
Workgroup: Internet Engineering Task Force

Internet-Draft: draft-bhutton-json-schema-01

Published: 10 June 2022

Intended Status: Informational

Expires: 12 December 2022

Authors: A. Wright, Ed. H. Andrews, Ed. B. Hutton, Ed.

Postman

G. Dennis

JSON Schema: A Media Type for Describing JSON Documents

Abstract

JSON Schema defines the media type "application/schema+json", a

JSON-based format for describing the structure of JSON data. JSON

Schema asserts what a JSON document must look like, ways to extract

information from it, and how to interact with it. The "application/

schema-instance+json" media type provides additional feature-rich

integration with "application/schema+json" beyond what can be

offered for "application/json" documents.

Note to Readers

The issues list for this draft can be found at https://github.com/

json-schema-org/json-schema-spec/issues.

For additional information, see https://json-schema.org/.

To provide feedback, use this issue tracker, the communication

methods listed on the homepage, or email the document editors.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 December 2022.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/json-schema-org/json-schema-spec/issues
https://github.com/json-schema-org/json-schema-spec/issues
https://json-schema.org/
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Terminology

3. Overview

4. Definitions

4.1. JSON Document

4.2. Instance

4.2.1. Instance Data Model

4.2.2. Instance Equality

4.2.3. Non-JSON Instances

4.3. JSON Schema Documents

4.3.1. JSON Schema Objects and Keywords

4.3.2. Boolean JSON Schemas

4.3.3. Schema Vocabularies

4.3.4. Meta-Schemas

4.3.5. Root Schema and Subschemas and Resources

5. Fragment Identifiers

6. General Considerations

6.1. Range of JSON Values

6.2. Programming Language Independence

6.3. Mathematical Integers

6.4. Regular Expressions

6.5. Extending JSON Schema

7. Keyword Behaviors

7.1. Lexical Scope and Dynamic Scope

7.2. Keyword Interactions

7.3. Default Behaviors

7.4. Identifiers

7.5. Applicators

7.5.1. Referenced and Referencing Schemas

7.6. Assertions

7.6.1. Assertions and Instance Primitive Types

¶

¶

https://trustee.ietf.org/license-info

7.7. Annotations

7.7.1. Collecting Annotations

7.8. Reserved Locations

7.9. Loading Instance Data

8. The JSON Schema Core Vocabulary

8.1. Meta-Schemas and Vocabularies

8.1.1. The "$schema" Keyword

8.1.2. The "$vocabulary" Keyword

8.1.3. Updates to Meta-Schema and Vocabulary URIs

8.2. Base URI, Anchors, and Dereferencing

8.2.1. The "$id" Keyword

8.2.2. Defining location-independent identifiers

8.2.3. Schema References

8.2.4. Schema Re-Use With "$defs"

8.3. Comments With "$comment"

9. Loading and Processing Schemas

9.1. Loading a Schema

9.1.1. Initial Base URI

9.1.2. Loading a referenced schema

9.1.3. Detecting a Meta-Schema

9.2. Dereferencing

9.2.1. JSON Pointer fragments and embedded schema resources

9.3. Compound Documents

9.3.1. Bundling

9.3.2. Differing and Default Dialects

9.3.3. Validating

9.4. Caveats

9.4.1. Guarding Against Infinite Recursion

9.4.2. References to Possible Non-Schemas

9.5. Associating Instances and Schemas

9.5.1. Usage for Hypermedia

10. A Vocabulary for Applying Subschemas

10.1. Keyword Independence

10.2. Keywords for Applying Subschemas in Place

10.2.1. Keywords for Applying Subschemas With Logic

10.2.2. Keywords for Applying Subschemas Conditionally

10.3. Keywords for Applying Subschemas to Child Instances

10.3.1. Keywords for Applying Subschemas to Arrays

10.3.2. Keywords for Applying Subschemas to Objects

11. A Vocabulary for Unevaluated Locations

11.1. Keyword Independence

11.2. unevaluatedItems

11.3. unevaluatedProperties

12. Output Formatting

12.1. Format

12.2. Output Formats

12.3. Minimum Information

12.3.1. Keyword Relative Location

12.3.2. Keyword Absolute Location

12.3.3. Instance Location

12.3.4. Error or Annotation

12.3.5. Nested Results

12.4. Output Structure

12.4.1. Flag

12.4.2. Basic

12.4.3. Detailed

12.4.4. Verbose

12.4.5. Output validation schemas

13. Security Considerations

14. IANA Considerations

14.1. application/schema+json

14.2. application/schema-instance+json

15. References

15.1. Normative References

15.2. Informative References

Appendix A. Schema identification examples

Appendix B. Manipulating schema documents and references

B.1. Bundling schema resources into a single document

B.2. Reference removal is not always safe

Appendix C. Example of recursive schema extension

Appendix D. Working with vocabularies

D.1. Best practices for vocabulary and meta-schema authors

D.2. Example meta-schema with vocabulary declarations

Appendix E. References and generative use cases

Appendix F. Acknowledgments

Appendix G. ChangeLog

Authors' Addresses

1. Introduction

JSON Schema is a JSON media type for defining the structure of JSON

data. JSON Schema is intended to define validation, documentation,

hyperlink navigation, and interaction control of JSON data.

This specification defines JSON Schema core terminology and

mechanisms, including pointing to another JSON Schema by reference,

dereferencing a JSON Schema reference, specifying the dialect being

used, specifying a dialect's vocabulary requirements, and defining

the expected output.

Other specifications define the vocabularies that perform assertions

about validation, linking, annotation, navigation, and interaction.

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

¶

¶

¶

¶

The terms "JSON", "JSON text", "JSON value", "member", "element",

"object", "array", "number", "string", "boolean", "true", "false",

and "null" in this document are to be interpreted as defined in RFC

8259 [RFC8259].

3. Overview

This document proposes a new media type "application/schema+json" to

identify a JSON Schema for describing JSON data. It also proposes a

further optional media type, "application/schema-instance+json", to

provide additional integration features. JSON Schemas are themselves

JSON documents. This, and related specifications, define keywords

allowing authors to describe JSON data in several ways.

JSON Schema uses keywords to assert constraints on JSON instances or

annotate those instances with additional information. Additional

keywords are used to apply assertions and annotations to more

complex JSON data structures, or based on some sort of condition.

To facilitate re-use, keywords can be organized into vocabularies. A

vocabulary consists of a list of keywords, together with their

syntax and semantics. A dialect is defined as a set of vocabularies

and their required support identified in a meta-schema.

JSON Schema can be extended either by defining additional

vocabularies, or less formally by defining additional keywords

outside of any vocabulary. Unrecognized individual keywords simply

have their values collected as annotations, while the behavior with

respect to an unrecognized vocabulary can be controlled when

declaring which vocabularies are in use.

This document defines a core vocabulary that MUST be supported by

any implementation, and cannot be disabled. Its keywords are each

prefixed with a "$" character to emphasize their required nature.

This vocabulary is essential to the functioning of the "application/

schema+json" media type, and is used to bootstrap the loading of

other vocabularies.

Additionally, this document defines a RECOMMENDED vocabulary of

keywords for applying subschemas conditionally, and for applying

subschemas to the contents of objects and arrays. Either this

vocabulary or one very much like it is required to write schemas for

non-trivial JSON instances, whether those schemas are intended for

assertion validation, annotation, or both. While not part of the

required core vocabulary, for maximum interoperability this

additional vocabulary is included in this document and its use is

strongly encouraged.

Further vocabularies for purposes such as structural validation or

hypermedia annotation are defined in other documents. These other

¶

¶

¶

¶

¶

¶

¶

null:

boolean:

object:

array:

documents each define a dialect collecting the standard sets of

vocabularies needed to write schemas for that document's purpose.

4. Definitions

4.1. JSON Document

A JSON document is an information resource (series of octets)

described by the application/json media type.

In JSON Schema, the terms "JSON document", "JSON text", and "JSON

value" are interchangeable because of the data model it defines.

JSON Schema is only defined over JSON documents. However, any

document or memory structure that can be parsed into or processed

according to the JSON Schema data model can be interpreted against a

JSON Schema, including media types like CBOR [RFC7049].

4.2. Instance

A JSON document to which a schema is applied is known as an

"instance".

JSON Schema is defined over "application/json" or compatible

documents, including media types with the "+json" structured syntax

suffix.

Among these, this specification defines the "application/schema-

instance+json" media type which defines handling for fragments in

the URI.

4.2.1. Instance Data Model

JSON Schema interprets documents according to a data model. A JSON

value interpreted according to this data model is called an

"instance".

An instance has one of six primitive types, and a range of possible

values depending on the type:

A JSON "null" value

A "true" or "false" value, from the JSON "true" or "false"

value

An unordered set of properties mapping a string to an

instance, from the JSON "object" value

An ordered list of instances, from the JSON "array" value

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

number:

string:

An arbitrary-precision, base-10 decimal number value, from

the JSON "number" value

A string of Unicode code points, from the JSON "string"

value

Whitespace and formatting concerns, including different lexical

representations of numbers that are equal within the data model, are

thus outside the scope of JSON Schema. JSON Schema vocabularies

(Section 8.1) that wish to work with such differences in lexical

representations SHOULD define keywords to precisely interpret

formatted strings within the data model rather than relying on

having the original JSON representation Unicode characters

available.

Since an object cannot have two properties with the same key,

behavior for a JSON document that tries to define two properties

with the same key in a single object is undefined.

Note that JSON Schema vocabularies are free to define their own

extended type system. This should not be confused with the core data

model types defined here. As an example, "integer" is a reasonable

type for a vocabulary to define as a value for a keyword, but the

data model makes no distinction between integers and other numbers.

4.2.2. Instance Equality

Two JSON instances are said to be equal if and only if they are of

the same type and have the same value according to the data model.

Specifically, this means:

both are null; or

both are true; or

both are false; or

both are strings, and are the same codepoint-for-codepoint; or

both are numbers, and have the same mathematical value; or

both are arrays, and have an equal value item-for-item; or

both are objects, and each property in one has exactly one

property with a key equal to the other's, and that other property

has an equal value.

Implied in this definition is that arrays must be the same length,

objects must have the same number of members, properties in objects

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

identifiers:

assertions:

annotations:

applicators:

reserved locations:

are unordered, there is no way to define multiple properties with

the same key, and mere formatting differences (indentation,

placement of commas, trailing zeros) are insignificant.

4.2.3. Non-JSON Instances

It is possible to use JSON Schema with a superset of the JSON Schema

data model, where an instance may be outside any of the six JSON

data types.

In this case, annotations still apply; but most validation keywords

will not be useful, as they will always pass or always fail.

A custom vocabulary may define support for a superset of the core

data model. The schema itself may only be expressible in this

superset; for example, to make use of the "const" keyword.

4.3. JSON Schema Documents

A JSON Schema document, or simply a schema, is a JSON document used

to describe an instance. A schema can itself be interpreted as an

instance, but SHOULD always be given the media type "application/

schema+json" rather than "application/schema-instance+json". The

"application/schema+json" media type is defined to offer a superset

of the fragment identifier syntax and semantics provided by

"application/schema-instance+json".

A JSON Schema MUST be an object or a boolean.

4.3.1. JSON Schema Objects and Keywords

Object properties that are applied to the instance are called

keywords, or schema keywords. Broadly speaking, keywords fall into

one of five categories:

control schema identification through setting a URI

for the schema and/or changing how the base URI is determined

produce a boolean result when applied to an instance

attach information to an instance for application use

apply one or more subschemas to a particular location

in the instance, and combine or modify their results

do not directly affect results, but reserve a

place for a specific purpose to ensure interoperability

Keywords may fall into multiple categories, although applicators

SHOULD only produce assertion results based on their subschemas'

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

true:

false:

results. They should not define additional constraints independent

of their subschemas.

Keywords which are properties within the same schema object are

referred to as adjacent keywords.

Extension keywords, meaning those defined outside of this document

and its companions, are free to define other behaviors as well.

A JSON Schema MAY contain properties which are not schema keywords.

Unknown keywords SHOULD be treated as annotations, where the value

of the keyword is the value of the annotation.

An empty schema is a JSON Schema with no properties, or only unknown

properties.

4.3.2. Boolean JSON Schemas

The boolean schema values "true" and "false" are trivial schemas

that always produce themselves as assertion results, regardless of

the instance value. They never produce annotation results.

These boolean schemas exist to clarify schema author intent and

facilitate schema processing optimizations. They behave identically

to the following schema objects (where "not" is part of the

subschema application vocabulary defined in this document).

Always passes validation, as if the empty schema {}

Always fails validation, as if the schema { "not": {} }

While the empty schema object is unambiguous, there are many

possible equivalents to the "false" schema. Using the boolean values

ensures that the intent is clear to both human readers and

implementations.

4.3.3. Schema Vocabularies

A schema vocabulary, or simply a vocabulary, is a set of keywords,

their syntax, and their semantics. A vocabulary is generally

organized around a particular purpose. Different uses of JSON

Schema, such as validation, hypermedia, or user interface

generation, will involve different sets of vocabularies.

Vocabularies are the primary unit of re-use in JSON Schema, as

schema authors can indicate what vocabularies are required or

optional in order to process the schema. Since vocabularies are

identified by URIs in the meta-schema, generic implementations can

load extensions to support previously unknown vocabularies. While

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

keywords can be supported outside of any vocabulary, there is no

analogous mechanism to indicate individual keyword usage.

A schema vocabulary can be defined by anything from an informal

description to a standards proposal, depending on the audience and

interoperability expectations. In particular, in order to facilitate

vocabulary use within non-public organizations, a vocabulary

specification need not be published outside of its scope of use.

4.3.4. Meta-Schemas

A schema that itself describes a schema is called a meta-schema.

Meta-schemas are used to validate JSON Schemas and specify which

vocabularies they are using.

Typically, a meta-schema will specify a set of vocabularies, and

validate schemas that conform to the syntax of those vocabularies.

However, meta-schemas and vocabularies are separate in order to

allow meta-schemas to validate schema conformance more strictly or

more loosely than the vocabularies' specifications call for. Meta-

schemas may also describe and validate additional keywords that are

not part of a formal vocabulary.

4.3.5. Root Schema and Subschemas and Resources

A JSON Schema resource is a schema which is canonically [RFC6596]

identified by an absolute URI [RFC3986]. Schema resources MAY also

be identified by URIs, including URIs with fragments, if the

resulting secondary resource (as defined by section 3.5 of RFC 3986

[RFC3986]) is identical to the primary resource. This can occur with

the empty fragment, or when one schema resource is embedded in

another. Any such URIs with fragments are considered to be non-

canonical.

The root schema is the schema that comprises the entire JSON

document in question. The root schema is always a schema resource,

where the URI is determined as described in section 9.1.1. Note that

documents that embed schemas in another format will not have a root

schema resource in this sense. Exactly how such usages fit with the

JSON Schema document and resource concepts will be clarified in a

future draft.

Some keywords take schemas themselves, allowing JSON Schemas to be

nested:

¶

¶

¶

¶

¶

¶

¶

In this example document, the schema titled "array item" is a

subschema, and the schema titled "root" is the root schema.

As with the root schema, a subschema is either an object or a

boolean.

As discussed in section 8.2.1, a JSON Schema document can contain

multiple JSON Schema resources. When used without qualification, the

term "root schema" refers to the document's root schema. In some

cases, resource root schemas are discussed. A resource's root schema

is its top-level schema object, which would also be a document root

schema if the resource were to be extracted to a standalone JSON

Schema document.

Whether multiple schema resources are embedded or linked with a

reference, they are processed in the same way, with the same

available behaviors.

5. Fragment Identifiers

In accordance with section 3.1 of RFC 6839 [RFC6839], the syntax and

semantics of fragment identifiers specified for any +json media type

SHOULD be as specified for "application/json". (At publication of

this document, there is no fragment identification syntax defined

for "application/json".)

Additionally, the "application/schema+json" media type supports two

fragment identifier structures: plain names and JSON Pointers. The

"application/schema-instance+json" media type supports one fragment

identifier structure: JSON Pointers.

The use of JSON Pointers as URI fragment identifiers is described in

RFC 6901 [RFC6901]. For "application/schema+json", which supports

two fragment identifier syntaxes, fragment identifiers matching the

JSON Pointer syntax, including the empty string, MUST be interpreted

as JSON Pointer fragment identifiers.

Per the W3C's best practices for fragment identifiers [W3C.WD-

fragid-best-practices-20121025], plain name fragment identifiers in

"application/schema+json" are reserved for referencing locally named

{

 "title": "root",

 "items": {

 "title": "array item"

 }

}

¶

¶

¶

¶

¶

¶

¶

¶

schemas. All fragment identifiers that do not match the JSON Pointer

syntax MUST be interpreted as plain name fragment identifiers.

Defining and referencing a plain name fragment identifier within an

"application/schema+json" document are specified in the "$anchor"

keyword (Section 8.2.2) section.

6. General Considerations

6.1. Range of JSON Values

An instance may be any valid JSON value as defined by JSON

[RFC8259]. JSON Schema imposes no restrictions on type: JSON Schema

can describe any JSON value, including, for example, null.

6.2. Programming Language Independence

JSON Schema is programming language agnostic, and supports the full

range of values described in the data model. Be aware, however, that

some languages and JSON parsers may not be able to represent in

memory the full range of values describable by JSON.

6.3. Mathematical Integers

Some programming languages and parsers use different internal

representations for floating point numbers than they do for

integers.

For consistency, integer JSON numbers SHOULD NOT be encoded with a

fractional part.

6.4. Regular Expressions

Keywords MAY use regular expressions to express constraints, or

constrain the instance value to be a regular expression. These

regular expressions SHOULD be valid according to the regular

expression dialect described in ECMA-262, section 21.2.1 [ecma262].

Regular expressions SHOULD be built with the "u" flag (or

equivalent) to provide Unicode support, or processed in such a way

which provides Unicode support as defined by ECMA-262.

Furthermore, given the high disparity in regular expression

constructs support, schema authors SHOULD limit themselves to the

following regular expression tokens:

individual Unicode characters, as defined by the JSON

specification [RFC8259];

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

simple character classes ([abc]), range character classes ([a-

z]);

complemented character classes ([^abc], [^a-z]);

simple quantifiers: "+" (one or more), "*" (zero or more), "?"

(zero or one), and their lazy versions ("+?", "*?", "??");

range quantifiers: "{x}" (exactly x occurrences), "{x,y}" (at

least x, at most y, occurrences), {x,} (x occurrences or more),

and their lazy versions;

the beginning-of-input ("^") and end-of-input ("$") anchors;

simple grouping ("(...)") and alternation ("|").

Finally, implementations MUST NOT take regular expressions to be

anchored, neither at the beginning nor at the end. This means, for

instance, the pattern "es" matches "expression".

6.5. Extending JSON Schema

Additional schema keywords and schema vocabularies MAY be defined by

any entity. Save for explicit agreement, schema authors SHALL NOT

expect these additional keywords and vocabularies to be supported by

implementations that do not explicitly document such support.

Implementations SHOULD treat keywords they do not support as

annotations, where the value of the keyword is the value of the

annotation.

Implementations MAY provide the ability to register or load handlers

for vocabularies that they do not support directly. The exact

mechanism for registering and implementing such handlers is

implementation-dependent.

7. Keyword Behaviors

JSON Schema keywords fall into several general behavior categories.

Assertions validate that an instance satisfies constraints,

producing a boolean result. Annotations attach information that

applications may use in any way they see fit. Applicators apply

subschemas to parts of the instance and combine their results.

Extension keywords SHOULD stay within these categories, keeping in

mind that annotations in particular are extremely flexible. Complex

behavior is usually better delegated to applications on the basis of

annotation data than implemented directly as schema keywords.

However, extension keywords MAY define other behaviors for

specialized purposes.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Evaluating an instance against a schema involves processing all of

the keywords in the schema against the appropriate locations within

the instance. Typically, applicator keywords are processed until a

schema object with no applicators (and therefore no subschemas) is

reached. The appropriate location in the instance is evaluated

against the assertion and annotation keywords in the schema object,

and their results are gathered into the parent schema according to

the rules of the applicator.

Evaluation of a parent schema object can complete once all of its

subschemas have been evaluated, although in some circumstances

evaluation may be short-circuited due to assertion results. When

annotations are being collected, some assertion result short-

circuiting is not possible due to the need to examine all subschemas

for annotation collection, including those that cannot further

change the assertion result.

7.1. Lexical Scope and Dynamic Scope

While most JSON Schema keywords can be evaluated on their own, or at

most need to take into account the values or results of adjacent

keywords in the same schema object, a few have more complex

behavior.

The lexical scope of a keyword is determined by the nested JSON data

structure of objects and arrays. The largest such scope is an entire

schema document. The smallest scope is a single schema object with

no subschemas.

Keywords MAY be defined with a partial value, such as a URI-

reference, which must be resolved against another value, such as

another URI-reference or a full URI, which is found through the

lexical structure of the JSON document. The "$id", "$ref", and

"$dynamicRef" core keywords, and the "base" JSON Hyper-Schema

keyword, are examples of this sort of behavior.

Note that some keywords, such as "$schema", apply to the lexical

scope of the entire schema resource, and therefore MUST only appear

in a schema resource's root schema.

Other keywords may take into account the dynamic scope that exists

during the evaluation of a schema, typically together with an

instance document. The outermost dynamic scope is the schema object

at which processing begins, even if it is not a schema resource

root. The path from this root schema to any particular keyword (that

includes any "$ref" and "$dynamicRef" keywords that may have been

resolved) is considered the keyword's "validation path."

Lexical and dynamic scopes align until a reference keyword is

encountered. While following the reference keyword moves processing

¶

¶

¶

¶

¶

¶

¶

from one lexical scope into a different one, from the perspective of

dynamic scope, following a reference is no different from descending

into a subschema present as a value. A keyword on the far side of

that reference that resolves information through the dynamic scope

will consider the originating side of the reference to be their

dynamic parent, rather than examining the local lexically enclosing

parent.

The concept of dynamic scope is primarily used with "$dynamicRef"

and "$dynamicAnchor", and should be considered an advanced feature

and used with caution when defining additional keywords. It also

appears when reporting errors and collected annotations, as it may

be possible to revisit the same lexical scope repeatedly with

different dynamic scopes. In such cases, it is important to inform

the user of the dynamic path that produced the error or annotation.

7.2. Keyword Interactions

Keyword behavior MAY be defined in terms of the annotation results

of subschemas (Section 4.3.5) and/or adjacent keywords (keywords

within the same schema object) and their subschemas. Such keywords

MUST NOT result in a circular dependency. Keywords MAY modify their

behavior based on the presence or absence of another keyword in the

same schema object (Section 4.3).

7.3. Default Behaviors

A missing keyword MUST NOT produce a false assertion result, MUST

NOT produce annotation results, and MUST NOT cause any other schema

to be evaluated as part of its own behavioral definition. However,

given that missing keywords do not contribute annotations, the lack

of annotation results may indirectly change the behavior of other

keywords.

In some cases, the missing keyword assertion behavior of a keyword

is identical to that produced by a certain value, and keyword

definitions SHOULD note such values where known. However, even if

the value which produces the default behavior would produce

annotation results if present, the default behavior still MUST NOT

result in annotations.

Because annotation collection can add significant cost in terms of

both computation and memory, implementations MAY opt out of this

feature. Keywords that are specified in terms of collected

annotations SHOULD describe reasonable alternate approaches when

appropriate. This approach is demonstrated by the "items" and

"additionalProperties" keywords in this document.

¶

¶

¶

¶

¶

¶

Note that when no such alternate approach is possible for a keyword,

implementations that do not support annotation collections will not

be able to support those keywords or vocabularies that contain them.

7.4. Identifiers

Identifiers define URIs for a schema, or affect how such URIs are

resolved in references (Section 8.2.3), or both. The Core vocabulary

defined in this document defines several identifying keywords, most

notably "$id".

Canonical schema URIs MUST NOT change while processing an instance,

but keywords that affect URI-reference resolution MAY have behavior

that is only fully determined at runtime.

While custom identifier keywords are possible, vocabulary designers

should take care not to disrupt the functioning of core keywords.

For example, the "$dynamicAnchor" keyword in this specification

limits its URI resolution effects to the matching "$dynamicRef"

keyword, leaving the behavior of "$ref" undisturbed.

7.5. Applicators

Applicators allow for building more complex schemas than can be

accomplished with a single schema object. Evaluation of an instance

against a schema document (Section 4.3) begins by applying the root

schema (Section 4.3.5) to the complete instance document. From

there, keywords known as applicators are used to determine which

additional schemas are applied. Such schemas may be applied in-place

to the current location, or to a child location.

The schemas to be applied may be present as subschemas comprising

all or part of the keyword's value. Alternatively, an applicator may

refer to a schema elsewhere in the same schema document, or in a

different one. The mechanism for identifying such referenced schemas

is defined by the keyword.

Applicator keywords also define how subschema or referenced schema

boolean assertion (Section 7.6) results are modified and/or combined

to produce the boolean result of the applicator. Applicators may

apply any boolean logic operation to the assertion results of

subschemas, but MUST NOT introduce new assertion conditions of their

own.

Annotation (Section 7.7) results are preserved along with the

instance location and the location of the schema keyword, so that

applications can decide how to interpret multiple values.

¶

¶

¶

¶

¶

¶

¶

¶

7.5.1. Referenced and Referencing Schemas

As noted in Section 7.5, an applicator keyword may refer to a schema

to be applied, rather than including it as a subschema in the

applicator's value. In such situations, the schema being applied is

known as the referenced schema, while the schema containing the

applicator keyword is the referencing schema.

While root schemas and subschemas are static concepts based on a

schema's position within a schema document, referenced and

referencing schemas are dynamic. Different pairs of schemas may find

themselves in various referenced and referencing arrangements during

the evaluation of an instance against a schema.

For some by-reference applicators, such as "$ref" (Section 8.2.3.1),

the referenced schema can be determined by static analysis of the

schema document's lexical scope. Others, such as "$dynamicRef" (with

"$dynamicAnchor"), may make use of dynamic scoping, and therefore

only be resolvable in the process of evaluating the schema with an

instance.

7.6. Assertions

JSON Schema can be used to assert constraints on a JSON document,

which either passes or fails the assertions. This approach can be

used to validate conformance with the constraints, or document what

is needed to satisfy them.

JSON Schema implementations produce a single boolean result when

evaluating an instance against schema assertions.

An instance can only fail an assertion that is present in the

schema.

7.6.1. Assertions and Instance Primitive Types

Most assertions only constrain values within a certain primitive

type. When the type of the instance is not of the type targeted by

the keyword, the instance is considered to conform to the assertion.

For example, the "maxLength" keyword from the companion validation

vocabulary [json-schema-validation]: will only restrict certain

strings (that are too long) from being valid. If the instance is a

number, boolean, null, array, or object, then it is valid against

this assertion.

This behavior allows keywords to be used more easily with instances

that can be of multiple primitive types. The companion validation

vocabulary also includes a "type" keyword which can independently

restrict the instance to one or more primitive types. This allows

¶

¶

¶

¶

¶

¶

¶

¶

for a concise expression of use cases such as a function that might

return either a string of a certain length or a null value:

If "maxLength" also restricted the instance type to be a string,

then this would be substantially more cumbersome to express because

the example as written would not actually allow null values. Each

keyword is evaluated separately unless explicitly specified

otherwise, so if "maxLength" restricted the instance to strings,

then including "null" in "type" would not have any useful effect.

7.7. Annotations

JSON Schema can annotate an instance with information, whenever the

instance validates against the schema object containing the

annotation, and all of its parent schema objects. The information

can be a simple value, or can be calculated based on the instance

contents.

Annotations are attached to specific locations in an instance. Since

many subschemas can be applied to any single location, applications

may need to decide how to handle differing annotation values being

attached to the same instance location by the same schema keyword in

different schema objects.

Unlike assertion results, annotation data can take a wide variety of

forms, which are provided to applications to use as they see fit.

JSON Schema implementations are not expected to make use of the

collected information on behalf of applications.

Unless otherwise specified, the value of an annotation keyword is

the keyword's value. However, other behaviors are possible. For

example, JSON Hyper-Schema's [json-hyper-schema] "links" keyword is

a complex annotation that produces a value based in part on the

instance data.

While "short-circuit" evaluation is possible for assertions,

collecting annotations requires examining all schemas that apply to

an instance location, even if they cannot change the overall

assertion result. The only exception is that subschemas of a schema

object that has failed validation MAY be skipped, as annotations are

not retained for failing schemas.

¶

{

 "type": ["string", "null"],

 "maxLength": 255

}

¶

¶

¶

¶

¶

¶

¶

7.7.1. Collecting Annotations

Annotations are collected by keywords that explicitly define

annotation-collecting behavior. Note that boolean schemas cannot

produce annotations as they do not make use of keywords.

A collected annotation MUST include the following information:

The name of the keyword that produces the annotation

The instance location to which it is attached, as a JSON Pointer

The schema location path, indicating how reference keywords such

as "$ref" were followed to reach the absolute schema location.

The absolute schema location of the attaching keyword, as a URI.

This MAY be omitted if it is the same as the schema location path

from above.

The attached value(s)

7.7.1.1. Distinguishing Among Multiple Values

Applications MAY make decisions on which of multiple annotation

values to use based on the schema location that contributed the

value. This is intended to allow flexible usage. Collecting the

schema location facilitates such usage.

For example, consider this schema, which uses annotations and

assertions from the Validation specification [json-schema-

validation]:

Note that some lines are wrapped for clarity.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

In this example, both Feature A and Feature B make use of the re-

usable "enabledToggle" schema. That schema uses the "title",

"description", and "default" annotations. Therefore the application

has to decide how to handle the additional "default" value for

Feature A, and the additional "description" value for Feature B.

The application programmer and the schema author need to agree on

the usage. For this example, let's assume that they agree that the

most specific "default" value will be used, and any additional, more

generic "default" values will be silently ignored. Let's also assume

{

 "title": "Feature list",

 "type": "array",

 "prefixItems": [

 {

 "title": "Feature A",

 "properties": {

 "enabled": {

 "$ref": "#/$defs/enabledToggle",

 "default": true

 }

 }

 },

 {

 "title": "Feature B",

 "properties": {

 "enabled": {

 "description": "If set to null, Feature B

 inherits the enabled

 value from Feature A",

 "$ref": "#/$defs/enabledToggle"

 }

 }

 }

],

 "$defs": {

 "enabledToggle": {

 "title": "Enabled",

 "description": "Whether the feature is enabled (true),

 disabled (false), or under

 automatic control (null)",

 "type": ["boolean", "null"],

 "default": null

 }

 }

}

¶

¶

that they agree that all "description" text is to be used, starting

with the most generic, and ending with the most specific. This

requires the schema author to write descriptions that work when

combined in this way.

The application can use the schema location path to determine which

values are which. The values in the feature's immediate "enabled"

property schema are more specific, while the values under the re-

usable schema that is referenced to with "$ref" are more generic.

The schema location path will show whether each value was found by

crossing a "$ref" or not.

Feature A will therefore use a default value of true, while Feature

B will use the generic default value of null. Feature A will only

have the generic description from the "enabledToggle" schema, while

Feature B will use that description, and also append its locally

defined description that explains how to interpret a null value.

Note that there are other reasonable approaches that a different

application might take. For example, an application may consider the

presence of two different values for "default" to be an error,

regardless of their schema locations.

7.7.1.2. Annotations and Assertions

Schema objects that produce a false assertion result MUST NOT

produce any annotation results, whether from their own keywords or

from keywords in subschemas.

Note that the overall schema results may still include annotations

collected from other schema locations. Given this schema:

Against the instance "This is a string", the title annotation

"Integer Value" is discarded because the type assertion in that

¶

¶

¶

¶

¶

¶

{

 "oneOf": [

 {

 "title": "Integer Value",

 "type": "integer"

 },

 {

 "title": "String Value",

 "type": "string"

 }

]

}

¶

schema object fails. The title annotation "String Value" is kept, as

the instance passes the string type assertions.

7.7.1.3. Annotations and Applicators

In addition to possibly defining annotation results of their own,

applicator keywords aggregate the annotations collected in their

subschema(s) or referenced schema(s).

7.8. Reserved Locations

A fourth category of keywords simply reserve a location to hold re-

usable components or data of interest to schema authors that is not

suitable for re-use. These keywords do not affect validation or

annotation results. Their purpose in the core vocabulary is to

ensure that locations are available for certain purposes and will

not be redefined by extension keywords.

While these keywords do not directly affect results, as explained in

section 9.4.2 unrecognized extension keywords that reserve locations

for re-usable schemas may have undesirable interactions with

references in certain circumstances.

7.9. Loading Instance Data

While none of the vocabularies defined as part of this or the

associated documents define a keyword which may target and/or load

instance data, it is possible that other vocabularies may wish to do

so.

Keywords MAY be defined to use JSON Pointers or Relative JSON

Pointers to examine parts of an instance outside the current

evaluation location.

Keywords that allow adjusting the location using a Relative JSON

Pointer SHOULD default to using the current location if a default is

desireable.

8. The JSON Schema Core Vocabulary

Keywords declared in this section, which all begin with "$", make up

the JSON Schema Core vocabulary. These keywords are either required

in order to process any schema or meta-schema, including those split

across multiple documents, or exist to reserve keywords for purposes

that require guaranteed interoperability.

The Core vocabulary MUST be considered mandatory at all times, in

order to bootstrap the processing of further vocabularies. Meta-

schemas that use the "$vocabulary" (Section 8.1) keyword to declare

¶

¶

¶

¶

¶

¶

¶

¶

Declaring the vocabularies in use

Describing valid schema syntax

the vocabularies in use MUST explicitly list the Core vocabulary,

which MUST have a value of true indicating that it is required.

The behavior of a false value for this vocabulary (and only this

vocabulary) is undefined, as is the behavior when "$vocabulary" is

present but the Core vocabulary is not included. However, it is

RECOMMENDED that implementations detect these cases and raise an

error when they occur. It is not meaningful to declare that a meta-

schema optionally uses Core.

Meta-schemas that do not use "$vocabulary" MUST be considered to

require the Core vocabulary as if its URI were present with a value

of true.

The current URI for the Core vocabulary is: <https://json-

schema.org/draft/2020-12/vocab/core>.

The current URI for the corresponding meta-schema is: https://json-

schema.org/draft/2020-12/meta/core.

While the "$" prefix is not formally reserved for the Core

vocabulary, it is RECOMMENDED that extension keywords (in

vocabularies or otherwise) begin with a character other than "$" to

avoid possible future collisions.

8.1. Meta-Schemas and Vocabularies

Two concepts, meta-schemas and vocabularies, are used to inform an

implementation how to interpret a schema. Every schema has a meta-

schema, which can be declared using the "$schema" keyword.

The meta-schema serves two purposes:

The "$vocabulary" keyword, when

it appears in a meta-schema, declares which vocabularies are

available to be used in schemas that refer to that meta-schema.

Vocabularies define keyword semantics, as well as their general

syntax.

A schema MUST successfully validate

against its meta-schema, which constrains the syntax of the

available keywords. The syntax described is expected to be

compatible with the vocabularies declared; while it is possible

to describe an incompatible syntax, such a meta-schema would be

unlikely to be useful.

Meta-schemas are separate from vocabularies to allow for

vocabularies to be combined in different ways, and for meta-schema

authors to impose additional constraints such as forbidding certain

keywords, or performing unusually strict syntactical validation, as

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://json-schema.org/draft/2020-12/meta/core
https://json-schema.org/draft/2020-12/meta/core

might be done during a development and testing cycle. Each

vocabulary typically identifies a meta-schema consisting only of the

vocabulary's keywords.

Meta-schema authoring is an advanced usage of JSON Schema, so the

design of meta-schema features emphasizes flexibility over

simplicity.

8.1.1. The "$schema" Keyword

The "$schema" keyword is both used as a JSON Schema dialect

identifier and as the identifier of a resource which is itself a

JSON Schema, which describes the set of valid schemas written for

this particular dialect.

The value of this keyword MUST be a URI [RFC3986] (containing a

scheme) and this URI MUST be normalized. The current schema MUST be

valid against the meta-schema identified by this URI.

If this URI identifies a retrievable resource, that resource SHOULD

be of media type "application/schema+json".

The "$schema" keyword SHOULD be used in the document root schema

object, and MAY be used in the root schema objects of embedded

schema resources. It MUST NOT appear in non-resource root schema

objects. If absent from the document root schema, the resulting

behavior is implementation-defined.

Values for this property are defined elsewhere in this and other

documents, and by other parties.

8.1.2. The "$vocabulary" Keyword

The "$vocabulary" keyword is used in meta-schemas to identify the

vocabularies available for use in schemas described by that meta-

schema. It is also used to indicate whether each vocabulary is

required or optional, in the sense that an implementation MUST

understand the required vocabularies in order to successfully

process the schema. Together, this information forms a dialect. Any

vocabulary that is understood by the implementation MUST be

processed in a manner consistent with the semantic definitions

contained within the vocabulary.

The value of this keyword MUST be an object. The property names in

the object MUST be URIs (containing a scheme) and this URI MUST be

normalized. Each URI that appears as a property name identifies a

specific set of keywords and their semantics.

The URI MAY be a URL, but the nature of the retrievable resource is

currently undefined, and reserved for future use. Vocabulary authors

¶

¶

¶

¶

¶

¶

¶

¶

¶

MAY use the URL of the vocabulary specification, in a human-readable

media type such as text/html or text/plain, as the vocabulary URI.

Vocabulary documents may be added in forthcoming drafts. For now,

identifying the keyword set is deemed sufficient as that, along with

meta-schema validation, is how the current "vocabularies" work

today. Any future vocabulary document format will be specified as a

JSON document, so using text/html or other non-JSON formats in the

meantime will not produce any future ambiguity.

The values of the object properties MUST be booleans. If the value

is true, then implementations that do not recognize the vocabulary

MUST refuse to process any schemas that declare this meta-schema

with "$schema". If the value is false, implementations that do not

recognize the vocabulary SHOULD proceed with processing such

schemas. The value has no impact if the implementation understands

the vocabulary.

Per 6.5, unrecognized keywords SHOULD be treated as annotations.

This remains the case for keywords defined by unrecognized

vocabularies. It is not currently possible to distinguish between

unrecognized keywords that are defined in vocabularies from those

that are not part of any vocabulary.

The "$vocabulary" keyword SHOULD be used in the root schema of any

schema document intended for use as a meta-schema. It MUST NOT

appear in subschemas.

The "$vocabulary" keyword MUST be ignored in schema documents that

are not being processed as a meta-schema. This allows validating a

meta-schema M against its own meta-schema M' without requiring the

validator to understand the vocabularies declared by M.

8.1.2.1. Default vocabularies

If "$vocabulary" is absent, an implementation MAY determine behavior

based on the meta-schema if it is recognized from the URI value of

the referring schema's "$schema" keyword. This is how behavior (such

as Hyper-Schema usage) has been recognized prior to the existence of

vocabularies.

If the meta-schema, as referenced by the schema, is not recognized,

or is missing, then the behavior is implementation-defined. If the

implementation proceeds with processing the schema, it MUST assume

the use of the core vocabulary. If the implementation is built for a

specific purpose, then it SHOULD assume the use of all of the most

relevant vocabularies for that purpose.

For example, an implementation that is a validator SHOULD assume the

use of all vocabularies in this specification and the companion

Validation specification.

¶

¶

¶

¶

¶

¶

¶

¶

8.1.2.2. Non-inheritability of vocabularies

Note that the processing restrictions on "$vocabulary" mean that

meta-schemas that reference other meta-schemas using "$ref" or

similar keywords do not automatically inherit the vocabulary

declarations of those other meta-schemas. All such declarations must

be repeated in the root of each schema document intended for use as

a meta-schema. This is demonstrated in the example meta-schema

(Appendix D.2). This requirement allows implementations to find all

vocabulary requirement information in a single place for each meta-

schema. As schema extensibility means that there are endless

potential ways to combine more fine-grained meta-schemas by

reference, requiring implementations to anticipate all possibilities

and search for vocabularies in referenced meta-schemas would be

overly burdensome.

8.1.3. Updates to Meta-Schema and Vocabulary URIs

Updated vocabulary and meta-schema URIs MAY be published between

specification drafts in order to correct errors. Implementations

SHOULD consider URIs dated after this specification draft and before

the next to indicate the same syntax and semantics as those listed

here.

8.2. Base URI, Anchors, and Dereferencing

To differentiate between schemas in a vast ecosystem, schemas are

identified by URI [RFC3986], and can embed references to other

schemas by specifying their URI.

Several keywords can accept a relative URI-reference [RFC3986], or a

value used to construct a relative URI-reference. For these

keywords, it is necessary to establish a base URI in order to

resolve the reference.

8.2.1. The "$id" Keyword

The "$id" keyword identifies a schema resource with its canonical

[RFC6596] URI.

Note that this URI is an identifier and not necessarily a network

locator. In the case of a network-addressable URL, a schema need not

be downloadable from its canonical URI.

If present, the value for this keyword MUST be a string, and MUST

represent a valid URI-reference [RFC3986]. This URI-reference SHOULD

be normalized, and MUST resolve to an absolute-URI [RFC3986]

(without a fragment), or to a URI with an empty fragment.

¶

¶

¶

¶

¶

¶

¶

The empty fragment form is NOT RECOMMENDED and is retained only for

backwards compatibility, and because the application/schema+json

media type defines that a URI with an empty fragment identifies the

same resource as the same URI with the fragment removed. However,

since this equivalence is not part of the RFC 3986 normalization

process [RFC3986], implementers and schema authors cannot rely on

generic URI libraries understanding it.

Therefore, "$id" MUST NOT contain a non-empty fragment, and SHOULD

NOT contain an empty fragment. The absolute-URI form MUST be

considered the canonical URI, regardless of the presence or absence

of an empty fragment. An empty fragment is currently allowed because

older meta-schemas have an empty fragment in their $id (or

previously, id). A future draft may outright forbid even empty

fragments in "$id".

The absolute-URI also serves as the base URI for relative URI-

references in keywords within the schema resource, in accordance

with RFC 3986 section 5.1.1 [RFC3986] regarding base URIs embedded

in content.

The presence of "$id" in a subschema indicates that the subschema

constitutes a distinct schema resource within a single schema

document. Furthermore, in accordance with RFC 3986 section 5.1.2

[RFC3986] regarding encapsulating entities, if an "$id" in a

subschema is a relative URI-reference, the base URI for resolving

that reference is the URI of the parent schema resource.

If no parent schema object explicitly identifies itself as a

resource with "$id", the base URI is that of the entire document, as

established by the steps given in the previous section. (Section

9.1.1)

8.2.1.1. Identifying the root schema

The root schema of a JSON Schema document SHOULD contain an "$id"

keyword with an absolute-URI [RFC3986] (containing a scheme, but no

fragment).

8.2.2. Defining location-independent identifiers

Using JSON Pointer fragments requires knowledge of the structure of

the schema. When writing schema documents with the intention to

provide re-usable schemas, it may be preferable to use a plain name

fragment that is not tied to any particular structural location.

This allows a subschema to be relocated without requiring JSON

Pointer references to be updated.

The "$anchor" and "$dynamicAnchor" keywords are used to specify such

fragments. They are identifier keywords that can only be used to

¶

¶

¶

¶

¶

¶

¶

create plain name fragments, rather than absolute URIs as seen with

"$id".

The base URI to which the resulting fragment is appended is the

canonical URI of the schema resource containing the "$anchor" or

"$dynamicAnchor" in question. As discussed in the previous section,

this is either the nearest "$id" in the same or parent schema

object, or the base URI for the document as determined according to

RFC 3986.

Separately from the usual usage of URIs, "$dynamicAnchor" indicates

that the fragment is an extension point when used with the

"$dynamicRef" keyword. This low-level, advanced feature makes it

easier to extend recursive schemas such as the meta-schemas, without

imposing any particular semantics on that extension. See the section

on "$dynamicRef" (Section 8.2.3.2) for details.

In most cases, the normal fragment behavior both suffices and is

more intuitive. Therefore it is RECOMMENDED that "$anchor" be used

to create plain name fragments unless there is a clear need for

"$dynamicAnchor".

If present, the value of this keyword MUST be a string and MUST

start with a letter ([A-Za-z]) or underscore ("_"), followed by any

number of letters, digits ([0-9]), hyphens ("-"), underscores ("_"),

and periods ("."). This matches the US-ASCII part of XML's NCName

production [xml-names]. Note that the anchor string does not include

the "#" character, as it is not a URI-reference. An "$anchor": "foo"

becomes the fragment "#foo" when used in a URI. See below for full

examples.

The effect of specifying the same fragment name multiple times

within the same resource, using any combination of "$anchor" and/or

"$dynamicAnchor", is undefined. Implementations MAY raise an error

if such usage is detected.

8.2.3. Schema References

Several keywords can be used to reference a schema which is to be

applied to the current instance location. "$ref" and "$dynamicRef"

are applicator keywords, applying the referenced schema to the

instance.

As the values of "$ref" and "$dynamicRef" are URI References, this

allows the possibility to externalise or divide a schema across

multiple files, and provides the ability to validate recursive

structures through self-reference.

The resolved URI produced by these keywords is not necessarily a

network locator, only an identifier. A schema need not be

¶

¶

¶

¶

¶

¶

¶

¶

downloadable from the address if it is a network-addressable URL,

and implementations SHOULD NOT assume they should perform a network

operation when they encounter a network-addressable URI.

8.2.3.1. Direct References with "$ref"

The "$ref" keyword is an applicator that is used to reference a

statically identified schema. Its results are the results of the

referenced schema. Note that this definition of how the results are

determined means that other keywords can appear alongside of "$ref"

in the same schema object.

The value of the "$ref" keyword MUST be a string which is a URI-

Reference. Resolved against the current URI base, it produces the

URI of the schema to apply. This resolution is safe to perform on

schema load, as the process of evaluating an instance cannot change

how the reference resolves.

8.2.3.2. Dynamic References with "$dynamicRef"

The "$dynamicRef" keyword is an applicator that allows for deferring

the full resolution until runtime, at which point it is resolved

each time it is encountered while evaluating an instance.

Together with "$dynamicAnchor", "$dynamicRef" implements a

cooperative extension mechanism that is primarily useful with

recursive schemas (schemas that reference themselves). Both the

extension point and the runtime-determined extension target are

defined with "$dynamicAnchor", and only exhibit runtime dynamic

behavior when referenced with "$dynamicRef".

The value of the "$dynamicRef" property MUST be a string which is a

URI-Reference. Resolved against the current URI base, it produces

the URI used as the starting point for runtime resolution. This

initial resolution is safe to perform on schema load.

If the initially resolved starting point URI includes a fragment

that was created by the "$dynamicAnchor" keyword, the initial URI

MUST be replaced by the URI (including the fragment) for the

outermost schema resource in the dynamic scope (Section 7.1) that

defines an identically named fragment with "$dynamicAnchor".

Otherwise, its behavior is identical to "$ref", and no runtime

resolution is needed.

For a full example using these keyword, see appendix C. The

difference between the hyper-schema meta-schema in pre-2019 drafts

and an this draft dramatically demonstrates the utility of these

keywords.

¶

¶

¶

¶

¶

¶

¶

¶

¶

8.2.4. Schema Re-Use With "$defs"

The "$defs" keyword reserves a location for schema authors to inline

re-usable JSON Schemas into a more general schema. The keyword does

not directly affect the validation result.

This keyword's value MUST be an object. Each member value of this

object MUST be a valid JSON Schema.

As an example, here is a schema describing an array of positive

integers, where the positive integer constraint is a subschema in

"$defs":

8.3. Comments With "$comment"

This keyword reserves a location for comments from schema authors to

readers or maintainers of the schema.

The value of this keyword MUST be a string. Implementations MUST NOT

present this string to end users. Tools for editing schemas SHOULD

support displaying and editing this keyword. The value of this

keyword MAY be used in debug or error output which is intended for

developers making use of schemas.

Schema vocabularies SHOULD allow "$comment" within any object

containing vocabulary keywords. Implementations MAY assume

"$comment" is allowed unless the vocabulary specifically forbids it.

Vocabularies MUST NOT specify any effect of "$comment" beyond what

is described in this specification.

Tools that translate other media types or programming languages to

and from application/schema+json MAY choose to convert that media

type or programming language's native comments to or from "$comment"

values. The behavior of such translation when both native comments

and "$comment" properties are present is implementation-dependent.

¶

¶

¶

{

 "type": "array",

 "items": { "$ref": "#/$defs/positiveInteger" },

 "$defs": {

 "positiveInteger": {

 "type": "integer",

 "exclusiveMinimum": 0

 }

 }

}

¶

¶

¶

¶

¶

Implementations MAY strip "$comment" values at any point during

processing. In particular, this allows for shortening schemas when

the size of deployed schemas is a concern.

Implementations MUST NOT take any other action based on the

presence, absence, or contents of "$comment" properties. In

particular, the value of "$comment" MUST NOT be collected as an

annotation result.

9. Loading and Processing Schemas

9.1. Loading a Schema

9.1.1. Initial Base URI

RFC3986 Section 5.1 [RFC3986] defines how to determine the default

base URI of a document.

Informatively, the initial base URI of a schema is the URI at which

it was found, whether that was a network location, a local

filesystem, or any other situation identifiable by a URI of any

known scheme.

If a schema document defines no explicit base URI with "$id"

(embedded in content), the base URI is that determined per RFC 3986

section 5 [RFC3986].

If no source is known, or no URI scheme is known for the source, a

suitable implementation-specific default URI MAY be used as

described in RFC 3986 Section 5.1.4 [RFC3986]. It is RECOMMENDED

that implementations document any default base URI that they assume.

If a schema object is embedded in a document of another media type,

then the initial base URI is determined according to the rules of

that media type.

Unless the "$id" keyword described in an earlier section is present

in the root schema, this base URI SHOULD be considered the canonical

URI of the schema document's root schema resource.

9.1.2. Loading a referenced schema

The use of URIs to identify remote schemas does not necessarily mean

anything is downloaded, but instead JSON Schema implementations

SHOULD understand ahead of time which schemas they will be using,

and the URIs that identify them.

When schemas are downloaded, for example by a generic user-agent

that does not know until runtime which schemas to download, see

Usage for Hypermedia (Section 9.5.1).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Implementations SHOULD be able to associate arbitrary URIs with an

arbitrary schema and/or automatically associate a schema's "$id"-

given URI, depending on the trust that the validator has in the

schema. Such URIs and schemas can be supplied to an implementation

prior to processing instances, or may be noted within a schema

document as it is processed, producing associations as shown in

appendix A.

A schema MAY (and likely will) have multiple URIs, but there is no

way for a URI to identify more than one schema. When multiple

schemas try to identify as the same URI, validators SHOULD raise an

error condition.

9.1.3. Detecting a Meta-Schema

Implementations MUST recognize a schema as a meta-schema if it is

being examined because it was identified as such by another schema's

"$schema" keyword. This means that a single schema document might

sometimes be considered a regular schema, and other times be

considered a meta-schema.

In the case of examining a schema which is its own meta-schema, when

an implementation begins processing it as a regular schema, it is

processed under those rules. However, when loaded a second time as a

result of checking its own "$schema" value, it is treated as a meta-

schema. So the same document is processed both ways in the course of

one session.

Implementations MAY allow a schema to be explicitly passed as a

meta-schema, for implementation-specific purposes, such as pre-

loading a commonly used meta-schema and checking its vocabulary

support requirements up front. Meta-schema authors MUST NOT expect

such features to be interoperable across implementations.

9.2. Dereferencing

Schemas can be identified by any URI that has been given to them,

including a JSON Pointer or their URI given directly by "$id". In

all cases, dereferencing a "$ref" reference involves first resolving

its value as a URI reference against the current base URI per RFC

3986 [RFC3986].

If the resulting URI identifies a schema within the current

document, or within another schema document that has been made

available to the implementation, then that schema SHOULD be used

automatically.

For example, consider this schema:

¶

¶

¶

¶

¶

¶

¶

¶

When an implementation encounters the <#/$defs/single> schema, it

resolves the "$anchor" value as a fragment name against the current

base URI to form <https://example.net/root.json#item>.

When an implementation then looks inside the <#/items> schema, it

encounters the <#item> reference, and resolves this to <https://

example.net/root.json#item>, which it has seen defined in this same

document and can therefore use automatically.

When an implementation encounters the reference to "other.json", it

resolves this to <https://example.net/other.json>, which is not

defined in this document. If a schema with that identifier has

otherwise been supplied to the implementation, it can also be used

automatically. What should implementations do when the referenced

schema is not known? Are there circumstances in which automatic

network dereferencing is allowed? A same origin policy? A user-

configurable option? In the case of an evolving API described by

Hyper-Schema, it is expected that new schemas will be added to the

system dynamically, so placing an absolute requirement of pre-

loading schema documents is not feasible.

9.2.1. JSON Pointer fragments and embedded schema resources

Since JSON Pointer URI fragments are constructed based on the

structure of the schema document, an embedded schema resource and

its subschemas can be identified by JSON Pointer fragments relative

to either its own canonical URI, or relative to any containing

resource's URI.

Conceptually, a set of linked schema resources should behave

identically whether each resource is a separate document connected

with schema references (Section 8.2.3), or is structured as a single

document with one or more schema resources embedded as subschemas.

{

 "$id": "https://example.net/root.json",

 "items": {

 "type": "array",

 "items": { "$ref": "#item" }

 },

 "$defs": {

 "single": {

 "$anchor": "item",

 "type": "object",

 "additionalProperties": { "$ref": "other.json" }

 }

 }

}

¶

¶

¶

¶

¶

¶

Since URIs involving JSON Pointer fragments relative to the parent

schema resource's URI cease to be valid when the embedded schema is

moved to a separate document and referenced, applications and

schemas SHOULD NOT use such URIs to identify embedded schema

resources or locations within them.

Consider the following schema document that contains another schema

resource embedded within it:

The URI "https://example.com/foo#/items" points to the "items"

schema, which is an embedded resource. The canonical URI of that

schema resource, however, is "https://example.com/bar".

For the "additionalProperties" schema within that embedded resource,

the URI "https://example.com/foo#/items/additionalProperties" points

to the correct object, but that object's URI relative to its

resource's canonical URI is "https://example.com/bar#/

additionalProperties".

Now consider the following two schema resources linked by reference

using a URI value for "$ref":

Here we see that "https://example.com/bar#/additionalProperties",

using a JSON Pointer fragment appended to the canonical URI of the

"bar" schema resource, is still valid, while "https://example.com/

foo#/items/additionalProperties", which relied on a JSON Pointer

¶

¶

{

 "$id": "https://example.com/foo",

 "items": {

 "$id": "https://example.com/bar",

 "additionalProperties": { }

 }

}

¶

¶

¶

¶

{

 "$id": "https://example.com/foo",

 "items": {

 "$ref": "bar"

 }

}

{

 "$id": "https://example.com/bar",

 "additionalProperties": { }

}

¶

fragment appended to the canonical URI of the "foo" schema resource,

no longer resolves to anything.

Note also that "https://example.com/foo#/items" is valid in both

arrangements, but resolves to a different value. This URI ends up

functioning similarly to a retrieval URI for a resource. While this

URI is valid, it is more robust to use the "$id" of the embedded or

referenced resource unless it is specifically desired to identify

the object containing the "$ref" in the second (non-embedded)

arrangement.

An implementation MAY choose not to support addressing schema

resource contents by URIs using a base other than the resource's

canonical URI, plus a JSON Pointer fragment relative to that base.

Therefore, schema authors SHOULD NOT rely on such URIs, as using

them may reduce interoperability. This is to avoid requiring

implementations to keep track of a whole stack of possible base URIs

and JSON Pointer fragments for each, given that all but one will be

fragile if the schema resources are reorganized. Some have argued

that this is easy so there is no point in forbidding it, while

others have argued that it complicates schema identification and

should be forbidden. Feedback on this topic is encouraged. After

some discussion, we feel that we need to remove the use of

"canonical" in favour of talking about JSON Pointers which reference

across schema resource boundaries as undefined or even forbidden

behavior (https://github.com/json-schema-org/json-schema-spec/

issues/937, https://github.com/json-schema-org/json-schema-spec/

issues/1183)

Further examples of such non-canonical URI construction, as well as

the appropriate canonical URI-based fragments to use instead, are

provided in appendix A.

9.3. Compound Documents

A Compound Schema Document is defined as a JSON document (sometimes

called a "bundled" schema) which has multiple embedded JSON Schema

Resources bundled into the same document to ease transportation.

Each embedded Schema Resource MUST be treated as an individual

Schema Resource, following standard schema loading and processing

requirements, including determining vocabulary support.

9.3.1. Bundling

The bundling process for creating a Compound Schema Document is

defined as taking references (such as "$ref") to an external Schema

Resource and embedding the referenced Schema Resources within the

referring document. Bundling SHOULD be done in such a way that all

¶

¶

¶

¶

¶

¶

URIs (used for referencing) in the base document and any referenced/

embedded documents do not require altering.

Each embedded JSON Schema Resource MUST identify itself with a URI

using the "$id" keyword, and SHOULD make use of the "$schema"

keyword to identify the dialect it is using, in the root of the

schema resource. It is RECOMMENDED that the URI identifier value of

"$id" be an Absolute URI.

When the Schema Resource referenced by a by-reference applicator is

bundled, it is RECOMMENDED that the Schema Resource be located as a

value of a "$defs" object at the containing schema's root. The key

of the "$defs" for the now embedded Schema Resource MAY be the "$id"

of the bundled schema or some other form of application defined

unique identifer (such as a UUID). This key is not intended to be

referenced in JSON Schema, but may be used by an application to aid

the bundling process.

A Schema Resource MAY be embedded in a location other than "$defs"

where the location is defined as a schema value.

A Bundled Schema Resource MUST NOT be bundled by replacing the

schema object from which it was referenced, or by wrapping the

Schema Resource in other applicator keywords.

In order to produce identical output, references in the containing

schema document to the previously external Schema Resources MUST NOT

be changed, and now resolve to a schema using the "$id" of an

embedded Schema Resource. Such identical output includes validation

evaluation and URIs or paths used in resulting annotations or

errors.

While the bundling process will often be the main method for

creating a Compound Schema Document, it is also possible and

expected that some will be created by hand, potentially without

individual Schema Resources existing on their own previously.

9.3.2. Differing and Default Dialects

When multiple schema resources are present in a single document,

schema resources which do not define with which dialect they should

be processed MUST be processed with the same dialect as the

enclosing resource.

Since any schema that can be referenced can also be embedded,

embedded schema resources MAY specify different processing dialects

using the "$schema" values from their enclosing resource.

¶

¶

¶

¶

¶

¶

¶

¶

¶

9.3.3. Validating

Given that a Compound Schema Document may have embedded resources

which identify as using different dialects, these documents SHOULD

NOT be validated by applying a meta-schema to the Compound Schema

Document as an instance. It is RECOMMENDED that an alternate

validation process be provided in order to validate Schema

Documents. Each Schema Resource SHOULD be separately validated

against its associated meta-schema. If you know a schema is what's

being validated, you can identify if the schemas is a Compound

Schema Document or not, by way of use of "$id", which identifies an

embedded resource when used not at the document's root.

A Compound Schema Document in which all embedded resources identify

as using the same dialect, or in which "$schema" is omitted and

therefore defaults to that of the enclosing resource, MAY be

validated by applying the appropriate meta-schema.

9.4. Caveats

9.4.1. Guarding Against Infinite Recursion

A schema MUST NOT be run into an infinite loop against an instance.

For example, if two schemas "#alice" and "#bob" both have an "allOf"

property that refers to the other, a naive validator might get stuck

in an infinite recursive loop trying to validate the instance.

Schemas SHOULD NOT make use of infinite recursive nesting like this;

the behavior is undefined.

9.4.2. References to Possible Non-Schemas

Subschema objects (or booleans) are recognized by their use with

known applicator keywords or with location-reserving keywords such

as "$defs" (Section 8.2.4) that take one or more subschemas as a

value. These keywords may be "$defs" and the standard applicators

from this document, or extension keywords from a known vocabulary,

or implementation-specific custom keywords.

Multi-level structures of unknown keywords are capable of

introducing nested subschemas, which would be subject to the

processing rules for "$id". Therefore, having a reference target in

such an unrecognized structure cannot be reliably implemented, and

the resulting behavior is undefined. Similarly, a reference target

under a known keyword, for which the value is known not to be a

schema, results in undefined behavior in order to avoid burdening

implementations with the need to detect such targets. These

scenarios are analogous to fetching a schema over HTTP but receiving

a response with a Content-Type other than application/schema+json.

An implementation can certainly try to interpret it as a schema, but

the origin server offered no guarantee that it actually is any such

¶

¶

¶

¶

thing. Therefore, interpreting it as such has security implications

and may produce unpredictable results.

Note that single-level custom keywords with identical syntax and

semantics to "$defs" do not allow for any intervening "$id"

keywords, and therefore will behave correctly under implementations

that attempt to use any reference target as a schema. However, this

behavior is implementation-specific and MUST NOT be relied upon for

interoperability.

9.5. Associating Instances and Schemas

9.5.1. Usage for Hypermedia

JSON has been adopted widely by HTTP servers for automated APIs and

robots. This section describes how to enhance processing of JSON

documents in a more RESTful manner when used with protocols that

support media types and Web linking [RFC8288].

9.5.1.1. Linking to a Schema

It is RECOMMENDED that instances described by a schema provide a

link to a downloadable JSON Schema using the link relation

"describedby", as defined by Linked Data Protocol 1.0, section 8.1

[W3C.REC-ldp-20150226].

In HTTP, such links can be attached to any response using the Link

header [RFC8288]. An example of such a header would be:

9.5.1.2. Usage Over HTTP

When used for hypermedia systems over a network, HTTP [RFC7231] is

frequently the protocol of choice for distributing schemas.

Misbehaving clients can pose problems for server maintainers if they

pull a schema over the network more frequently than necessary, when

it's instead possible to cache a schema for a long period of time.

HTTP servers SHOULD set long-lived caching headers on JSON Schemas.

HTTP clients SHOULD observe caching headers and not re-request

documents within their freshness period. Distributed systems SHOULD

make use of a shared cache and/or caching proxy.

Clients SHOULD set or prepend a User-Agent header specific to the

JSON Schema implementation or software product. Since symbols are

listed in decreasing order of significance, the JSON Schema library

¶

¶

¶

¶

¶

 Link: <https://example.com/my-hyper-schema>; rel="describedby"
¶

¶

¶

name/version should precede the more generic HTTP library name (if

any). For example:

Clients SHOULD be able to make requests with a "From" header so that

server operators can contact the owner of a potentially misbehaving

script.

10. A Vocabulary for Applying Subschemas

This section defines a vocabulary of applicator keywords that are

RECOMMENDED for use as the basis of other vocabularies.

Meta-schemas that do not use "$vocabulary" SHOULD be considered to

require this vocabulary as if its URI were present with a value of

true.

The current URI for this vocabulary, known as the Applicator

vocabulary, is: <https://json-schema.org/draft/2020-12/vocab/

applicator>.

The current URI for the corresponding meta-schema is: https://json-

schema.org/draft/2020-12/meta/applicator.

10.1. Keyword Independence

Schema keywords typically operate independently, without affecting

each other's outcomes.

For schema author convenience, there are some exceptions among the

keywords in this vocabulary:

"additionalProperties", whose behavior is defined in terms of

"properties" and "patternProperties"

"items", whose behavior is defined in terms of "prefixItems"

"contains", whose behavior is affected by the presence and value

of "minContains", in the Validation vocabulary

10.2. Keywords for Applying Subschemas in Place

These keywords apply subschemas to the same location in the instance

as the parent schema is being applied. They allow combining or

modifying the subschema results in various ways.

¶

 User-Agent: product-name/5.4.1 so-cool-json-schema/1.0.2 curl/7.43.0
¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://json-schema.org/draft/2020-12/meta/applicator
https://json-schema.org/draft/2020-12/meta/applicator

Subschemas of these keywords evaluate the instance completely

independently such that the results of one such subschema MUST NOT

impact the results of sibling subschemas. Therefore subschemas may

be applied in any order.

10.2.1. Keywords for Applying Subschemas With Logic

These keywords correspond to logical operators for combining or

modifying the boolean assertion results of the subschemas. They have

no direct impact on annotation collection, although they enable the

same annotation keyword to be applied to an instance location with

different values. Annotation keywords define their own rules for

combining such values.

10.2.1.1. allOf

This keyword's value MUST be a non-empty array. Each item of the

array MUST be a valid JSON Schema.

An instance validates successfully against this keyword if it

validates successfully against all schemas defined by this keyword's

value.

10.2.1.2. anyOf

This keyword's value MUST be a non-empty array. Each item of the

array MUST be a valid JSON Schema.

An instance validates successfully against this keyword if it

validates successfully against at least one schema defined by this

keyword's value. Note that when annotations are being collected, all

subschemas MUST be examined so that annotations are collected from

each subschema that validates successfully.

10.2.1.3. oneOf

This keyword's value MUST be a non-empty array. Each item of the

array MUST be a valid JSON Schema.

An instance validates successfully against this keyword if it

validates successfully against exactly one schema defined by this

keyword's value.

10.2.1.4. not

This keyword's value MUST be a valid JSON Schema.

An instance is valid against this keyword if it fails to validate

successfully against the schema defined by this keyword.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

10.2.2. Keywords for Applying Subschemas Conditionally

Three of these keywords work together to implement conditional

application of a subschema based on the outcome of another

subschema. The fourth is a shortcut for a specific conditional case.

"if", "then", and "else" MUST NOT interact with each other across

subschema boundaries. In other words, an "if" in one branch of an

"allOf" MUST NOT have an impact on a "then" or "else" in another

branch.

There is no default behavior for "if", "then", or "else" when they

are not present. In particular, they MUST NOT be treated as if

present with an empty schema, and when "if" is not present, both

"then" and "else" MUST be entirely ignored.

10.2.2.1. if

This keyword's value MUST be a valid JSON Schema.

This validation outcome of this keyword's subschema has no direct

effect on the overall validation result. Rather, it controls which

of the "then" or "else" keywords are evaluated.

Instances that successfully validate against this keyword's

subschema MUST also be valid against the subschema value of the

"then" keyword, if present.

Instances that fail to validate against this keyword's subschema

MUST also be valid against the subschema value of the "else"

keyword, if present.

If annotations (Section 7.7) are being collected, they are collected

from this keyword's subschema in the usual way, including when the

keyword is present without either "then" or "else".

10.2.2.2. then

This keyword's value MUST be a valid JSON Schema.

When "if" is present, and the instance successfully validates

against its subschema, then validation succeeds against this keyword

if the instance also successfully validates against this keyword's

subschema.

This keyword has no effect when "if" is absent, or when the instance

fails to validate against its subschema. Implementations MUST NOT

evaluate the instance against this keyword, for either validation or

annotation collection purposes, in such cases.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

10.2.2.3. else

This keyword's value MUST be a valid JSON Schema.

When "if" is present, and the instance fails to validate against its

subschema, then validation succeeds against this keyword if the

instance successfully validates against this keyword's subschema.

This keyword has no effect when "if" is absent, or when the instance

successfully validates against its subschema. Implementations MUST

NOT evaluate the instance against this keyword, for either

validation or annotation collection purposes, in such cases.

10.2.2.4. dependentSchemas

This keyword specifies subschemas that are evaluated if the instance

is an object and contains a certain property.

This keyword's value MUST be an object. Each value in the object

MUST be a valid JSON Schema.

If the object key is a property in the instance, the entire instance

must validate against the subschema. Its use is dependent on the

presence of the property.

Omitting this keyword has the same behavior as an empty object.

10.3. Keywords for Applying Subschemas to Child Instances

Each of these keywords defines a rule for applying its subschema(s)

to child instances, specifically object properties and array items,

and combining their results.

10.3.1. Keywords for Applying Subschemas to Arrays

10.3.1.1. prefixItems

The value of "prefixItems" MUST be a non-empty array of valid JSON

Schemas.

Validation succeeds if each element of the instance validates

against the schema at the same position, if any. This keyword does

not constrain the length of the array. If the array is longer than

this keyword's value, this keyword validates only the prefix of

matching length.

This keyword produces an annotation value which is the largest index

to which this keyword applied a subschema. The value MAY be a

boolean true if a subschema was applied to every index of the

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

instance, such as is produced by the "items" keyword. This

annotation affects the behavior of "items" and "unevaluatedItems".

Omitting this keyword has the same assertion behavior as an empty

array.

10.3.1.2. items

The value of "items" MUST be a valid JSON Schema.

This keyword applies its subschema to all instance elements at

indexes greater than the length of the "prefixItems" array in the

same schema object, as reported by the annotation result of that

"prefixItems" keyword. If no such annotation result exists, "items"

applies its subschema to all instance array elements. Note that the

behavior of "items" without "prefixItems" is identical to that of

the schema form of "items" in prior drafts. When "prefixItems" is

present, the behavior of "items" is identical to the former

"additionalItems" keyword.

If the "items" subschema is applied to any positions within the

instance array, it produces an annotation result of boolean true,

indicating that all remaining array elements have been evaluated

against this keyword's subschema. This annotation affects the

behavior of "unevaluatedItems" in the Unevaluated vocabulary.

Omitting this keyword has the same assertion behavior as an empty

schema.

Implementations MAY choose to implement or optimize this keyword in

another way that produces the same effect, such as by directly

checking for the presence and size of a "prefixItems" array.

Implementations that do not support annotation collection MUST do

so.

10.3.1.3. contains

The value of this keyword MUST be a valid JSON Schema.

An array instance is valid against "contains" if at least one of its

elements is valid against the given schema, except when

"minContains" is present and has a value of 0, in which case an

array instance MUST be considered valid against the "contains"

keyword, even if none of its elements is valid against the given

schema.

This keyword produces an annotation value which is an array of the

indexes to which this keyword validates successfully when applying

its subschema, in ascending order. The value MAY be a boolean "true"

if the subschema validates successfully when applied to every index

¶

¶

¶

¶

¶

¶

¶

¶

¶

of the instance. The annotation MUST be present if the instance

array to which this keyword's schema applies is empty.

This annotation affects the behavior of "unevaluatedItems" in the

Unevaluated vocabulary, and MAY also be used to implement the

"minContains" and "maxContains" keywords in the Validation

vocabulary.

The subschema MUST be applied to every array element even after the

first match has been found, in order to collect annotations for use

by other keywords. This is to ensure that all possible annotations

are collected.

10.3.2. Keywords for Applying Subschemas to Objects

10.3.2.1. properties

The value of "properties" MUST be an object. Each value of this

object MUST be a valid JSON Schema.

Validation succeeds if, for each name that appears in both the

instance and as a name within this keyword's value, the child

instance for that name successfully validates against the

corresponding schema.

The annotation result of this keyword is the set of instance

property names matched by this keyword. This annotation affects the

behavior of "additionalProperties" (in this vocabulary) and

"unevaluatedProperties" in the Unevaluated vocabulary.

Omitting this keyword has the same assertion behavior as an empty

object.

10.3.2.2. patternProperties

The value of "patternProperties" MUST be an object. Each property

name of this object SHOULD be a valid regular expression, according

to the ECMA-262 regular expression dialect. Each property value of

this object MUST be a valid JSON Schema.

Validation succeeds if, for each instance name that matches any

regular expressions that appear as a property name in this keyword's

value, the child instance for that name successfully validates

against each schema that corresponds to a matching regular

expression.

The annotation result of this keyword is the set of instance

property names matched by this keyword. This annotation affects the

behavior of "additionalProperties" (in this vocabulary) and

"unevaluatedProperties" (in the Unevaluated vocabulary).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Omitting this keyword has the same assertion behavior as an empty

object.

10.3.2.3. additionalProperties

The value of "additionalProperties" MUST be a valid JSON Schema.

The behavior of this keyword depends on the presence and annotation

results of "properties" and "patternProperties" within the same

schema object. Validation with "additionalProperties" applies only

to the child values of instance names that do not appear in the

annotation results of either "properties" or "patternProperties".

For all such properties, validation succeeds if the child instance

validates against the "additionalProperties" schema.

The annotation result of this keyword is the set of instance

property names validated by this keyword's subschema. This

annotation affects the behavior of "unevaluatedProperties" in the

Unevaluated vocabulary.

Omitting this keyword has the same assertion behavior as an empty

schema.

Implementations MAY choose to implement or optimize this keyword in

another way that produces the same effect, such as by directly

checking the names in "properties" and the patterns in

"patternProperties" against the instance property set.

Implementations that do not support annotation collection MUST do

so. In defining this option, it seems there is the potential for

ambiguity in the output format. The ambiguity does not affect

validation results, but it does affect the resulting output format.

The ambiguity allows for multiple valid output results depending on

whether annotations are used or a solution that "produces the same

effect" as draft-07. It is understood that annotations from failing

schemas are dropped. See our [Decision Record](https://github.com/

json-schema-org/json-schema-spec/tree/HEAD/adr/2022-04-08-cref-for-

ambiguity-and-fix-later-gh-spec-issue-1172.md) for further details.

10.3.2.4. propertyNames

The value of "propertyNames" MUST be a valid JSON Schema.

If the instance is an object, this keyword validates if every

property name in the instance validates against the provided schema.

Note the property name that the schema is testing will always be a

string.

Omitting this keyword has the same behavior as an empty schema.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

11. A Vocabulary for Unevaluated Locations

The purpose of these keywords is to enable schema authors to apply

subschemas to array items or object properties that have not been

successfully evaluated against any dynamic-scope subschema of any

adjacent keywords.

These instance items or properties may have been unsuccessfully

evaluated against one or more adjacent keyword subschemas, such as

when an assertion in a branch of an "anyOf" fails. Such failed

evaluations are not considered to contribute to whether or not the

item or property has been evaluated. Only successful evaluations are

considered.

If an item in an array or an object property is "successfully

evaluated", it is logically considered to be valid in terms of the

representation of the object or array that's expected. For example

if a subschema represents a car, which requires between 2-4 wheels,

and the value of "wheels" is 6, the instance object is not

"evaluated" to be a car, and the "wheels" property is considered

"unevaluated (successfully as a known thing)", and does not retain

any annotations.

Recall that adjacent keywords are keywords within the same schema

object, and that the dynamic-scope subschemas include reference

targets as well as lexical subschemas.

The behavior of these keywords depend on the annotation results of

adjacent keywords that apply to the instance location being

validated.

Meta-schemas that do not use "$vocabulary" SHOULD be considered to

require this vocabulary as if its URI were present with a value of

true.

The current URI for this vocabulary, known as the Unevaluated

Applicator vocabulary, is: <https://json-schema.org/draft/2020-12/

vocab/unevaluated>.

The current URI for the corresponding meta-schema is: https://json-

schema.org/draft/2020-12/meta/unevaluated.

11.1. Keyword Independence

Schema keywords typically operate independently, without affecting

each other's outcomes. However, the keywords in this vocabulary are

notable exceptions:

"unevaluatedItems", whose behavior is defined in terms of

annotations from "prefixItems", "items", "contains", and itself

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://json-schema.org/draft/2020-12/meta/unevaluated
https://json-schema.org/draft/2020-12/meta/unevaluated

"unevaluatedProperties", whose behavior is defined in terms of

annotations from "properties", "patternProperties",

"additionalProperties" and itself

11.2. unevaluatedItems

The value of "unevaluatedItems" MUST be a valid JSON Schema.

The behavior of this keyword depends on the annotation results of

adjacent keywords that apply to the instance location being

validated. Specifically, the annotations from "prefixItems",

"items", and "contains", which can come from those keywords when

they are adjacent to the "unevaluatedItems" keyword. Those three

annotations, as well as "unevaluatedItems", can also result from any

and all adjacent in-place applicator (Section 10.2) keywords. This

includes but is not limited to the in-place applicators defined in

this document.

If no relevant annotations are present, the "unevaluatedItems"

subschema MUST be applied to all locations in the array. If a

boolean true value is present from any of the relevant annotations,

"unevaluatedItems" MUST be ignored. Otherwise, the subschema MUST be

applied to any index greater than the largest annotation value for

"prefixItems", which does not appear in any annotation value for

"contains".

This means that "prefixItems", "items", "contains", and all in-place

applicators MUST be evaluated before this keyword can be evaluated.

Authors of extension keywords MUST NOT define an in-place applicator

that would need to be evaluated after this keyword.

If the "unevaluatedItems" subschema is applied to any positions

within the instance array, it produces an annotation result of

boolean true, analogous to the behavior of "items". This annotation

affects the behavior of "unevaluatedItems" in parent schemas.

Omitting this keyword has the same assertion behavior as an empty

schema.

11.3. unevaluatedProperties

The value of "unevaluatedProperties" MUST be a valid JSON Schema.

The behavior of this keyword depends on the annotation results of

adjacent keywords that apply to the instance location being

validated. Specifically, the annotations from "properties",

"patternProperties", and "additionalProperties", which can come from

those keywords when they are adjacent to the "unevaluatedProperties"

keyword. Those three annotations, as well as

"unevaluatedProperties", can also result from any and all adjacent

¶

¶

¶

¶

¶

¶

¶

¶

in-place applicator (Section 10.2) keywords. This includes but is

not limited to the in-place applicators defined in this document.

Validation with "unevaluatedProperties" applies only to the child

values of instance names that do not appear in the "properties",

"patternProperties", "additionalProperties", or

"unevaluatedProperties" annotation results that apply to the

instance location being validated.

For all such properties, validation succeeds if the child instance

validates against the "unevaluatedProperties" schema.

This means that "properties", "patternProperties",

"additionalProperties", and all in-place applicators MUST be

evaluated before this keyword can be evaluated. Authors of extension

keywords MUST NOT define an in-place applicator that would need to

be evaluated after this keyword.

The annotation result of this keyword is the set of instance

property names validated by this keyword's subschema. This

annotation affects the behavior of "unevaluatedProperties" in parent

schemas.

Omitting this keyword has the same assertion behavior as an empty

schema.

12. Output Formatting

JSON Schema is defined to be platform-independent. As such, to

increase compatibility across platforms, implementations SHOULD

conform to a standard validation output format. This section

describes the minimum requirements that consumers will need to

properly interpret validation results.

12.1. Format

JSON Schema output is defined using the JSON Schema data instance

model as described in section 4.2.1. Implementations MAY deviate

from this as supported by their specific languages and platforms,

however it is RECOMMENDED that the output be convertible to the JSON

format defined herein via serialization or other means.

12.2. Output Formats

This specification defines four output formats. See the "Output

Structure" section for the requirements of each format.

Flag - A boolean which simply indicates the overall validation

result with no further details.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Basic - Provides validation information in a flat list structure.

Detailed - Provides validation information in a condensed

hierarchical structure based on the structure of the schema.

Verbose - Provides validation information in an uncondensed

hierarchical structure that matches the exact structure of the

schema.

An implementation SHOULD provide at least one of the "flag",

"basic", or "detailed" format and MAY provide the "verbose" format.

If it provides one or more of the "detailed" or "verbose" formats,

it MUST also provide the "flag" format. Implementations SHOULD

specify in their documentation which formats they support.

12.3. Minimum Information

Beyond the simplistic "flag" output, additional information is

useful to aid in debugging a schema or instance. Each sub-result

SHOULD contain the information contained within this section at a

minimum.

A single object that contains all of these components is considered

an output unit.

Implementations MAY elect to provide additional information.

12.3.1. Keyword Relative Location

The relative location of the validating keyword that follows the

validation path. The value MUST be expressed as a JSON Pointer, and

it MUST include any by-reference applicators such as "$ref" or

"$dynamicRef".

Note that this pointer may not be resolvable by the normal JSON

Pointer process due to the inclusion of these by-reference

applicator keywords.

The JSON key for this information is "keywordLocation".

12.3.2. Keyword Absolute Location

The absolute, dereferenced location of the validating keyword. The

value MUST be expressed as a full URI using the canonical URI of the

relevant schema resource with a JSON Pointer fragment, and it MUST

NOT include by-reference applicators such as "$ref" or "$dynamicRef"

¶

¶

¶

¶

¶

¶

¶

¶

/properties/width/$ref/minimum
¶

¶

¶

as non-terminal path components. It MAY end in such keywords if the

error or annotation is for that keyword, such as an unresolvable

reference. Note that "absolute" here is in the sense of "absolute

filesystem path" (meaning the complete location) rather than the

"absolute-URI" terminology from RFC 3986 (meaning with scheme but

without fragment). Keyword absolute locations will have a fragment

in order to identify the keyword.

This information MAY be omitted only if either the dynamic scope did

not pass over a reference or if the schema does not declare an

absolute URI as its "$id".

The JSON key for this information is "absoluteKeywordLocation".

12.3.3. Instance Location

The location of the JSON value within the instance being validated.

The value MUST be expressed as a JSON Pointer.

The JSON key for this information is "instanceLocation".

12.3.4. Error or Annotation

The error or annotation that is produced by the validation.

For errors, the specific wording for the message is not defined by

this specification. Implementations will need to provide this.

For annotations, each keyword that produces an annotation specifies

its format. By default, it is the keyword's value.

The JSON key for failed validations is "error"; for successful

validations it is "annotation".

12.3.5. Nested Results

For the two hierarchical structures, this property will hold nested

errors and annotations.

The JSON key for nested results in failed validations is "errors";

for successful validations it is "annotations". Note the plural

forms, as a keyword with nested results can also have a local error

or annotation.

¶

https://example.com/schemas/common#/$defs/count/minimum
¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

12.4. Output Structure

The output MUST be an object containing a boolean property named

"valid". When additional information about the result is required,

the output MUST also contain "errors" or "annotations" as described

below.

"valid" - a boolean value indicating the overall validation

success or failure

"errors" - the collection of errors or annotations produced by a

failed validation

"annotations" - the collection of errors or annotations produced

by a successful validation

For these examples, the following schema and instance will be used.

¶

¶

¶

¶

¶

{

 "$id": "https://example.com/polygon",

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "$defs": {

 "point": {

 "type": "object",

 "properties": {

 "x": { "type": "number" },

 "y": { "type": "number" }

 },

 "additionalProperties": false,

 "required": ["x", "y"]

 }

 },

 "type": "array",

 "items": { "$ref": "#/$defs/point" },

 "minItems": 3

}

[

 {

 "x": 2.5,

 "y": 1.3

 },

 {

 "x": 1,

 "z": 6.7

 }

]

¶

This instance will fail validation and produce errors, but it's

trivial to deduce examples for passing schemas that produce

annotations.

Specifically, the errors it will produce are:

The second object is missing a "y" property.

The second object has a disallowed "z" property.

There are only two objects, but three are required.

Note that the error message wording as depicted in these examples is

not a requirement of this specification. Implementations SHOULD

craft error messages tailored for their audience or provide a

templating mechanism that allows their users to craft their own

messages.

12.4.1. Flag

In the simplest case, merely the boolean result for the "valid"

valid property needs to be fulfilled.

Because no errors or annotations are returned with this format, it

is RECOMMENDED that implementations use short-circuiting logic to

return failure or success as soon as the outcome can be determined.

For example, if an "anyOf" keyword contains five sub-schemas, and

the second one passes, there is no need to check the other three.

The logic can simply return with success.

12.4.2. Basic

The "Basic" structure is a flat list of output units.

¶

¶

¶

¶

¶

¶

¶

{

 "valid": false

}

¶

¶

¶

12.4.3. Detailed

The "Detailed" structure is based on the schema and can be more

readable for both humans and machines. Having the structure

organized this way makes associations between the errors more

apparent. For example, the fact that the missing "y" property and

the extra "z" property both stem from the same location in the

instance is not immediately obvious in the "Basic" structure. In a

hierarchy, the correlation is more easily identified.

{

 "valid": false,

 "errors": [

 {

 "keywordLocation": "",

 "instanceLocation": "",

 "error": "A subschema had errors."

 },

 {

 "keywordLocation": "/items/$ref",

 "absoluteKeywordLocation":

 "https://example.com/polygon#/$defs/point",

 "instanceLocation": "/1",

 "error": "A subschema had errors."

 },

 {

 "keywordLocation": "/items/$ref/required",

 "absoluteKeywordLocation":

 "https://example.com/polygon#/$defs/point/required",

 "instanceLocation": "/1",

 "error": "Required property 'y' not found."

 },

 {

 "keywordLocation": "/items/$ref/additionalProperties",

 "absoluteKeywordLocation":

 "https://example.com/polygon#/$defs/point/additionalProperties",

 "instanceLocation": "/1/z",

 "error": "Additional property 'z' found but was invalid."

 },

 {

 "keywordLocation": "/minItems",

 "instanceLocation": "",

 "error": "Expected at least 3 items but found 2"

 }

]

}

¶

¶

The following rules govern the construction of the results object:

All applicator keywords ("*Of", "$ref", "if"/"then"/"else", etc.)

require a node.

Nodes that have no children are removed.

Nodes that have a single child are replaced by the child.

Branch nodes do not require an error message or an annotation.

¶

¶

¶

¶

¶

12.4.4. Verbose

The "Verbose" structure is a fully realized hierarchy that exactly

matches that of the schema. This structure has applications in form

generation and validation where the error's location is important.

The primary difference between this and the "Detailed" structure is

that all results are returned. This includes sub-schema validation

{

 "valid": false,

 "keywordLocation": "",

 "instanceLocation": "",

 "errors": [

 {

 "valid": false,

 "keywordLocation": "/items/$ref",

 "absoluteKeywordLocation":

 "https://example.com/polygon#/$defs/point",

 "instanceLocation": "/1",

 "errors": [

 {

 "valid": false,

 "keywordLocation": "/items/$ref/required",

 "absoluteKeywordLocation":

 "https://example.com/polygon#/$defs/point/required",

 "instanceLocation": "/1",

 "error": "Required property 'y' not found."

 },

 {

 "valid": false,

 "keywordLocation": "/items/$ref/additionalProperties",

 "absoluteKeywordLocation":

 "https://example.com/polygon#/$defs/point/additionalProperties",

 "instanceLocation": "/1/z",

 "error": "Additional property 'z' found but was invalid."

 }

]

 },

 {

 "valid": false,

 "keywordLocation": "/minItems",

 "instanceLocation": "",

 "error": "Expected at least 3 items but found 2"

 }

]

}

¶

¶

results that would otherwise be removed (e.g. annotations for failed

validations, successful validations inside a `not` keyword, etc.).

Because of this, it is RECOMMENDED that each node also carry a

`valid` property to indicate the validation result for that node.

Because this output structure can be quite large, a smaller example

is given here for brevity. The URI of the full output structure of

the example above is: https://json-schema.org/draft/2020-12/output/

verbose-example.

¶

¶

https://json-schema.org/draft/2020-12/output/verbose-example
https://json-schema.org/draft/2020-12/output/verbose-example

// schema

{

 "$id": "https://example.com/polygon",

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "type": "object",

 "properties": {

 "validProp": true,

 },

 "additionalProperties": false

}

// instance

{

 "validProp": 5,

 "disallowedProp": "value"

}

// result

{

 "valid": false,

 "keywordLocation": "",

 "instanceLocation": "",

 "errors": [

 {

 "valid": true,

 "keywordLocation": "/type",

 "instanceLocation": ""

 },

 {

 "valid": true,

 "keywordLocation": "/properties",

 "instanceLocation": ""

 },

 {

 "valid": false,

 "keywordLocation": "/additionalProperties",

 "instanceLocation": "",

 "errors": [

 {

 "valid": false,

 "keywordLocation": "/additionalProperties",

 "instanceLocation": "/disallowedProp",

 "error": "Additional property 'disallowedProp' found but was invalid."

 }

]

 }

]

} ¶

12.4.5. Output validation schemas

For convenience, JSON Schema has been provided to validate output

generated by implementations. Its URI is: https://json-schema.org/

draft/2020-12/output/schema.

13. Security Considerations

Both schemas and instances are JSON values. As such, all security

considerations defined in RFC 8259 [RFC8259] apply.

Instances and schemas are both frequently written by untrusted third

parties, to be deployed on public Internet servers. Validators

should take care that the parsing and validating against schemas

does not consume excessive system resources. Validators MUST NOT

fall into an infinite loop.

A malicious party could cause an implementation to repeatedly

collect a copy of a very large value as an annotation.

Implementations SHOULD guard against excessive consumption of system

resources in such a scenario.

Servers MUST ensure that malicious parties cannot change the

functionality of existing schemas by uploading a schema with a pre-

existing or very similar "$id".

Individual JSON Schema vocabularies are liable to also have their

own security considerations. Consult the respective specifications

for more information.

Schema authors should take care with "$comment" contents, as a

malicious implementation can display them to end-users in violation

of a spec, or fail to strip them if such behavior is expected.

A malicious schema author could place executable code or other

dangerous material within a "$comment". Implementations MUST NOT

parse or otherwise take action based on "$comment" contents.

14. IANA Considerations

14.1. application/schema+json

The proposed MIME media type for JSON Schema is defined as follows:

Type name: application

Subtype name: schema+json

Required parameters: N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://json-schema.org/draft/2020-12/output/schema
https://json-schema.org/draft/2020-12/output/schema

[RFC2119]

[RFC3986]

[RFC6839]

Encoding considerations: Encoding considerations are identical to

those specified for the "application/json" media type. See JSON

[RFC8259].

Security considerations: See Section 13 above.

Interoperability considerations: See Sections 6.2, 6.3, and 6.4

above.

Fragment identifier considerations: See Section 5

14.2. application/schema-instance+json

The proposed MIME media type for JSON Schema Instances that require

a JSON Schema-specific media type is defined as follows:

Type name: application

Subtype name: schema-instance+json

Required parameters: N/A

Encoding considerations: Encoding considerations are identical to

those specified for the "application/json" media type. See JSON

[RFC8259].

Security considerations: See Section 13 above.

Interoperability considerations: See Sections 6.2, 6.3, and 6.4

above.

Fragment identifier considerations: See Section 5

15. References

15.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Hansen, T. and A. Melnikov, "Additional Media Type

Structured Syntax Suffixes", RFC 6839, DOI 10.17487/

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

[RFC6901]

[RFC8259]

[W3C.REC-ldp-20150226]

[ecma262]

[RFC6596]

[RFC7049]

[RFC7231]

[RFC8288]

[W3C.WD-fragid-best-practices-20121025]

[json-schema-validation]

RFC6839, January 2013, <https://www.rfc-editor.org/info/

rfc6839>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/info/rfc6901>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Speicher, S., Arwe, J., and A. Malhotra,

"Linked Data Platform 1.0", World Wide Web Consortium

Recommendation REC-ldp-20150226, 26 February 2015,

<https://www.w3.org/TR/2015/REC-ldp-20150226>.

"ECMA-262, 11th edition specification", June 2020,

<https://www.ecma-international.org/ecma-262/11.0/

index.html>.

15.2. Informative References

Ohye, M. and J. Kupke, "The Canonical Link Relation", RFC

6596, DOI 10.17487/RFC6596, April 2012, <https://www.rfc-

editor.org/info/rfc6596>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/info/

rfc8288>.

Tennison, J., "Best Practices for Fragment Identifiers

and Media Type Definitions", World Wide Web Consortium WD

WD-fragid-best-practices-20121025, 25 October 2012,

<https://www.w3.org/TR/2012/WD-fragid-best-

practices-20121025>.

Wright, A., Andrews, H., and B. Hutton,

"JSON Schema Validation: A Vocabulary for Structural

https://www.rfc-editor.org/info/rfc6839
https://www.rfc-editor.org/info/rfc6839
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.w3.org/TR/2015/REC-ldp-20150226
https://www.ecma-international.org/ecma-262/11.0/index.html
https://www.ecma-international.org/ecma-262/11.0/index.html
https://www.rfc-editor.org/info/rfc6596
https://www.rfc-editor.org/info/rfc6596
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.w3.org/TR/2012/WD-fragid-best-practices-20121025
https://www.w3.org/TR/2012/WD-fragid-best-practices-20121025

[json-hyper-schema]

[xml-names]

Validation of JSON", Work in Progress, Internet-Draft,

draft-bhutton-json-schema-validation-01, June 2022,

<https://datatracker.ietf.org/doc/html/draft-bhutton-

json-schema-validation-01>.

Andrews, H. and A. Wright, "JSON Hyper-Schema: A

Vocabulary for Hypermedia Annotation of JSON", Work in

Progress, Internet-Draft, draft-handrews-json-schema-

hyperschema-02, November 2017, <https://

datatracker.ietf.org/doc/html/draft-handrews-json-schema-

hyperschema-02>.

Bray, T., Ed., Hollander, D., Ed., Layman, A., Ed., and

R. Tobin, Ed., "Namespaces in XML 1.1 (Second Edition)",

August 2006, <http://www.w3.org/TR/2006/REC-xml-

names11-20060816>.

Appendix A. Schema identification examples

Consider the following schema, which shows "$id" being used to

identify both the root schema and various subschemas, and "$anchor"

being used to define plain name fragment identifiers.

The schemas at the following URI-encoded JSON Pointers [RFC6901]

(relative to the root schema) have the following base URIs, and are

identifiable by any listed URI in accordance with sections 5 and

9.2.1 above.

¶

{

 "$id": "https://example.com/root.json",

 "$defs": {

 "A": { "$anchor": "foo" },

 "B": {

 "$id": "other.json",

 "$defs": {

 "X": { "$anchor": "bar" },

 "Y": {

 "$id": "t/inner.json",

 "$anchor": "bar"

 }

 }

 },

 "C": {

 "$id": "urn:uuid:ee564b8a-7a87-4125-8c96-e9f123d6766f"

 }

 }

}

¶

¶

https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-validation-01
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-validation-01
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-hyperschema-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-hyperschema-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-hyperschema-02
http://www.w3.org/TR/2006/REC-xml-names11-20060816
http://www.w3.org/TR/2006/REC-xml-names11-20060816

(document root)

canonical (and base) URI

canonical resource URI plus pointer fragment

#/$defs/A

base URI

canonical resource URI plus plain fragment

canonical resource URI plus pointer fragment

#/$defs/B

canonical (and base) URI

canonical resource URI plus pointer fragment

base URI of enclosing (root.json) resource plus fragment

#/$defs/B/$defs/X

base URI

canonical resource URI plus plain fragment

canonical resource URI plus pointer fragment

base URI of enclosing (root.json) resource plus fragment

#/$defs/B/$defs/Y

https://example.com/root.json

https://

example.com/root.json#

https://example.com/root.json

https://example.com/

root.json#foo

https://

example.com/root.json#/$defs/A

https://example.com/other.json

https://

example.com/other.json#

https://example.com/root.json#/$defs/B

https://example.com/other.json

https://example.com/

other.json#bar

https://

example.com/other.json#/$defs/X

https://example.com/root.json#/$defs/B/$defs/X

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

canonical (and base) URI

canonical URI plus plain fragment

canonical URI plus pointer fragment

base URI of enclosing (other.json) resource plus fragment

base URI of enclosing (root.json) resource plus fragment

#/$defs/C

canonical (and base) URI

canonical URI plus pointer fragment

base URI of enclosing (root.json) resource plus fragment

https://example.com/t/inner.json

https://example.com/t/

inner.json#bar

https://example.com/t/

inner.json#

https://example.com/other.json#/$defs/Y

https://example.com/root.json#/$defs/B/$defs/Y

urn:uuid:ee564b8a-7a87-4125-8c96-

e9f123d6766f

urn:uuid:ee564b8a-7a87-4125-8c96-e9f123d6766f#

https://example.com/root.json#/$defs/C

Note: The fragment part of the URI does not make it canonical or

non-canonical, rather, the base URI used (as part of the full URI

with any fragment) is what determines the canonical nature of the

resulting full URI. Multiple "canonical" URIs? We Acknowledge this

is potentially confusing, and direct you to read the CREF located in

the JSON Pointer fragments and embedded schema resources (Section

9.2.1) section for futher comments.

Appendix B. Manipulating schema documents and references

Various tools have been created to rearrange schema documents based

on how and where references ("$ref") appear. This appendix discusses

which use cases and actions are compliant with this specification.

B.1. Bundling schema resources into a single document

A set of schema resources intended for use together can be organized

with each in its own schema document, all in the same schema

document, or any granularity of document grouping in between.

Numerous tools exist to perform various sorts of reference removal.

A common case of this is producing a single file where all

references can be resolved within that file. This is typically done

to simplify distribution, or to simplify coding so that various

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

invocations of JSON Schema libraries do not have to keep track of

and load a large number of resources.

This transformation can be safely and reversibly done as long as all

static references (e.g. "$ref") use URI-references that resolve to

URIs using the canonical resource URI as the base, and all schema

resources have an absolute-URI as the "$id" in their root schema.

With these conditions met, each external resource can be copied

under "$defs", without breaking any references among the resources'

schema objects, and without changing any aspect of validation or

annotation results. The names of the schemas under "$defs" do not

affect behavior, assuming they are each unique, as they do not

appear in the canonical URIs for the embedded resources.

B.2. Reference removal is not always safe

Attempting to remove all references and produce a single schema

document does not, in all cases, produce a schema with identical

behavior to the original form.

Since "$ref" is now treated like any other keyword, with other

keywords allowed in the same schema objects, fully supporting non-

recursive "$ref" removal in all cases can require relatively complex

schema manipulations. It is beyond the scope of this specification

to determine or provide a set of safe "$ref" removal

transformations, as they depend not only on the schema structure but

also on the intended usage.

Appendix C. Example of recursive schema extension

Consider the following two schemas describing a simple recursive

tree structure, where each node in the tree can have a "data" field

of any type. The first schema allows and ignores other instance

properties. The second is more strict and only allows the "data" and

"children" properties. An example instance with "data" misspelled as

"daat" is also shown.

¶

¶

¶

¶

¶

¶

When we load these two schemas, we will notice the "$dynamicAnchor"

named "node" (note the lack of "#" as this is just the name) present

in each, resulting in the following full schema URIs:

"https://example.com/tree#node"

"https://example.com/strict-tree#node"

In addition, JSON Schema implementations keep track of the fact that

these fragments were created with "$dynamicAnchor".

If we apply the "strict-tree" schema to the instance, we will follow

the "$ref" to the "tree" schema, examine its "children" subschema,

and find the "$dynamicRef": to "#node" (note the "#" for URI

fragment syntax) in its "items" subschema. That reference resolves

// tree schema, extensible

{

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "$id": "https://example.com/tree",

 "$dynamicAnchor": "node",

 "type": "object",

 "properties": {

 "data": true,

 "children": {

 "type": "array",

 "items": {

 "$dynamicRef": "#node"

 }

 }

 }

}

// strict-tree schema, guards against misspelled properties

{

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "$id": "https://example.com/strict-tree",

 "$dynamicAnchor": "node",

 "$ref": "tree",

 "unevaluatedProperties": false

}

// instance with misspelled field

{

 "children": [{ "daat": 1 }]

}

¶

¶

* ¶

* ¶

¶

to "https://example.com/tree#node", which is a URI with a fragment

created by "$dynamicAnchor". Therefore we must examine the dynamic

scope before following the reference.

At this point, the dynamic path is "#/$ref/properties/children/

items/$dynamicRef", with a dynamic scope containing (from the

outermost scope to the innermost):

"https://example.com/strict-tree#"

"https://example.com/tree#"

"https://example.com/tree#/properties/children"

"https://example.com/tree#/properties/children/items"

Since we are looking for a plain name fragment, which can be defined

anywhere within a schema resource, the JSON Pointer fragments are

irrelevant to this check. That means that we can remove those

fragments and eliminate consecutive duplicates, producing:

"https://example.com/strict-tree"

"https://example.com/tree"

In this case, the outermost resource also has a "node" fragment

defined by "$dynamicAnchor". Therefore instead of resolving the

"$dynamicRef" to "https://example.com/tree#node", we resolve it to

"https://example.com/strict-tree#node".

This way, the recursion in the "tree" schema recurses to the root of

"strict-tree", instead of only applying "strict-tree" to the

instance root, but applying "tree" to instance children.

This example shows both "$dynamicAnchor"s in the same place in each

schema, specifically the resource root schema. Since plain-name

fragments are independent of the JSON structure, this would work

just as well if one or both of the node schema objects were moved

under "$defs". It is the matching "$dynamicAnchor" values which tell

us how to resolve the dynamic reference, not any sort of correlation

in JSON structure.

Appendix D. Working with vocabularies

D.1. Best practices for vocabulary and meta-schema authors

Vocabulary authors should take care to avoid keyword name collisions

if the vocabulary is intended for broad use, and potentially

combined with other vocabularies. JSON Schema does not provide any

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

¶

1. ¶

2. ¶

¶

¶

¶

formal namespacing system, but also does not constrain keyword

names, allowing for any number of namespacing approaches.

Vocabularies may build on each other, such as by defining the

behavior of their keywords with respect to the behavior of keywords

from another vocabulary, or by using a keyword from another

vocabulary with a restricted or expanded set of acceptable values.

Not all such vocabulary re-use will result in a new vocabulary that

is compatible with the vocabulary on which it is built. Vocabulary

authors should clearly document what level of compatibility, if any,

is expected.

Meta-schema authors should not use "$vocabulary" to combine multiple

vocabularies that define conflicting syntax or semantics for the

same keyword. As semantic conflicts are not generally detectable

through schema validation, implementations are not expected to

detect such conflicts. If conflicting vocabularies are declared, the

resulting behavior is undefined.

Vocabulary authors SHOULD provide a meta-schema that validates the

expected usage of the vocabulary's keywords on their own. Such meta-

schemas SHOULD not forbid additional keywords, and MUST not forbid

any keywords from the Core vocabulary.

It is recommended that meta-schema authors reference each

vocabulary's meta-schema using the "allOf" (Section 10.2.1.1)

keyword, although other mechanisms for constructing the meta-schema

may be appropriate for certain use cases.

The recursive nature of meta-schemas makes the "$dynamicAnchor" and

"$dynamicRef" keywords particularly useful for extending existing

meta-schemas, as can be seen in the JSON Hyper-Schema meta-schema

which extends the Validation meta-schema.

Meta-schemas may impose additional constraints, including describing

keywords not present in any vocabulary, beyond what the meta-schemas

associated with the declared vocabularies describe. This allows for

restricting usage to a subset of a vocabulary, and for validating

locally defined keywords not intended for re-use.

However, meta-schemas should not contradict any vocabularies that

they declare, such as by requiring a different JSON type than the

vocabulary expects. The resulting behavior is undefined.

Meta-schemas intended for local use, with no need to test for

vocabulary support in arbitrary implementations, can safely omit

"$vocabulary" entirely.

¶

¶

¶

¶

¶

¶

¶

¶

¶

D.2. Example meta-schema with vocabulary declarations

This meta-schema explicitly declares both the Core and Applicator

vocabularies, together with an extension vocabulary, and combines

their meta-schemas with an "allOf". The extension vocabulary's meta-

schema, which describes only the keywords in that vocabulary, is

shown after the main example meta-schema.

The main example meta-schema also restricts the usage of the

Unevaluated vocabulary by forbidding the keywords prefixed with

"unevaluated", which are particularly complex to implement. This

does not change the semantics or set of keywords defined by the

other vocabularies. It just ensures that schemas using this meta-

schema that attempt to use the keywords prefixed with "unevaluated"

will fail validation against this meta-schema.

Finally, this meta-schema describes the syntax of a keyword,

"localKeyword", that is not part of any vocabulary. Presumably, the

implementors and users of this meta-schema will understand the

semantics of "localKeyword". JSON Schema does not define any

mechanism for expressing keyword semantics outside of vocabularies,

making them unsuitable for use except in a specific environment in

which they are understood.

This meta-schema combines several vocabularies for general use.

¶

¶

¶

¶

This meta-schema describes only a single extension vocabulary.

{

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "$id": "https://example.com/meta/general-use-example",

 "$dynamicAnchor": "meta",

 "$vocabulary": {

 "https://json-schema.org/draft/2020-12/vocab/core": true,

 "https://json-schema.org/draft/2020-12/vocab/applicator": true,

 "https://json-schema.org/draft/2020-12/vocab/validation": true,

 "https://example.com/vocab/example-vocab": true

 },

 "allOf": [

 {"$ref": "https://json-schema.org/draft/2020-12/meta/core"},

 {"$ref": "https://json-schema.org/draft/2020-12/meta/applicator"},

 {"$ref": "https://json-schema.org/draft/2020-12/meta/validation"},

 {"$ref": "https://example.com/meta/example-vocab"}

],

 "patternProperties": {

 "^unevaluated": false

 },

 "properties": {

 "localKeyword": {

 "$comment": "Not in vocabulary, but validated if used",

 "type": "string"

 }

 }

}

¶

¶

{

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "$id": "https://example.com/meta/example-vocab",

 "$dynamicAnchor": "meta",

 "$vocabulary": {

 "https://example.com/vocab/example-vocab": true,

 },

 "type": ["object", "boolean"],

 "properties": {

 "minDate": {

 "type": "string",

 "pattern": "\d\d\d\d-\d\d-\d\d",

 "format": "date",

 }

 }

}

¶

As shown above, even though each of the single-vocabulary meta-

schemas referenced in the general-use meta-schema's "allOf" declares

its corresponding vocabulary, this new meta-schema must re-declare

them.

The standard meta-schemas that combine all vocabularies defined by

the Core and Validation specification, and that combine all

vocabularies defined by those specifications as well as the Hyper-

Schema specification, demonstrate additional complex combinations.

These URIs for these meta-schemas may be found in the Validation and

Hyper-Schema specifications, respectively.

While the general-use meta-schema can validate the syntax of

"minDate", it is the vocabulary that defines the logic behind the

semantic meaning of "minDate". Without an understanding of the

semantics (in this example, that the instance value must be a date

equal to or after the date provided as the keyword's value in the

schema), an implementation can only validate the syntactic usage. In

this case, that means validating that it is a date-formatted string

(using "pattern" to ensure that it is validated even when "format"

functions purely as an annotation, as explained in the Validation

specification [json-schema-validation].

Appendix E. References and generative use cases

While the presence of references is expected to be transparent to

validation results, generative use cases such as code generators and

UI renderers often consider references to be semantically

significant.

To make such use case-specific semantics explicit, the best practice

is to create an annotation keyword for use in the same schema object

alongside of a reference keyword such as "$ref".

For example, here is a hypothetical keyword for determining whether

a code generator should consider the reference target to be a

distinct class, and how those classes are related. Note that this

example is solely for illustrative purposes, and is not intended to

propose a functional code generation keyword.

¶

¶

¶

¶

¶

¶

Here, this schema represents some sort of object-oriented class. The

first reference in the "allOf" is noted as the base class. The

second is not assigned a class relationship, meaning that the code

generator should combine the target's definition with this one as if

no reference were involved.

Looking at the properties, "foo" is flagged as object composition,

while the "date" property is not. It is simply a field with sub-

fields, rather than an instance of a distinct class.

This style of usage requires the annotation to be in the same object

as the reference, which must be recognizable as a reference.

Appendix F. Acknowledgments

Thanks to Gary Court, Francis Galiegue, Kris Zyp, and Geraint Luff

for their work on the initial drafts of JSON Schema.

Thanks to Jason Desrosiers, Daniel Perrett, Erik Wilde, Evgeny

Poberezkin, Brad Bowman, Gowry Sankar, Donald Pipowitch, Dave

Finlay, Denis Laxalde, Phil Sturgeon, Shawn Silverman, and Karen

Etheridge for their submissions and patches to the document.

Appendix G. ChangeLog

This section to be removed before leaving Internet-Draft status.

{

 "allOf": [

 {

 "classRelation": "is-a",

 "$ref": "classes/base.json"

 },

 {

 "$ref": "fields/common.json"

 }

],

 "properties": {

 "foo": {

 "classRelation": "has-a",

 "$ref": "classes/foo.json"

 },

 "date": {

 "$ref": "types/dateStruct.json",

 }

 }

}

¶

¶

¶

¶

¶

¶

¶

draft-bhutton-json-schema-01

draft-bhutton-json-schema-00

draft-handrews-json-schema-02

Improve and clarify the "type",

"contains", "unevaluatedProperties", and "unevaluatedItems"

keyword explanations

Clarify various aspects of "canonical URIs"

Comment on ambiguity around annotations and

"additionalProperties"

Clarify Vocabularies need not be formally defined

Remove references to remaining media-type parameters

Fix multiple examples

"$schema" MAY change for embedded

resources

Array-value "items" functionality is now "prefixItems"

"items" subsumes the old function of "additionalItems"

"contains" annotation behavior, and "contains" and

"unevaluatedItems" interactions now specified

Rename $recursive* to $dynamic*, with behavior modification

$dynamicAnchor defines a fragment like $anchor

$dynamic* (previously $recursive) no longer use runtime

base URI determination

Define Compound Schema Documents (bundle) and processing

Reference ECMA-262, 11th edition for regular expression

support

Regular expression should support unicode

Remove media type parameters

Specify Unknown keywords are collected as annotations

Moved "unevaluatedItems" and "unevaluatedProperties" from

core into their own vocabulary

Update to RFC 8259 for JSON

specification

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

*

¶

Moved "definitions" from the Validation specification here

as "$defs"

Moved applicator keywords from the Validation specification

as their own vocabulary

Moved the schema form of "dependencies" from the Validation

specification as "dependentSchemas"

Formalized annotation collection

Specified recommended output formats

Defined keyword interactions in terms of annotation and

assertion results

Added "unevaluatedProperties" and "unevaluatedItems"

Define "$ref" behavior in terms of the assertion,

applicator, and annotation model

Allow keywords adjacent to "$ref"

Note undefined behavior for "$ref" targets involving

unknown keywords

Add recursive referencing, primarily for meta-schema

extension

Add the concept of formal vocabularies, and how they can be

recognized through meta-schemas

Additional guidance on initial base URIs beyond network

retrieval

Allow "schema" media type parameter for "application/

schema+json"

Better explanation of media type parameters and the HTTP

Accept header

Use "$id" to establish canonical and base absolute-URIs

only, no fragments

Replace plain-name-fragment-only form of "$id" with

"$anchor"

Clarified that the behavior of JSON Pointers across "$id"

boundary is unreliable

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

draft-handrews-json-schema-01

draft-handrews-json-schema-00

draft-wright-json-schema-01

This draft is purely a clarification

with no functional changes

Emphasized annotations as a primary usage of JSON Schema

Clarified $id by use cases

Exhaustive schema identification examples

Replaced "external referencing" with how and when an

implementation might know of a schema from another document

Replaced "internal referencing" with how an implementation

should recognized schema identifiers during parsing

Dereferencing the former "internal" or "external"

references is always the same process

Minor formatting improvements

Make the concept of a schema keyword

vocabulary more clear

Note that the concept of "integer" is from a vocabulary,

not the data model

Classify keywords as assertions or annotations and describe

their general behavior

Explain the boolean schemas in terms of generalized

assertions

Reserve "$comment" for non-user-visible notes about the

schema

Wording improvements around "$id" and fragments

Note the challenges of extending meta-schemas with

recursive references

Add "application/schema-instance+json" media type

Recommend a "schema" link relation / parameter instead of

"profile"

Updated intro

Allowed for any schema to be a boolean

*

¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

draft-wright-json-schema-00

draft-zyp-json-schema-04

"$schema" SHOULD NOT appear in subschemas, although that

may change

Changed "id" to "$id"; all core keywords prefixed with "$"

Clarify and formalize fragments for application/schema+json

Note applicability to formats such as CBOR that can be

represented in the JSON data model

Updated references to JSON

Updated references to HTTP

Updated references to JSON Pointer

Behavior for "id" is now specified in terms of RFC3986

Aligned vocabulary usage for URIs with RFC3986

Removed reference to draft-pbryan-zyp-json-ref-03

Limited use of "$ref" to wherever a schema is expected

Added definition of the "JSON Schema data model"

Added additional security considerations

Defined use of subschema identifiers for "id"

Rewrote section on usage with HTTP

Rewrote section on usage with rel="describedBy" and

rel="profile"

Fixed numerous invalid examples

Salvaged from draft v3.

Split validation keywords into separate document.

Split hypermedia keywords into separate document.

Initial post-split draft.

Mandate the use of JSON Reference, JSON Pointer.

Define the role of "id". Define URI resolution scope.

Add interoperability considerations.

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

draft-zyp-json-schema-00
Initial draft.

Authors' Addresses

Austin Wright (editor)

Email: aaa@bzfx.net

Henry Andrews (editor)

Email: andrews_henry@yahoo.com

Ben Hutton (editor)

Postman

Email: ben@jsonschema.dev

URI: https://jsonschema.dev

Greg Dennis

Email: gregsdennis@yahoo.com

URI: https://github.com/gregsdennis

* ¶

mailto:aaa@bzfx.net
mailto:andrews_henry@yahoo.com
mailto:ben@jsonschema.dev
https://jsonschema.dev
mailto:gregsdennis@yahoo.com
https://github.com/gregsdennis

	JSON Schema: A Media Type for Describing JSON Documents
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. Overview
	4. Definitions
	4.1. JSON Document
	4.2. Instance
	4.2.1. Instance Data Model
	4.2.2. Instance Equality
	4.2.3. Non-JSON Instances

	4.3. JSON Schema Documents
	4.3.1. JSON Schema Objects and Keywords
	4.3.2. Boolean JSON Schemas
	4.3.3. Schema Vocabularies
	4.3.4. Meta-Schemas
	4.3.5. Root Schema and Subschemas and Resources

	5. Fragment Identifiers
	6. General Considerations
	6.1. Range of JSON Values
	6.2. Programming Language Independence
	6.3. Mathematical Integers
	6.4. Regular Expressions
	6.5. Extending JSON Schema

	7. Keyword Behaviors
	7.1. Lexical Scope and Dynamic Scope
	7.2. Keyword Interactions
	7.3. Default Behaviors
	7.4. Identifiers
	7.5. Applicators
	7.5.1. Referenced and Referencing Schemas

	7.6. Assertions
	7.6.1. Assertions and Instance Primitive Types

	7.7. Annotations
	7.7.1. Collecting Annotations
	7.7.1.1. Distinguishing Among Multiple Values
	7.7.1.2. Annotations and Assertions
	7.7.1.3. Annotations and Applicators

	7.8. Reserved Locations
	7.9. Loading Instance Data

	8. The JSON Schema Core Vocabulary
	8.1. Meta-Schemas and Vocabularies
	8.1.1. The "$schema" Keyword
	8.1.2. The "$vocabulary" Keyword
	8.1.2.1. Default vocabularies
	8.1.2.2. Non-inheritability of vocabularies

	8.1.3. Updates to Meta-Schema and Vocabulary URIs

	8.2. Base URI, Anchors, and Dereferencing
	8.2.1. The "$id" Keyword
	8.2.1.1. Identifying the root schema

	8.2.2. Defining location-independent identifiers
	8.2.3. Schema References
	8.2.3.1. Direct References with "$ref"
	8.2.3.2. Dynamic References with "$dynamicRef"

	8.2.4. Schema Re-Use With "$defs"

	8.3. Comments With "$comment"

	9. Loading and Processing Schemas
	9.1. Loading a Schema
	9.1.1. Initial Base URI
	9.1.2. Loading a referenced schema
	9.1.3. Detecting a Meta-Schema

	9.2. Dereferencing
	9.2.1. JSON Pointer fragments and embedded schema resources

	9.3. Compound Documents
	9.3.1. Bundling
	9.3.2. Differing and Default Dialects
	9.3.3. Validating

	9.4. Caveats
	9.4.1. Guarding Against Infinite Recursion
	9.4.2. References to Possible Non-Schemas

	9.5. Associating Instances and Schemas
	9.5.1. Usage for Hypermedia
	9.5.1.1. Linking to a Schema
	9.5.1.2. Usage Over HTTP

	10. A Vocabulary for Applying Subschemas
	10.1. Keyword Independence
	10.2. Keywords for Applying Subschemas in Place
	10.2.1. Keywords for Applying Subschemas With Logic
	10.2.1.1. allOf
	10.2.1.2. anyOf
	10.2.1.3. oneOf
	10.2.1.4. not

	10.2.2. Keywords for Applying Subschemas Conditionally
	10.2.2.1. if
	10.2.2.2. then
	10.2.2.3. else
	10.2.2.4. dependentSchemas

	10.3. Keywords for Applying Subschemas to Child Instances
	10.3.1. Keywords for Applying Subschemas to Arrays
	10.3.1.1. prefixItems
	10.3.1.2. items
	10.3.1.3. contains

	10.3.2. Keywords for Applying Subschemas to Objects
	10.3.2.1. properties
	10.3.2.2. patternProperties
	10.3.2.3. additionalProperties
	10.3.2.4. propertyNames

	11. A Vocabulary for Unevaluated Locations
	11.1. Keyword Independence
	11.2. unevaluatedItems
	11.3. unevaluatedProperties

	12. Output Formatting
	12.1. Format
	12.2. Output Formats
	12.3. Minimum Information
	12.3.1. Keyword Relative Location
	12.3.2. Keyword Absolute Location
	12.3.3. Instance Location
	12.3.4. Error or Annotation
	12.3.5. Nested Results

	12.4. Output Structure
	12.4.1. Flag
	12.4.2. Basic
	12.4.3. Detailed
	12.4.4. Verbose
	12.4.5. Output validation schemas

	13. Security Considerations
	14. IANA Considerations
	14.1. application/schema+json
	14.2. application/schema-instance+json

	15. References
	15.1. Normative References
	15.2. Informative References

	Appendix A. Schema identification examples
	Appendix B. Manipulating schema documents and references
	B.1. Bundling schema resources into a single document
	B.2. Reference removal is not always safe

	Appendix C. Example of recursive schema extension
	Appendix D. Working with vocabularies
	D.1. Best practices for vocabulary and meta-schema authors
	D.2. Example meta-schema with vocabulary declarations

	Appendix E. References and generative use cases
	Appendix F. Acknowledgments
	Appendix G. ChangeLog
	Authors' Addresses

