pNFS) Flexible File Layout
draft-bhalevy-nfsv4-flex-files-03.txt

Abstract

 The Parallel Network File System (pNFS) allows a separation between
 the metadata and data for a file. The metadata file access is
 handled via Network File System version 4 (NFSv4) minor version 1
 (NFSv4.1) and the data file access is specific to the protocol being
 used between the client and storage device. The client is informed
 by the metadata server as to which protocol to use via a Layout Type.
 The Flexible File Layout Type is defined in this document as an
 extension to NFSv4.1 to allow the use of storage devices which need
 not be tightly coupled to the metadata server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 12, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Halevy & Haynes Expires December 12, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Flex File Layout June 2014

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Definitions . 3
1.2. Difference Between a Data Server and a Storage Device . . 5
1.3. Requirements Language 5

2. Coupling of Storage Devices 5
2.1. LAYOUTCOMMIT . 5
2.2. Security models . 6
2.3. State and Locking Models 6

3. XDR Description of the Flexible File Layout Type 7
3.1. Code Components Licensing Notice 7

4. Device Addressing and Discovery 9
4.1. ff_device_addr . 9
4.2. Storage Device Multipathing 10

5. Flexible File Layout Type 11
5.1. ff_layout4 . 11

6. Recovering from Client I/O Errors 12
7. Flexible Files Layout Type Return 13
7.1. ff_ioerr . 14
7.2. ff_iostats . 14
7.3. ff_layoutreturn . 15

8. Flexible Files Layout Type LAYOUTERROR 16
9. Flexible Files Layout Type LAYOUTSTATS 16
10. Flexible File Layout Type Creation Hint 16
10.1. ff_layouthint4 . 16

11. Recalling Layouts . 17
11.1. CB_RECALL_ANY . 17

12. Client Fencing . 18
13. Security Considerations 18
14. IANA Considerations . 19
15. References . 19
15.1. Normative References 19
15.2. Informative References 20

Appendix A. Acknowledgments 20
Appendix B. RFC Editor Notes 20

 Authors' Addresses . 20

1. Introduction

 In the parallel Network File System (pNFS), the metadata server
 returns Layout Type structures that describe where file data is
 located. There are different Layout Types for different storage

Halevy & Haynes Expires December 12, 2014 [Page 2]

Internet-Draft Flex File Layout June 2014

 systems and methods of arranging data on storage devices. This
 document defines the Flexible File Layout Type used with file-based
 data servers that are accessed using the Network File System (NFS)
 protocols: NFSv3 [RFC1813], NFSv4 [RFC3530], NFSv4.1 [RFC5661], and
 NFSv4.2 [NFSv42].

 In contrast to the File Layout Type [RFC5661] that also uses NFSv4.1
 to access the data server, the Flexible File Layout Type defines a
 simple device information model suitable for aggregating standalone
 NFS servers into a centrally managed pNFS cluster. In particular,
 unlike the File Layout Type, the Flexible File Layout Type does not
 provide striping of the data file across multiple storage devices.

 To provide a global state model equivalent to that of the Files
 Layout Type, a back-end control protocol MAY be implemented between
 the metadata server and NFSv4.1 storage devices. It is out of scope
 for this document to specify the wire protocol of such a protocol,
 yet the requirements for the protocol are specified in [RFC5661] and
 clarified in [pNFSLayouts].

1.1. Definitions

 control protocol: is a set of requirements for the communication of
 information on layouts, stateids, file metadata, and file data
 between the metadata server and the storage devices (see
 [pNFSLayouts]).

 data file: is that part of the file system object which describes
 the payload and not the object. E.g., it is the file contents.

 Data Server (DS): is one of the pNFS servers which provide the
 contents of a file system object which is a regular file.
 Depending on the layout, there might be one or more data servers
 over which the data is striped. Note that while the metadata
 server is strictly accessed over the NFSv4.1 protocol, depending
 on the Layout Type, the data server could be accessed via any
 protocol that meets the pNFS requirements.

 fencing: is when the metadata server prevents the storage devices
 from processing I/O from a specific client to a specific file.

 File Layout Type: is a Layout Type in which the storage devices are
 accessed via the NFSv4.1 protocol. It is defined in Section 13 of
 [RFC5661].

 layout: informs a client of which storage devices it needs to
 communicate with (and over which protocol) to perform I/O on a

https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-13
https://datatracker.ietf.org/doc/html/rfc5661#section-13

Halevy & Haynes Expires December 12, 2014 [Page 3]

Internet-Draft Flex File Layout June 2014

 file. The layout might also provide some hints about how the
 storage is physically organized.

 layout iomode: describes whether the layout granted to the client is
 for read or read/write I/O.

 layout stateid: is a 128-bit quantity returned by a server that
 uniquely defines the layout state provided by the server for a
 specific layout that describes a Layout Type and file (see

Section 12.5.2 of [RFC5661]). Further, Section 12.5.3 describes
 the difference between a layout stateid and a normal stateid.

 Layout Type: describes both the storage protocol used to access the
 data and the aggregation scheme used to lays out the file data on
 the underlying storage devices.

 loose coupling: is when the metadata server and the storage devices
 do not have a control protocol present.

 metadata file: is that part of the file system object which
 describes the object and not the payload. E.g., it could be the
 time since last modification, access, etc.

 Metadata Server (MDS): is the pNFS server which provides metadata
 information for a file system object. It also is responsible for
 generating layouts for file system objects. Note that the MDS is
 responsible for directory-based operations.

 Object Layout Type: is a Layout Type in which the storage devices
 are accessed via the OSD protocol [ANSI400-2004]. It is defined
 in [RFC5664].

 recalling a layout: is when the metadata server uses a back channel
 to inform the client that the layout is to be returned in a
 graceful manner. Note that the client could be able to flush any
 writes, etc., before replying to the metadata server.

 revoking a layout: is when the metadata server invalidates the
 layout such that neither the metadata server nor any storage
 device will accept any access from the client with that layout.

 stateid: is a 128-bit quantity returned by a server that uniquely
 defines the open and locking states provided by the server for a
 specific open-owner or lock-owner/open-owner pair for a specific
 file and type of lock.

 storage device: is another term used almost interchangeably with
 data server. See Section 1.2 for the nuances between the two.

https://datatracker.ietf.org/doc/html/rfc5661#section-12.5.2
https://datatracker.ietf.org/doc/html/rfc5664

Halevy & Haynes Expires December 12, 2014 [Page 4]

Internet-Draft Flex File Layout June 2014

 tight coupling: is when the metadata server and the storage devices
 do have a control protocol present.

1.2. Difference Between a Data Server and a Storage Device

 We defined a data server as a pNFS server, which implies that it can
 utilize the NFSv4.1 protocol to communicate with the client. As
 such, only the File Layout Type would currently meet this
 requirement. The more generic concept is a storage device, which can
 use any protocol to communicate with the client. The requirements
 for a storage device to act together with the metadata server to
 provide data to a client are that there is a Layout Type
 specification for the given protocol and that the metadata server has
 granted a layout to the client. Note that nothing precludes there
 being multiple supported Layout Types (i.e., protocols) between a
 metadata server, storage devices, and client.

 As storage device is the more encompassing terminology, this document
 utilizes it over data server.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Coupling of Storage Devices

 The coupling of the metadata server with the storage devices can be
 either tight or loose. In a tight coupling, there is a control
 protocol present to manage security, LAYOUTCOMMITs, etc. With a
 loose coupling, the only control protocol might be a version of NFS.
 As such, semantics for managing security, state, and locking models
 MUST be defined.

 A file is split into metadata and data. The "metadata file" is that
 part of the file stored on the metadata server. The "data file" is
 that part of the file stored on the storage device. And the "file"
 is the combination of the two.

2.1. LAYOUTCOMMIT

 With a tightly coupled system, when the metadata server receives a
 LAYOUTCOMMIT (see Section 18.42 of [RFC5661]), the semantics of the
 File Layout Type MUST be met (see Section 12.5.4 of [RFC5661]). With
 a loosely coupled system, a LAYOUTCOMMIT to the metadata server MUST
 be proceeded with a COMMIT to the storage device. I.e., it is the
 responsibility of the client to make sure the data file is stable

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5661#section-18.42
https://datatracker.ietf.org/doc/html/rfc5661#section-12.5.4

Halevy & Haynes Expires December 12, 2014 [Page 5]

Internet-Draft Flex File Layout June 2014

 before the metadata server begins to query the storage devices about
 the changes to the file. Note that if the client has not done a
 COMMIT to the storage device, then the LAYOUTCOMMIT might not be
 synchronized to the last WRITE operation to the storage device.

2.2. Security models

 With NFSv3 storage devices, the metadata server uses synthetic uids
 and gids for the data file, where the uid owner of the data file is
 allowed read/write access and the gid owner is allowed read only
 access. As part of the layout, the client is provided with the rpc
 credentials to be used (see ffm_auth in Section 5.1) to access the
 data file. Fencing off clients is achieved by using SETATTR by the
 server to change the uid and/or gid owners of the data file to
 implicitly revoke the outstanding rpc credentials. Note: it is
 recommended to implement common access control methods at the storage
 device filesystem exports level to allow only the metadata server
 root (super user) access to the storage device, and to set the owner
 of all directories holding data files to the root user. This
 security method, when using weak auth flavors such as AUTH_SYS,
 provides a practical model to enforce access control and fence off
 cooperative clients, but it can not protect against malicious
 clients; hence it provides a level of security equivalent to NFSv3.

 With NFSv4.x storage devices, the metadata server sets the user and
 group owners, mode bits, and ACL of the data file to be the same as
 the User File. And the client must authenticate with the storage
 device and go through the same authorization process it would go
 through via the metadata server.

2.3. State and Locking Models

 Metadata file OPEN, LOCK, and DELEGATION operations are always
 executed only against the metadata server.

 With NFSv4 storage devices, the metadata server, in response to the
 state changing operation, executes them against the respective data
 files on the storage devices. It then sends the storage device open
 stateid as part of the layout (see the ffm_stateid in Section 5.1)
 and it is then used by the client for executing READ/WRITE operations
 against the storage device.

 Standalone NFSv4.1 storage devices that do not return the
 EXCHGID4_FLAG_USE_PNFS_DS flag to EXCHANGE_ID are used the same way
 as NFSv4 storage devices.

 NFSv4.1 clustered storage devices that do identify themselves with
 the EXCHGID4_FLAG_USE_PNFS_DS flag to EXCHANGE_ID use a back-end

Halevy & Haynes Expires December 12, 2014 [Page 6]

Internet-Draft Flex File Layout June 2014

 control protocol as described in [RFC5661] to implement a global
 stateid model as defined there.

3. XDR Description of the Flexible File Layout Type

 This document contains the external data representation (XDR)
 [RFC4506] description of the Flexible File Layout Type. The XDR
 description is embedded in this document in a way that makes it
 simple for the reader to extract into a ready-to-compile form. The
 reader can feed this document into the following shell script to
 produce the machine readable XDR description of the Flexible File
 Layout Type:

 #!/bin/sh
 grep '^ *///' $* | sed 's?^ */// ??' | sed 's?^ *///$??'

 That is, if the above script is stored in a file called "extract.sh",
 and this document is in a file called "spec.txt", then the reader can
 do:

 sh extract.sh < spec.txt > flex_files_prot.x

 The effect of the script is to remove leading white space from each
 line, plus a sentinel sequence of "///".

 The embedded XDR file header follows. Subsequent XDR descriptions,
 with the sentinel sequence are embedded throughout the document.

 Note that the XDR code contained in this document depends on types
 from the NFSv4.1 nfs4_prot.x file [RFC5662]. This includes both nfs
 types that end with a 4, such as offset4, length4, etc., as well as
 more generic types such as uint32_t and uint64_t.

3.1. Code Components Licensing Notice

 Both the XDR description and the scripts used for extracting the XDR
 description are Code Components as described in Section 4 of "Legal
 Provisions Relating to IETF Documents" [LEGAL]. These Code
 Components are licensed according to the terms of that document.

 /// /*
 /// * Copyright (c) 2012 IETF Trust and the persons identified
 /// * as authors of the code. All rights reserved.
 /// *
 /// * Redistribution and use in source and binary forms, with
 /// * or without modification, are permitted provided that the
 /// * following conditions are met:
 /// *

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc5662

Halevy & Haynes Expires December 12, 2014 [Page 7]

Internet-Draft Flex File Layout June 2014

 /// * o Redistributions of source code must retain the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer.
 /// *
 /// * o Redistributions in binary form must reproduce the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer in the documentation and/or other
 /// * materials provided with the distribution.
 /// *
 /// * o Neither the name of Internet Society, IETF or IETF
 /// * Trust, nor the names of specific contributors, may be
 /// * used to endorse or promote products derived from this
 /// * software without specific prior written permission.
 /// *
 /// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 /// * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// *
 /// * This code was derived from RFCTBD10.
 /// * Please reproduce this note if possible.
 /// */
 ///
 /// /*
 /// * flex_files_prot.x
 /// */
 ///
 /// /*
 /// * The following include statements are for example only.
 /// * The actual XDR definition files are generated separately
 /// * and independently and are likely to have a different name.
 /// * %#include <nfsv42.x>
 /// * %#include <rpc_prot.x>
 /// */
 ///

Halevy & Haynes Expires December 12, 2014 [Page 8]

Internet-Draft Flex File Layout June 2014

4. Device Addressing and Discovery

 Data operations to a storage device require the client to know the
 network address of the storage device. The NFSv4.1 GETDEVICEINFO
 operation (Section 18.40 of [RFC5661]) is used by the client to
 retrieve that information.

4.1. ff_device_addr

 The ff_device_addr data structure is returned by the server as the
 storage protocol specific opaque field da_addr_body in the
 device_addr4 structure by a successful GETDEVICEINFO operation.

 /// struct ff_device_addr {
 /// multipath_list4 ffda_netaddrs;
 /// uint32_t ffda_version;
 /// uint32_t ffda_minorversion;
 /// bool ffda_tightly_coupled;
 /// };
 ///

 The ffda_netaddrs field is used to locate the storage device. It
 MUST be set by the server to a list holding one or more of the device
 network addresses.

 The ffda_version and ffda_minorversion represent the NFS protocol to
 be used to access the storage device. This layout specification
 defines the semantics for ffda_versions 3 and 4. If ffda_version
 equals 3 then server MUST set ffda_minorversion to 0 and the client
 MUST access the storage device using the NFSv3 protocol [RFC1813].
 If ffda_version equals 4 then the server MUST set ffda_minorversion
 to one of the NFSv4 minor version numbers and the client MUST access
 the storage device using NFSv4.

 ffda_tightly_coupled informs the client as to whether the metadata
 server is tightly coupled with the storage devices or not. Note that
 even if the data protocol is at least NFSv4.1, it may still be the
 case that there is no control protocol present. If
 ffda_tightly_coupled is not set, then the client MUST commit writes
 to the storage devices for the file before sending a LAYOUTCOMMIT to
 the metadata server. I.e., the writes MUST be committed by the
 client to stable storage via issuing WRITEs with stable_how ==
 FILE_SYNC or by issuing a COMMIT after WRITEs with stable_how !=
 FILE_SYNC (see Section 3.3.7 of [RFC1813]).

https://datatracker.ietf.org/doc/html/rfc5661#section-18.40
https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc1813#section-3.3.7

Halevy & Haynes Expires December 12, 2014 [Page 9]

Internet-Draft Flex File Layout June 2014

4.2. Storage Device Multipathing

 The Flexible File Layout Type supports multipathing to multiple
 storage device addresses. Storage device level multipathing is used
 for bandwidth scaling via trunking and for higher availability of use
 in the case of a storage device failure. Multipathing allows the
 client to switch to another storage device address which may be that
 of another storage device that is exporting the same data stripe
 unit, without having to contact the metadata server for a new layout.

 To support storage device multipathing, ffda_netaddrs contains an
 array of one more storage device network addresses. This array (data
 type multipath_list4) represents a list of storage device (each
 identified by a network address), with the possibility that some
 storage device will appear in the list multiple times.

 The client is free to use any of the network addresses as a
 destination to send storage device requests. If some network
 addresses are less optimal paths to the data than others, then the
 MDS SHOULD NOT include those network addresses in ffda_netaddrs. If
 less optimal network addresses exist to provide failover, the
 RECOMMENDED method to offer the addresses is to provide them in a
 replacement device-ID-to-device-address mapping, or a replacement
 device ID. When a client finds no response from the storage device
 using all addresses available in ffda_netaddrs, it SHOULD send a
 GETDEVICEINFO to attempt to replace the existing device-ID-to-device-
 address mappings. If the MDS detects that all network paths
 represented by ffda_netaddrs are unavailable, the MDS SHOULD send a
 CB_NOTIFY_DEVICEID (if the client has indicated it wants device ID
 notifications for changed device IDs) to change the device-ID-to-
 device-address mappings to the available addresses. If the device ID
 itself will be replaced, the MDS SHOULD recall all layouts with the
 device ID, and thus force the client to get new layouts and device ID
 mappings via LAYOUTGET and GETDEVICEINFO.

 Generally, if two network addresses appear in ffda_netaddrs, they
 will designate the same storage device. When the storage device is
 accessed over NFSv4.1 or higher minor version the two storage device
 addresses will support the implementation of client ID or session
 trunking (the latter is RECOMMENDED) as defined in [RFC5661]. The
 two storage device addresses will share the same server owner or
 major ID of the server owner. It is not always necessary for the two
 storage device addresses to designate the same storage device with
 trunking being used. For example, the data could be read-only, and
 the data consist of exact replicas.

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires December 12, 2014 [Page 10]

Internet-Draft Flex File Layout June 2014

5. Flexible File Layout Type

 The layout4 type is defined in [RFC5662] as follows:

 enum layouttype4 {
 LAYOUT4_NFSV4_1_FILES = 1,
 LAYOUT4_OSD2_OBJECTS = 2,
 LAYOUT4_BLOCK_VOLUME = 3,
 LAYOUT4_FLEX_FILES = 4
 [[RFC Editor: please modify the LAYOUT4_FLEX_FILES
 to be the layouttype assigned by IANA]]
 };

 struct layout_content4 {
 layouttype4 loc_type;
 opaque loc_body<>;
 };

 struct layout4 {
 offset4 lo_offset;
 length4 lo_length;
 layoutiomode4 lo_iomode;
 layout_content4 lo_content;
 };

 This document defines structure associated with the layouttype4 value
 LAYOUT4_FLEX_FILES. [RFC5661] specifies the loc_body structure as an
 XDR type "opaque". The opaque layout is uninterpreted by the generic
 pNFS client layers, but obviously must be interpreted by the Flexible
 File Layout Type implementation. This section defines the structure
 of this opaque value, ff_layout4.

5.1. ff_layout4

 /// struct ff_mirror4 {
 /// deviceid4 ffm_deviceid;
 /// nfs_fh4 ffm_fhandle;
 /// stateid4 ffm_stateid;
 /// opaque_auth ffm_auth;
 /// };
 ///

 /// struct ff_layout4 {
 /// ff_mirror4 ffl_mirrors<>;
 /// };
 ///

https://datatracker.ietf.org/doc/html/rfc5662
https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires December 12, 2014 [Page 11]

Internet-Draft Flex File Layout June 2014

 The ff_layout4 structure specifies a layout over a set of mirrored
 copies of the data file. This mirroring protects against loss of
 data files.

 It is possible that the file is concatenated from more than one
 layout segment. Each layout segment MAY represent different striping
 parameters, applying respectively only to the layout segment byte
 range.

 The ffl_mirrors field represents an array of state information for
 each mirrored copy of the file. Each element is described by a
 ff_mirror type.

 ffm_deviceid provides the deviceid of the storage device holding the
 data file.

 ffm_fhandle provides the filehandle of the data file on the given
 storage device. For tight coupling, ffm_stateid provides the stateid
 to be used by the client to access the file. For loose coupling and
 a NFSv4 storage device, the client may use an anonymous stateid to
 perform I/O on the storage device as there is no use for the metadata
 server stateid (no control protocol). In such a scenario, the server
 MUST set the ffm_stateid to be zero.

 For NFSv3 storage devices, ffm_auth provides the RPC credentials to
 be used by the client to access the data files. For NFSv4.x storage
 devices, the server SHOULD use the AUTH_NONE flavor and a zero length
 opaque body to minimize the returned structure length. The client
 MUST ignore ffm_auth in this case. [[AI6: Even for tightly coupled
 systems, that cannot be correct! --TH]]

6. Recovering from Client I/O Errors

 The pNFS client may encounter errors when directly accessing the
 storage devices. However, it is the responsibility of the metadata
 server to recover from the I/O errors. When the LAYOUT4_FLEX_FILES
 layout type is used, the client MUST report the I/O errors to the
 server at LAYOUTRETURN time using the ff_ioerr structure (see

Section 7.1).

 The metadata server analyzes the error and determines the required
 recovery operations such as recovering media failures or
 reconstructing missing data files.

 The metadata server SHOULD recall any outstanding layouts to allow it
 exclusive write access to the stripes being recovered and to prevent
 other clients from hitting the same error condition. In these cases,

Halevy & Haynes Expires December 12, 2014 [Page 12]

Internet-Draft Flex File Layout June 2014

 the server MUST complete recovery before handing out any new layouts
 to the affected byte ranges.

 Although it MAY be acceptable for the client to propagate a
 corresponding error to the application that initiated the I/O
 operation and drop any unwritten data, the client SHOULD attempt to
 retry the original I/O operation by requesting a new layout using
 LAYOUTGET and retry the I/O operation(s) using the new layout, or the
 client MAY just retry the I/O operation(s) using regular NFS READ or
 WRITE operations via the metadata server. The client SHOULD attempt
 to retrieve a new layout and retry the I/O operation using the
 storage device first and only if the error persists, retry the I/O
 operation via the metadata server.

7. Flexible Files Layout Type Return

 layoutreturn_file4 is used in the LAYOUTRETURN operation to convey
 layout-type specific information to the server. It is defined in
 [RFC5661] as follows:

 struct layoutreturn_file4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 /* layouttype4 specific data */
 opaque lrf_body<>;
 };

 union layoutreturn4 switch(layoutreturn_type4 lr_returntype) {
 case LAYOUTRETURN4_FILE:
 layoutreturn_file4 lr_layout;
 default:
 void;
 };

 struct LAYOUTRETURN4args {
 /* CURRENT_FH: file */
 bool lora_reclaim;
 layoutreturn_stateid lora_recallstateid;
 layouttype4 lora_layout_type;
 layoutiomode4 lora_iomode;
 layoutreturn4 lora_layoutreturn;
 };

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires December 12, 2014 [Page 13]

Internet-Draft Flex File Layout June 2014

 If the lora_layout_type layout type is LAYOUT4_FLEX_FILES, then the
 lrf_body opaque value is defined by the ff_layoutreturn4 type. The
 new type allows the client to report I/O error information or layout
 usage statistics back to the metadata server as defined below.

7.1. ff_ioerr

 /// struct ff_ioerr4 {
 /// offset4 ffie_offset;
 /// length4 ffie_length;
 /// stateid4 ffie_stateid;
 /// device_error4 ffie_errors;
 /// };
 ///

 Recall that [NFSv42] defines device_error4 as:

 struct device_error4 {
 deviceid4 de_deviceid;
 nfsstat4 de_status;
 nfs_opnum4 de_opnum;
 };

 The ff_ioerr4 structure is used to return error indications for data
 files that generated errors during data transfers. These are hints
 to the metadata server that there are problems with that file. For
 each error, ffie_errors.de_deviceid, ffie_offset, and ffie_length
 represent the storage device and byte range within the file in which
 the error occurred; ffie_errors represents the operation and type of
 error. The use of device_error4 is described in Section 16.6 of
 [NFSv42].

7.2. ff_iostats

 /// struct ff_iostats4 {
 /// offset4 ffis_offset;
 /// length4 ffis_length;
 /// stateid4 ffis_stateid;
 /// uint32_t ffis_duration;
 /// io_info4 ffis_read;
 /// io_info4 ffis_write;
 /// layoutupdate4 ffis_layoutupdate;
 /// };
 ///

 Recall that [NFSv42] defines io_info4 as:

Halevy & Haynes Expires December 12, 2014 [Page 14]

Internet-Draft Flex File Layout June 2014

 struct io_info4 {
 uint32_t ii_count;
 uint64_t ii_bytes;
 };

 With pNFS, the data transfers are performed directly between the pNFS
 client and the storage devices. Therefore, the metadata server has
 no visibility to the I/O stream and cannot use any statistical
 information about client I/O to optimize data storage location.
 ff_iostats4 MAY be used by the client to report I/O statistics back
 to the metadata server upon returning the layout. Since it is
 infeasible for the client to report every I/O that used the layout,
 the client MAY identify "hot" byte ranges for which to report I/O
 statistics. The definition and/or configuration mechanism of what is
 considered "hot" and the size of the reported byte range is out of
 the scope of this document. It is suggested for client
 implementation to provide reasonable default values and an optional
 run-time management interface to control these parameters. For
 example, a client can define the default byte range resolution to be
 1 MB in size and the thresholds for reporting to be 1 MB/second or 10
 I/O operations per second. For each byte range, ffis_offset and
 ffis_length represent the starting offset of the range and the range
 length in bytes. ffis_duration represents the number of seconds the
 reported burst of I/O lasted. ffis_read.ii_count,
 ffis_read.ii_bytes, ffis_write.ii_count, and ffis_write.ii_bytes
 represent, respectively, the number of contiguous read and write I/Os
 and the respective aggregate number of bytes transferred within the
 reported byte range. [[AI7: Need to define whether we are using
 ffis_layoutupdate or not. --TH]] [[AI8: Actually, ffis_duration
 might be what we plop down in there. In any event, ffis_duration
 needs some work. --TH]]

7.3. ff_layoutreturn

 /// struct ff_layoutreturn {
 /// ff_ioerr4 fflr_ioerr_report<>;
 /// ff_iostats4 fflr_iostats_report<>;
 /// };
 ///

 When data file I/O operations fail, fflr_ioerr_report<> is used to
 report these errors to the metadata server as an array of elements of
 type ff_ioerr4. Each element in the array represents an error that
 occurred on the data file identified by ffie_errors.de_deviceid. If
 no errors are to be reported, the size of the fflr_ioerr_report<>
 array is set to zero. The client MAY also use fflr_iostats_report<>
 to report a list of I/O statistics as an array of elements of type
 ff_iostats4. Each element in the array represents statistics for a

Halevy & Haynes Expires December 12, 2014 [Page 15]

Internet-Draft Flex File Layout June 2014

 particular byte range. Byte ranges are not guaranteed to be disjoint
 and MAY repeat or intersect.

8. Flexible Files Layout Type LAYOUTERROR

 If the client is using NFSv4.2 to communicate with the metadata
 server, then instead of waiting for a LAYOUTRETURN to send error
 information to the metadata server (see Section 7.1), it can use
 LAYOUTERROR (see Section 16.6 of [NFSv42]) to communicate that
 information.

9. Flexible Files Layout Type LAYOUTSTATS

 If the client is using NFSv4.2 to communicate with the metadata
 server, then instead of waiting for a LAYOUTRETURN to send I/O
 statistics to the metadata server (see Section 7.2), it can use
 LAYOUTSTATS (see Section 16.7 of [NFSv42]) to communicate that
 information.

10. Flexible File Layout Type Creation Hint

 The layouthint4 type is defined in the [RFC5661] as follows:

 struct layouthint4 {
 layouttype4 loh_type;
 opaque loh_body<>;
 };

 The layouthint4 structure is used by the client to pass a hint about
 the type of layout it would like created for a particular file. If
 the loh_type layout type is LAYOUT4_FLEX_FILES, then the loh_body
 opaque value is defined by the ff_layouthint4 type.

10.1. ff_layouthint4

 /// union ff_mirrors_hint switch (bool ffmc_valid) {
 /// case TRUE:
 /// uint32_t ffmc_mirrors;
 /// case FALSE:
 /// void;
 /// };
 ///

 /// struct ff_layouthint4 {
 /// ff_mirrors_hint fflh_mirrors_hint;
 /// };
 ///

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires December 12, 2014 [Page 16]

Internet-Draft Flex File Layout June 2014

 This type conveys hints for the desired data map. All parameters are
 optional so the client can give values for only the parameter it
 cares about.

11. Recalling Layouts

 The Flexible File Layout Type metadata server should recall
 outstanding layouts in the following cases:

 o When the file's security policy changes, i.e., Access Control
 Lists (ACLs) or permission mode bits are set.

 o When the file's layout changes, rendering outstanding layouts
 invalid.

 o When there are sharing conflicts.

11.1. CB_RECALL_ANY

 The metadata server can use the CB_RECALL_ANY callback operation to
 notify the client to return some or all of its layouts. The
 [RFC5661] defines the following types:

 const RCA4_TYPE_MASK_FF_LAYOUT_MIN = -2;
 const RCA4_TYPE_MASK_FF_LAYOUT_MAX = -1;
 [[RFC Editor: please insert assigned constants]]

 struct CB_RECALL_ANY4args {
 uint32_t craa_layouts_to_keep;
 bitmap4 craa_type_mask;
 };

 Typically, CB_RECALL_ANY will be used to recall client state when the
 server needs to reclaim resources. The craa_type_mask bitmap
 specifies the type of resources that are recalled and the
 craa_layouts_to_keep value specifies how many of the recalled
 Flexible File Layouts the client is allowed to keep. The Flexible
 File Layout Type mask flags are defined as follows:

 /// enum ff_cb_recall_any_mask {
 /// FF_RCA4_TYPE_MASK_READ = -2,
 /// FF_RCA4_TYPE_MASK_RW = -1
 [[RFC Editor: please insert assigned constants]]
 /// };
 ///

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires December 12, 2014 [Page 17]

Internet-Draft Flex File Layout June 2014

 They represent the iomode of the recalled layouts. In response, the
 client SHOULD return layouts of the recalled iomode that it needs the
 least, keeping at most craa_layouts_to_keep Flexible File Layouts.

 The PNFS_FF_RCA4_TYPE_MASK_READ flag notifies the client to return
 layouts of iomode LAYOUTIOMODE4_READ. Similarly, the
 PNFS_FF_RCA4_TYPE_MASK_RW flag notifies the client to return layouts
 of iomode LAYOUTIOMODE4_RW. When both mask flags are set, the client
 is notified to return layouts of either iomode.

12. Client Fencing

 In cases where clients are uncommunicative and their lease has
 expired or when clients fail to return recalled layouts within a
 lease period, at the least the server MAY revoke client layouts and/
 or device address mappings and reassign these resources to other
 clients (see "Recalling a Layout" in [RFC5661]). To avoid data
 corruption, the metadata server MUST fence off the revoked clients
 from the respective data files as described in Section 2.2.

13. Security Considerations

 The pNFS extension partitions the NFSv4 file system protocol into two
 parts, the control path and the data path (storage protocol). The
 control path contains all the new operations described by this
 extension; all existing NFSv4 security mechanisms and features apply
 to the control path. The combination of components in a pNFS system
 is required to preserve the security properties of NFSv4 with respect
 to an entity accessing data via a client, including security
 countermeasures to defend against threats that NFSv4 provides
 defenses for in environments where these threats are considered
 significant.

 The metadata server enforces the file access-control policy at
 LAYOUTGET time. The client should use suitable authorization
 credentials for getting the layout for the requested iomode (READ or
 RW) and the server verifies the permissions and ACL for these
 credentials, possibly returning NFS4ERR_ACCESS if the client is not
 allowed the requested iomode. If the LAYOUTGET operation succeeds
 the client receives, as part of the layout, a set of credentials
 allowing it I/O access to the specified data files corresponding to
 the requested iomode. When the client acts on I/O operations on
 behalf of its local users, it MUST authenticate and authorize the
 user by issuing respective OPEN and ACCESS calls to the metadata
 server, similar to having NFSv4 data delegations. If access is
 allowed, the client uses the corresponding (READ or RW) credentials
 to perform the I/O operations at the data files storage devices.
 When the metadata server receives a request to change a file's

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires December 12, 2014 [Page 18]

Internet-Draft Flex File Layout June 2014

 permissions or ACL, it SHOULD recall all layouts for that file and it
 MUST fence off the clients holding outstanding layouts for the
 respective file by implicitly invalidating the outstanding
 credentials on all data files comprising before committing to the new
 permissions and ACL. Doing this will ensure that clients re-
 authorize their layouts according to the modified permissions and ACL
 by requesting new layouts. Recalling the layouts in this case is
 courtesy of the server intended to prevent clients from getting an
 error on I/Os done after the client was fenced off.

14. IANA Considerations

 As described in [RFC5661], new layout type numbers have been assigned
 by IANA. This document defines the protocol associated with the
 existing layout type number, LAYOUT4_FLEX_FILES.

15. References

15.1. Normative References

 [LEGAL] IETF Trust, "Legal Provisions Relating to IETF Documents",
 November 2008, <http://trustee.ietf.org/docs/

IETF-Trust-License-Policy.pdf>.

 [NFSv42] Haynes, T., "NFS Version 4 Minor Version 2", draft-ietf-
nfsv4-minorversion2-22 (Work In Progress), April 2014.

 [RFC1813] IETF, "NFS Version 3 Protocol Specification", RFC 1813,
 June 1995.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, April 2003.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, January 2010.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",

RFC 5662, January 2010.

https://datatracker.ietf.org/doc/html/rfc5661
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-minorversion2-22
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-minorversion2-22
https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5662

Halevy & Haynes Expires December 12, 2014 [Page 19]

Internet-Draft Flex File Layout June 2014

 [RFC5664] Halevy, B., Ed., Welch, B., Ed., and J. Zelenka, Ed.,
 "Object-Based Parallel NFS (pNFS) Operations", RFC 5664,
 January 2010.

 [pNFSLayouts]
 Haynes, T., "Considerations for a New pNFS Layout Type",

draft-haynes-nfsv4-layout-types-02 (Work In Progress),
 April 2014.

15.2. Informative References

 [ANSI400-2004]
 Weber, R., Ed., "ANSI INCITS 400-2004, Information
 Technology - SCSI Object-Based Storage Device Commands
 (OSD)", December 2004.

Appendix A. Acknowledgments

 Those who provided miscellaneous comments to early drafts of this
 document include: Matt W. Benjamin, Adam Emerson, Tom Haynes, J.
 Bruce Fields, and Lev Solomonov.

Appendix B. RFC Editor Notes

 [RFC Editor: please remove this section prior to publishing this
 document as an RFC]

 [RFC Editor: prior to publishing this document as an RFC, please
 replace all occurrences of RFCTBD10 with RFCxxxx where xxxx is the
 RFC number of this document]

Authors' Addresses

 Benny Halevy
 Primary Data, Inc.

 Email: bhalevy@primarydata.com
 URI: http://www.primarydata.com

 Thomas Haynes
 Primary Data, Inc.
 4300 El Camino Real Ste 100
 Los Altos, CA 94022
 USA

 Phone: +1 408 215 1519
 Email: thomas.haynes@primarydata.com

https://datatracker.ietf.org/doc/html/rfc5664
https://datatracker.ietf.org/doc/html/draft-haynes-nfsv4-layout-types-02
http://www.primarydata.com

Halevy & Haynes Expires December 12, 2014 [Page 20]

