
Network Working Group K. Bhargavan
Internet-Draft A. Delignat-Lavaud
Expires: October 20, 2014 A. Pironti
 Inria Paris-Rocquencourt
 A. Langley
 Google Inc.
 M. Ray
 Microsoft Corp.
 April 18, 2014

Transport Layer Security (TLS) Resumption Indication Extension
draft-bhargavan-tls-resumption-indication-00

Abstract

 When a TLS session is resumed via an abbreviated handshake, the
 knowledge of the master secret is used to implicitly mutually
 authenticate the two peers. However, an attacker can synchronize two
 different TLS sessions, so that they share the same master secret,
 breaking the resumption authentication property. This specification
 defines a TLS extension that cryptographically binds the resumption
 abbreviated handshake with its original session, thus preventing this
 attack.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 20, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Bhargavan, et al. Expires October 20, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft TLS Resumption Extension April 2014

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements Notation . 4
3. The TLS Session Hash . 4
4. The secure_resumption Extension 4
4.1. Overwiev . 4
4.2. Extension definition 4
4.3. Client behavior: no resumption desired 4
4.4. Client behavior: resumption desired 5
4.4.1. Server behavior: resumption rejected 5
4.4.2. Server behavior: resumption accepted 5

5. Backward compatibility 6
5.1. Client not supporting secure_resumption 6
5.2. Server not supporting secure_resumption 6

6. Security Considerations 6
7. References . 7
7.1. Normative References 7
7.2. Informative References 7

 Authors' Addresses . 8

1. Introduction

 In TLS [RFC5246], a session is established by a full handshake, and
 it can be resumed via abbreviated handshakes. Furthermore, several
 full or abbreviated hansdshakes can follow over the same connection.
 It is well known that, without the secure_renegotiation extension
 [RFC5746], handshakes performed over the same connection are not
 cryptographically bound: this means that an attacker can initiate a
 communication with a server, then ask for renegotiation and plug a
 connection originating from a victim client. The server will treat
 this as a renegotiation, while the victim client will believe it is
 the first handshake over the connection. The secure_renegotiation
 extension fixes this by cryptographically binding each handshake
 happening on a connection with the previous handshake that happened
 on the same connection. Technically, according to [RFC5746], the
 Client and Server Hello messages contain the client and server
 verify_data generated by the previous handshake in the same

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5746

Bhargavan, et al. Expires October 20, 2014 [Page 2]

Internet-Draft TLS Resumption Extension April 2014

 connection: if these data do not match at the client and server side,
 then a renegotiation attack is detected, and the connection is
 aborted.

 Complementary, an existing session can be resumed via an abbreviated
 handshake as the first handshake over a connection. In this case,
 one needs to make sure that the peers resuming the session are indeed
 the same as the ones who originated such session. In an abbreviated
 TLS handshake, this is achieved by proving the knowledge of the
 session master_secret, via the generation of the correct verify_data
 content (and its encryption within the Finished message).

 However, especially with the RSA key exchange method, an attacker can
 easily synchronize two TLS sessions, so that they share the same
 master_secret [TRIPLE-HS]. Suppose a client, C, is connecting to an
 attacker, A. The attacker wishes to synchronize the client and a
 victim server, S, so that both have a session cached with a master
 secret and session ID that are known to the attacker.

 1. C sends its "ClientHello.random" value to A.

 2. A connects to S, using C's "ClientHello.random" value.

 3. S responds to A, sending its "ServerHello.random",
 "ServerHello.session_id" and certificate chain.

 4. A responds to C with its own certificates, but using the server's
 "ServerHello.random" and "ServerHello.session_id" values.

 5. C proceeds with the key exchange, sending to A the
 "pre_master_secret" value, encrypted with A's public key.

 6. A decrypts the "pre_master_secret", re-encrypts it with the
 server's public key and sends it on to S.

 At this point, both sessions (between C and A, and between A and S)
 share the same "pre_master_secret", "ClientHello.random" and
 "ServerHello.random". Hence, the "master_secret" value will be equal
 for the two sessions and it will be associated both at C and S with
 the same session ID.

 Note that the secure_renegotiation extension does not help in this
 case, because both client and server are resuming a session as their
 first handshake over the new connection, and hence the
 secure_renegotiation values (empty values in this case) will also
 match. Indeed, this resumption attack is dual to the renegotiation
 one, and as such requires a dual extension to fix the problem.

Bhargavan, et al. Expires October 20, 2014 [Page 3]

Internet-Draft TLS Resumption Extension April 2014

2. Requirements Notation

 This document uses the same notation and terminology used in the TLS
 Protocol specification [RFC5246].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. The TLS Session Hash

 When a full handshake takes place, and thus a new TLS session is
 generated, implementations complying with this document MUST compute
 the "session_hash", as defined in [session-hash].

 Additionally, the session_hash MUST be stored along with the other
 session data in the session database, or it MUST be included in the
 session ticket, where applicable.

4. The secure_resumption Extension

4.1. Overwiev

 This specification introduces a new TLS extension, called
 "secure_resumption", that prevents the resumption attack described
 above. Basically, this extension cryptographically binds any
 abbreviated handshake with the original session the handshake is
 trying to resume. Technically, this is achieved by adding to the
 Client and Server Hello messages a "session_hash" associated to the
 session being resumed.

4.2. Extension definition

 The "secure_resumption" extension has type TBD. The "extension data"
 field of this extension contains a "SecureResumption" structure:

 struct {
 opaque secure_resumption<0..255>;
 } SecureResumption;

 The content of this extension is explained below, together with the
 different use case scenarios.

4.3. Client behavior: no resumption desired

 When a client sends a Client Hello with empty session_id (and no
 session ticket), it means it has no session to resume and is only
 willing to establish a new session with the server. In this case,

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bhargavan, et al. Expires October 20, 2014 [Page 4]

Internet-Draft TLS Resumption Extension April 2014

 the client MUST NOT send the secure_resumption extension in its
 Client Hello message.

 With such a Client Hello message, the server will start a new session
 and, not seeing any secure_resumption extension, will not include it
 in its Server Hello message.

 Servers receiving an invalid Client Hello message containing an empty
 ClientHello.session_id and a secure_resumption extension MUST NOT
 send the secure_resumption extension back in the Server Hello.
 Servers MAY abort the connection, or decide to continue ignoring the
 secure_resumption extension given by the client.

4.4. Client behavior: resumption desired

 When a client wishes to resume a session, it fills the
 ClientHello.session_id (or sends a session ticket). In this case, a
 client implementing this specification MUST also send a
 secure_resumption extension, with SecureResumption.secure_resumption
 filled with the session_hash value of the session being resumed.

4.4.1. Server behavior: resumption rejected

 If the server rejects the client request to resume a session, it
 provides a new ServerHello.session_id and proceeds with a full
 handshake. In this case, a server implementing this specification
 MUST NOT send a secure_resumption extension, and MUST ignore the
 value of the secure_resumption extension sent by the client.

 Clients receiving an invalid ServerHello containing a new
 ServerHello.session_id value together with a secure_resumption
 extension MUST ignore the content of the server provided
 secure_resumption extension. Such clients MAY disconnect or continue
 with a full handshake.

4.4.2. Server behavior: resumption accepted

 If the server accepts to resume the session it MUST check that the
 value contained in the ClientHello.secure_resumption extension
 matches the locally stored session_hash for the session being
 resumed.

 If the check fails, the server MUST NOT continue with session
 resumption; instead the server MAY abort the connection or start a
 full handshake to generate a new session.

 If the check succeeds, the server MAY continue with session
 resumption. In this case, the server MUST include a

Bhargavan, et al. Expires October 20, 2014 [Page 5]

Internet-Draft TLS Resumption Extension April 2014

 ServerHello.secure_resumption extension, filled with the session_hash
 for the session being resumed.

4.4.2.1. Client behavior: resumption accepted

 When the server accepts resumption, the client MUST check that a
 ServerHello.secure_resumption is present, and it MUST check that its
 content matches the locally stored session_hash for the session being
 resumed.

 If the match fails, the client MUST abort the connection. (At this
 stage of the handshake, the client cannot ask anymore for a full
 handshake, and the server already committed to an abbreviated one,
 hence the only solution is to abort and re-start.)

 If the match succeeds, the client continues with a normal abbreviated
 handshake.

5. Backward compatibility

5.1. Client not supporting secure_resumption

 It is easy for servers to identify clients not supporting the
 secure_resumption extension: the ClientHello.session_id will be
 filled, but no secure_resumption extension will be present. In such
 cases, servers implementing this specification MUST refuse the
 resumption request and hence continue with a full handshake. Note
 that in practice, this disables resumption for all un-patched
 clients.

5.2. Server not supporting secure_resumption

 With the current definition of the extension, a client gets to know
 whether a server supports or not the secure_resumption extension only
 after the server has already committed to an abbreviated handshake.
 If a client detects an un-patched server wishing to resume, it MUST
 abort the session with a handshake_failure fatal alert, and re-start
 a new connection proposing a full handshake.

6. Security Considerations

 Without this extension, authentication over a resumed session is
 based only on the uniqueness of the master_sercret. However, an
 attacker can carefully craft two TLS sessions so that they share the
 same master_secret, breaking the authentication properties of TLS in
 case of resumed sessions.

Bhargavan, et al. Expires October 20, 2014 [Page 6]

Internet-Draft TLS Resumption Extension April 2014

 This specification introduces a secure_resumption extension which
 cryptographically binds an abbreviated handshake to the session being
 resumed, by means of its session_hash. The session_hash value is
 unique to each session, as it depends on all the data exchanged to
 generate the session, including client and server randomness, their
 identities, and the choices of the pre_master_secret.

 In principle, the Client and Server Finished.verify_data of the full
 handshake generating the session could be used instead of the
 session_hash, because both the verify_data and the session_hash
 depend on all the data that lead to the session context. However,
 the verify_data is typically very short (12 bytes for all currently
 defined cipher suites), and so collisions among verify_data of
 different sessions are relatively easy to find. In this document, by
 using the session_hash, the collision probability reduces to the
 collision resistance of the chosen hash algorithm (ciper suite-
 dependent for TLS 1.2, and concatenation of MD5 and SHA1 for all
 previous TLS versions and SSL 3.0).

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, February 2010.

7.2. Informative References

 [TRIPLE-HS]
 Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti,
 A., and P. Strub, "Triple Handshakes and Cookie Cutters:
 Breaking and Fixing Authentication over TLS", IEEE
 Symposium on Security and Privacy, to appear , 2014.

 [session-hash]
 Bhargavan, K., Delignat-Lavaud, A., Langley, A., Pironti,
 A., and M. Ray, "Transport Layer Security (TLS) Session
 Hash and Extended Master Secret Extension", Internet Draft
 , 2014.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5746

Bhargavan, et al. Expires October 20, 2014 [Page 7]

Internet-Draft TLS Resumption Extension April 2014

Authors' Addresses

 Karthikeyan Bhargavan
 Inria Paris-Rocquencourt
 23, Avenue d'Italie
 Paris 75214 CEDEX 13
 France

 Email: karthikeyan.bhargavan@inria.fr

 Antoine Delignat-Lavaud
 Inria Paris-Rocquencourt
 23, Avenue d'Italie
 Paris 75214 CEDEX 13
 France

 Email: antoine.delignat-lavaud@inria.fr

 Alfredo Pironti
 Inria Paris-Rocquencourt
 23, Avenue d'Italie
 Paris 75214 CEDEX 13
 France

 Email: alfredo.pironti@inria.fr

 Adam Langley
 Google Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 USA

 Email: agl@google.com

 Marsh Ray
 Microsoft Corp.
 1 Microsoft Way
 Redmond, WA 98052
 USA

 Email: maray@microsoft.com

Bhargavan, et al. Expires October 20, 2014 [Page 8]

