
Internet-Draft S. Bale
Intended Status: Informational R. Brebion
Expires: April 7, 2022 G. Bichot
 Broadpeak
 October 4, 2021

MSYNC
draft-bichot-msync-02

Abstract

 This document describes the Multicast Synchronisation (MSYNC)
 Protocol that aims at transferring video media objects over IP
 multicast operating preferably RTP. Although generic, MSYNC has been
 primarily designed for transporting HTTP adaptive streaming (HAS)
 objects including manifest/playlists and media segments (e.g. MP4,
 CMAF) according to an HAS protocol such as Apple HLS or MPEG DASH
 between a multicast server and a multicast gateway.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

Bale et aL. Expires April 7, 2022 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft MSYNC October 4, 2021

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1 Introduction . 3
1.1 Terminology . 3
1.2 Definitions . 3

2. Overview . 4
3. MSYNC Protocol . 6
3.1. MSYNC packet format . 6
3.2. Object info packet . 7
3.3. Object data packet . 8
3.4. Object HTTP header packet 9
3.5. Object data-part packet 10
3.6. Maximum size of a MSYNC packet 11

 3.7. Sending MSYNC objects over IP/transport multicast
 sessions . 11

3.9. HAS protocol dependency 13
3.9.1. Object info packet 13
3.9.1.1. media sequence 13
3.9.1.2. object URI . 13

3.9.2. Sending rules . 14
3.10. RTP as the transport multicast session protocol 14

4. IANA Considerations . 16
5. Security Considerations 16
5. References . 16
5.1. Normative References 16
5.2. Informative References 17

 Acknowledgments . 17
 Authors' Addresses . 17

http://trustee.ietf.org/license-info

Bale et aL. Expires April 7, 2022 [Page 2]

Internet-Draft MSYNC October 4, 2021

1 Introduction

 MSYNC relies preferably on RTP that makes it particularly suited for
 transitioning IPTV legacy(MPEG2 TS/RTP) to the HAS ecosystem. MSYNC
 is simple (no flow control, no forward error correction) although
 reliable, flexible and extensible; it has been experimented and
 deployed over IPTV infrastructure (xDSL, cable, fiber) and
 satellite.

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2 Definitions

 manifest: A file gathering the configuration for conducting a
 streaming session; corresponds to a play list as defined by HLS
 [RFC8216]. During a HAS streaming session, a manifest or
 playlist can be modified.

 media chunk: A piece of a media segment of a fixed duration as
 specified in [MPEGCMAF].

 media segment: A piece of a media sub-stream of a fixed duration
 (e.g. 2s) as specified in [MPEGCMAF].

 init segment: A piece of a media sub-stream used to initialize the
 decoder as specified in [MPEGCMAF].

 media: A digitalized piece of video, audio, subtitle, image,

 media stream: Gathers one or more media sub-streams.

 media sub-stream: A version of a media encoded in a particular bit-
 rate, format and resolution; also called representation or
 variant stream.

 variant stream : A media sub-stream as defined by HLS [RFC8216];
 corresponds to a representation as defined by [MPEGDASH].

 representation: A media sub-stream as defined by [MPEGDASH];
 Corresponds to a variant stream as defined by HLS [RFC8216].

 HTTP Adaptive Streaming (HAS) session: Transport one or more media

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8216
https://datatracker.ietf.org/doc/html/rfc8216
https://datatracker.ietf.org/doc/html/rfc8216

Bale et aL. Expires April 7, 2022 [Page 3]

Internet-Draft MSYNC October 4, 2021

 streams (e.g. one video, two audios, One subtitle) according to
 HTTP. A HAS session is triggered by a player downloading first a
 manifest file(s), then init and/or media segments (belonging to
 possibly different sub-streams according to the selected
 representation) and possibly more manifest files according to
 the HAS protocol.

 MSYNC object: As part of a HAS session carried over MSYNC, an MSYSNC
 object can be an addressable HAS entity like an init segment, a
 media segment (or fragment, or chunk), a manifest. An MSYNC
 object can also be a non-addressable transport entity like a
 part of a segment (an HTTP2 frame or an HTTP 1.1 CTE block). As
 part of the control channel, an MSYNC object may transport some
 control plane information (for the receiver as e.g. the
 multicast gateway configuration). An MSYNC object is typically
 associated with metadata (aka info), data and possibly an HTTP
 header.

 MSYNC packet: The transport unit of MSYNC. Several MSYNC packets mays
 be used to transport an MSYNC object.

 transport multicast session: Operating a transport protocol that is
 (possibly based on) UDP over IP multicast. A session is
 identified by the transport (UDP) port number, the source IP
 address and the IP multicast address.

 RTP multicast session: A transport multicast session based on RTP as
 defined in [RFC3550].

 IP multicast session: A session gathering transport multicast
 sessions having the same source IP address and destination
 multicast IP address.

 MSYNC channel: The set of transport multicast sessions carrying a HAS
 session as a set of MSYNC objects.

 MSYNC control channel: the transport multicast session carrying
 control plane MSYNC objects.

2. Overview

 MSYNC is a simple protocol typically used between a multicast server
 (the MSYNC sender) and a multicast gateway (the MSYNC receiver). The
 multicast server gets ingested with a unicast HAS session conforming
 to a HAS protocol as e.g. MPEG DASH [MPEGDASH] or HLS [RFC8216] and
 sends the HAS session elements over a broadcast/multicast link
 according to MSYNC supporting [possibly RTP/] UDP/IP multicast up to

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc8216

Bale et aL. Expires April 7, 2022 [Page 4]

Internet-Draft MSYNC October 4, 2021

 the multicast gateway(s) that serve the HAS player(s) in unicast
 conforming to the same HAS protocol. MSYNC can serve simultaneously
 multiple terminals conforming to one or several HAS protocols and
 formats.

 The multicast server is configured in order to get the unicast HAS
 feeds. Considering one among several possible ingest methods (e.g.
 HTTP GET), for each ingested feed, the multicast server behaves as a
 sort of player, reading the manifest, discovering the available
 representations and downloading concurrently media segments of all
 (or a subset) of the available representations. Finally the multicast
 server is configured for sending all those HAS session elements over
 [possibly RTP/]UDP/IP multicast according to a certain UDP flow
 arrangement (for example all the objects related to each video
 representation are sent over a separate multicast transport session
 (multicast IP address + port number) whereas all audio
 representations are sent over the same transport multicast session.

 The multicast gateway is configured accordingly in order to be
 attached to the transport multicast sessions (in particular, it has
 to subscribe to the corresponding multicast IP group address). Note
 that the multicast gateway might not be capable of being attached to
 all the concurrent transport multicast sessions in the same time per
 bandwidth restriction (e.g. ADSL). In that case, the multicast
 gateway attaches to the transport multicast session corresponding to
 the player's request (and detaches from the other previous one).

 The multicast gateway then receives the corresponding MSYNC objects
 and feeds a local cache. Whenever a HAS request is sent by a user
 terminal (e.g. the media player) and received by the multicast
 gateway, the latter reads first its local cache. In case of cache
 hit, it returns the object. In case of cache miss, the multicast
 gateway can retrieve the requested object from the associated CDN (or
 a dedicated server) over an unicast interface (if existing) through
 operating HTTP conventionally and forwards back to the terminal the
 object once retrieved.

 At any time, the multicast gateway can detect corrupted and lost
 packets and attempt to repair using a repair protocol. This is
 possible thanks to the RTP protocol if used as the transport layer
 over UDP.

 With MSYNC deployed over a multicast link/network, the end user media
 player gets basically the HAS content in full transparency (i.e. the
 player is absolutely unaware of getting the content through MSYNC or
 not).

 Note that nothing precludes the multicast gateway to be co-located

Bale et aL. Expires April 7, 2022 [Page 5]

Internet-Draft MSYNC October 4, 2021

 with the media player and therefore embedded in the end-user
 terminal.

 Note that nothing precludes application dependent features in the
 multicast server and/or the multicast gateway that may adapt/modify
 the content delivered to the end-user player.

3. MSYNC Protocol

3.1. MSYNC packet format

 The MSYNC packet has the following format.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | version | packet type | object identifier |
 +-+
 | sub-header |
 | |
 +=+
 | data |
 | |

 version: 8 bits
 version of the MSYNC protocol = 0x3

 packet type: 8 bits
 Defines the MSYNC packet type. The sub-header and the associated
 data (if any) are dependent on the packet type. The following
 types are defined.
 0x01: object info
 0x02: object info redundancy packet
 0x03: object data
 0x04: Reserved
 0x05: object http header
 0x06: object data-part as a piece of an object data for
 transporting e.g. an MPEG CMAF chunk, an HTTP 1.1 chunk or yet
 an HTTP2 frame.

 object identifier: 16 bits
 The field identifies the object being transferred. All MSYNC
 packets associated with the same object carry the same object
 identifier in their MSYNC packet header.

 sub-header: series of N x 32 bits
 The packet sub-header is linked to the packet type. The details of

Bale et aL. Expires April 7, 2022 [Page 6]

Internet-Draft MSYNC October 4, 2021

 each packet type is given in the next sections.

 data: series of D x 8 bits
 This field is optional and is present depending on the packet
 type. D is bounded by the maximum size of a transport multicast
 session protocol packet size and the MTU (Maximum Transfer Unit)
 otherwise as depicted in 3.6.

3.2. Object info packet

 The Object info packet is used to transport the meta-data
 associated with an object. It permits to characterize the object
 in term of e.g. size and type. The object information is carried
 over one object info packet only. The object info packet is
 typically sent along with the object data it describes.

 The object identifier corresponds to the object identifier of the
 object data packets or the object data-part packets the object
 info packet relates to.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | version | 0x1 or 0x2 | object identifier |
 +-+
 | object size |
 +-+
 | number of MSYNC packets |
 +-+
 | object CRC |
 +-+
 | object type | Reserved | mtype | object URI size |
 +-+
 | media sequence |
 +-+
 | |
 | object URI |
 : :
 : :
 | |
 +-+

 object size: 32 bits
 The number of bytes that compose the transported object.

 number of MSYNC packets: 32 bits
 Number of MSYNC packets that compose the transported object.

Bale et aL. Expires April 7, 2022 [Page 7]

Internet-Draft MSYNC October 4, 2021

 object CRC: 32 bits
 A CRC applied to the object data payload for corruption detection.

 mtype: 4 bits
 The manifest (playlist) type, the MSYNC INFO is compatible with.
 The field can take the following values.
 0x00: Not Applicable
 0x01: MPEG Dash as specified in [MPEGDASH].
 0x02: HLS as specified in [RFC8216].
 0x03-0xF: Reserved

 object URI size: 12bits
 The size in bytes of the object URI field. The value must
 guarantee that the MSYNC info packet size is not greater than the
 network MTU.

 object type : 8 bits
 Defines the type of MSYNC data object associated with this MSYNC
 info packet
 0x00: Reserved
 0x01: media manifest (playlist)
 0x02: Reserved
 0x03: media data or data-part: Transport stream (MPEG2-TS)
 0x04: media data or data-part: MPEG4 (CMAF)
 0x05: control: control plane information (e.g. multicast gateway
 configuration)
 0x06-0xFF: Reserved

 media sequence: 32 bits
 It is a sequence number associated with the MSYNC object data
 (segment or manifest). It is dependent on the mtype value. It is
 used to synchronize unicast and multicast receptions in the
 multicast gateway. The values and rules are detailed in the

section 3.9 dedicated to the HAS protocol dependencies. The
 default value is 0x00.

 object URI: Quotient(object URI size/32) bits
 This the path name associated with the object. It may corresponds
 to the storage path in the multicast gateway. There MUST be a
 direct relationship between this URI and the URL associated with
 an addressable HAS object (segment or CMAF chunk) and/or a
 manifest request received by the multicast gateway from the
 terminal/media player. The rules are detailed in the section 3.9
 dedicated to the HAS protocol dependencies.

3.3. Object data packet

 This MSYNC packet carries part or all of the the object's data

https://datatracker.ietf.org/doc/html/rfc8216

Bale et aL. Expires April 7, 2022 [Page 8]

Internet-Draft MSYNC October 4, 2021

 payload. The type of data and the way to process the object's data
 packets is function of the associated object's info packet. Object
 payload is transported through a series of object data packets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | version | 0x3 | object identifier |
 +-+
 | object offset |
 +-+
 | data |
 : :
 : :

 object offset: 32 bits
 The index from which the MSYNC object data packet payload is to be
 written in order to compose the object data at the receiver side
 (i.e. the multicast gateway). The first data packet of an object
 has an offset equal to 0.

 data: N x 8bits
 The size N is not declared; it is bounded by the maximum size of
 the under-laying transport multicast session packet (e.g. RTP) as
 depicted in the section 3.6. The total size (number of bytes) of
 the object data is indicated in the associated object info (field
 object size).

3.4. Object HTTP header packet The HTTP header packet carries part or
 all of an HTTP header related to the object (data) to be sent.
 There is at most one HTTP header per object that can be repeated.

 The object identifier is the same than the one present in the
 object data packets or object data-part packets it relates to.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | version | 0x5 | object identifier |
 +-+
 | header size | header offset |
 +-+
 | data |
 : :
 : :

Bale et aL. Expires April 7, 2022 [Page 9]

Internet-Draft MSYNC October 4, 2021

 header size: 16 bits
 An object HTTP header can be transported over one or several
 under-laying transport packets. This field indicates the total
 size of the HTTP header in bytes and it is indicated in each the
 HTTP header's packet.

 header offset: 16 bits
 The index from which this HTTP header MSYNC packet payload data is
 to be written in order to complement the HTTP header at the
 receiver side (i.e the multicast gateway). The first packet of the
 HTTP header has an offset equal to 0.

 data: N x 8bits
 The size N is not declared; it is bounded by either the header
 size field value or by the maximum size of the under-laying
 transport packet(e.g. RTP)as depicted in the section 3.6.

3.5. Object data-part packet

 This MSYNC packet carries part or all of the object data-part
 payload. The type of data and the way to process the object's
 data-part packets is function of the associated info packet.
 Object payload is transported through a series of object data-part
 packets. The data-part is used when the object corresponds to a
 "part" (a chunk) of a super object for which the size is unknown
 (a super object may correspond to a stream or a media segment not
 yet complete and for which the size is therefore unknown).

 All data-part packets belonging to the same data part object has
 the same object identifier which is the same one present in the
 object info packet and HTTP header (if any) packets the data-part
 object relates too.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | version | 0x6 | object identifier |
 +-+
 | object offset |
 +-+
 | super object offset |
 +-+
 | data |
 : :
 : :

 object offset: 32 bits

Bale et aL. Expires April 7, 2022 [Page 10]

Internet-Draft MSYNC October 4, 2021

 The index from which the data-part packet payload is to be written
 in order to compose the object data-part at the receiver side
 (i.e. the multicast gateway). The first packet of the data-part
 has an offset equal to 0.

 super object offset: 32 bits
 The index from which the object part-data packet payload is to be
 written in order to compose the super object data at the receiver
 side (i.e. the multicast gateway). The first data-part object
 composing a super object has the super object offset equal to 0.
 The super object offset is the same for all object data-part
 packets composing the same object data-part. Having this field
 present in the object data-part header (and not in the associated
 object info header) permits to possibly recompose a super object
 without the corresponding object info packet.

 data: N x 8bits
 The size N is not declared; it is bounded by the maximum size of
 the under-laying transport packet (e.g. RTP) as depicted in the

section 3.6. The total size (number of bytes) of the object data
 is indicated in the associated object info (field object size).

3.6. Maximum size of a MSYNC packet

 An MSYNC packet is composed with a header part and a data part for
 which the size is bounded by the transport multicast session
 packet. In case there is no particular restriction as with RTP
 and/or UDP (which authorize up to 65235 bytes), then the maximum
 size is linked to the path MTU (Maximum Transfer Unit) as the
 largest transfer unit supported between the source (the multicast
 server) and the destination (the multicast gateway) without
 fragmentation. An MSYNC packet must fit within a link layer
 packet.
 For Ethernet, as an example, the MTU is typically 1500 bytes,
 assuming a 20 bytes IPv4 header, a 8 bytes UDP header and the 8
 bytes MSYNC object data packet header, it gives an MTU of 1464
 bytes for the MSYNC object data packet. Operating RTP, the MSYNC
 object data MTU is decreased by 12 bytes (= 1452 bytes).

3.7. Sending MSYNC objects over IP/transport multicast sessions

 The following considerations are linked to the multicast server
 configuration.

 Per MSYNC channel, the way to map MSYNC objects related to a media
 stream with an IP or transport multicast session is not
 constrained. The arrangement is chosen function of the network

Bale et aL. Expires April 7, 2022 [Page 11]

Internet-Draft MSYNC October 4, 2021

 architecture and capacity. For example, in xDSL, the capacity
 dedicated to multicast is limited which may drive to an
 arrangement where each sub-stream/representation of a HAS
 session/MSYNC channel matches with one dedicated IP multicast
 session. The receiver (the multicast gateway) switches to the IP
 transport session corresponding to the sub-stream/representation
 it must serve to the user terminal/player. Alternatively, one
 would like to have one IP multicast session (with possibly
 multiple transport multicast sessions, each having a different
 destination port number) for the entire HAS session/MSYNC channel
 that is an arrangement a la "IPTV", less bandwidth efficient but
 where only one multicast IP address is allocated per HAS
 session/MSYNC channel.

 Considering a satellite network, as all transport multicast
 sessions are carried simultaneously, all arrangements may make
 sense.

 Regarding the mapping with a transport multicast session, the
 triplet: source IP address, destination multicast IP address and
 destination transport port number is the discriminator. It is
 recommended to carry media sub-streams and the control channel in
 separate transport multicast channels. It facilitates potential
 error correction procedures.

 The following granularity is possible:

 - One IP multicast session per media (audio or video or
 subtitle) sub-stream (representation); each transport multicast
 session having a different destination multicast IP address.

 - One transport multicast session for the MSYNC control channel.

 - It is perfectly possible to send all the MSYNC packets in only
 one transport multicast session.

 For each MSYNC object to be sent, the sender MUST send one object
 info packet, 0 or more object info redundant packets, zero or more
 HTTP header packets and one or more object data packets or object
 data-part packets.

 The sender MUST send the object's HTTP header along with the
 corresponding object's data to be sent through using the MSYNC
 object data packet(s). The sender MUST send the object's HTTP
 header along with the corresponding first object's data-part to be
 sent through using the MSYNC object data-part packet(s)

 Whenever a manifest (playlist) has to be sent, the manifest

Bale et aL. Expires April 7, 2022 [Page 12]

Internet-Draft MSYNC October 4, 2021

 (playlist) object MUST be sent along with (duplicated in) all the
 transport multicast sessions related to the transmission of the
 video segment objects the manifest/playlist refers to.

3.9. HAS protocol dependency

 A certain number of MSYNC packet header fields have a dependency
 on the HAS protocol and therefore on the manifest type. Similarly
 the sending rules may also depend from the HAS protocol.

3.9.1. Object info packet

3.9.1.1. media sequence

 The media sequence is used by the multicast gateway to synchronize
 the MSYNC (i.e. multicast) reception with unicast reception. The
 multicast gateway may operate jointly MSYNC and unicast retrieval
 of HAS objects. This is useful in some occasions like processing a
 new streaming session request (i.e. a manifest request after a
 channel switch) or in the case of segment repair. The multicast
 gateway may attempt to retrieve a manifest object or segment(s)
 through a unicast mean (e.g. a CDN server or a repair server) in
 order to speed up the start of the session or to repair damaged
 object(s). Consequently, the multicast gateway needs to understand
 the freshness of the HAS object received through multicast with
 regard to unicast.

 If no unicast reception is used jointly with MSYNC in the
 multicast gateway (e.g. like in one way delivery only), the
 default value MAY be used: 0x00

 HLS master playlist: 0x00

 HLS variant playlist; MUST contain the value of EXT-X-MEDIA-SEQUENCE
 added with the position in the playlist of the last segment
 transmitted.

 HLS segment: MUST contain the value of EXT-X-MEDIA-SEQUENCE added
 with the position of the segment in the playlist.

 DASH manifest: MUST contain $time$/scale or $Number$ corresponding to
 the last segment transmitted or under transmission (and possibly
 received partially) and declared by the manifest.

 DASH segment: MUST contain the $time$/scale or $Number$ value

3.9.1.2. object URI

Bale et aL. Expires April 7, 2022 [Page 13]

Internet-Draft MSYNC October 4, 2021

 In the context of HTTP adaptive streaming, if the object is a HAS
 addressable entity (e.g. a segment or a CMAF chunk), the path name
 MUST match the absolute path present in the incoming segment
 request.

 The segment S_2: tvChannel1/Q1/S_2.
 The CMAF chunk C_3 of the segment S_2: tvChannel11/Q1/S_2/C_3.

 if the object is a non-addressable HAS entity (e.g. a HTTP 1.1 CTE
 block), the URI MUST hierarchically match with the related
 incoming segment request.
 The HTTP CTE 3rd chunk of the segment S_2
 tvChannel11/Q1/S_2/3;

3.9.2. Sending rules

 When a manifest/play-list is sent, it must reference addressable
 objects (segment or CMAF chunk) that have already been sent or for
 which the transmission has started.

3.10. RTP as the transport multicast session protocol

 RTP [RFC3550] can be used as part of the transport multicast
 session protocol. Depending on the deployment case (e.g.
 unidirectional) and the infrastructure in place, the companion
 RTCP protocol MUST be operated according to the following.

 - RTCP usage SHALL conform to [RFC5506]

 - RTCP sender report MAY be switched off

 - RTCP receiver report MAY be switched off

 - RCTP destination port number must be configurable but it must
 be different than the associated RTP destination port number,
 i.e. the RTCP destination port number is not necessarily the RTP
 destination port number + 1 as recommended in [RFC3550].

 - RTCP MAY be used for packet loss recovery (aka "RTP Repair").
 If packet loss recovery through RTCP is activated then the RTP
 Repair client and server MUST be compliant with [RFC4585] and
 [RFC5506]. The RTP Repair client that submit the feedback (FB)
 messages (according to [RFC5506] and [RFC4585] is the MSYNC
 receiver (i.e. the multicast gateway). The RTP Repair server
 that receives, processes and responds to the feedback messages
 (FB) MAY be the MSYNC sender (i.e. the multicast server) or it
 MAY be any intermediate entity acting as a multicast RTP
 receiver (i.e. capable of receiving the multicast RTP packets).

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc4585

Bale et aL. Expires April 7, 2022 [Page 14]

Internet-Draft MSYNC October 4, 2021

 In any case, the RTP Repair server and the RTP Repair client
 MUST operate a unicast interface.

 Note that instead of relying on "RTP repair", an MSYNC receiver
 (i.e. the multicast gateway) could attempt to recover HAS
 elements (segments, manifest) through HTTP (aka "HTTP repair").
 However the latter method requires a CDN and is less reactive
 than operating RTCP.

 In addition, each RTP multicast session must operate a different
 [RFC3550] SSRC number. This guaranties a reparation on the RTP
 transport multicast session basis.

 -RTCP MAY be used for Fast Channel change according to
 [RFC6585]. The way to operate [RFC6585] is out of scope of this
 document.

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc6585
https://datatracker.ietf.org/doc/html/rfc6585

Bale et aL. Expires April 7, 2022 [Page 15]

Internet-Draft MSYNC October 4, 2021

4. IANA Considerations

 This document has no actions for IANA.

5. Security Considerations

 The multicast communication between the MSYNC sender (multicast
 server) and the MSYNC receiver (the multicast gateway) should be
 protected for confidentiality, message corruption and replay
 attacks. The MSYNC protocol does not gather any security
 mechanism. MSYNC relies on possibly content protection (Digital
 Right Management) and on the underlying transport layer and
 security extensions for providing message
 integrity/authentication and replay. Secure RTP (SRTP) [RFC3711]
 and IPSec applied to multicast [RFC5374] are potential
 candidates for providing such extensions.

5. References

5.1. Normative References

 [RFC2119] Key words for use in RFCs to Indicate Requirement Levels.
 S. Bradner. March 1997. (Format: TXT, HTML) (Updated by

RFC8174) (Also BCP0014) (Status: BEST CURRENT PRACTICE)
 (DOI: 10.17487/RFC2119)

 [RFC3550] RTP: A Transport Protocol for Real-Time Applications. H.
 Schulzrinne, S. Casner, R. Frederick, V. Jacobson. July
 2003. (Format: TXT, PS, PDF, HTML) (Obsoletes RFC1889)
 (Updated by RFC5506, RFC5761, RFC6051, RFC6222, RFC7022,

RFC7160, RFC7164, RFC8083, RFC8108) (Also STD0064)
 (Status: INTERNET STANDARD) (DOI: 10.17487/RFC3550)

 [MPEGDASH] "Information technology - Dynamic adaptive streaming over
 HTTP (DASH) - Part1:Media presentation description and
 segment formats",ISO/IEC23009-1

 [MPEGCMAF] "Information technology - Multimedia application format
 (MPEG-A) - Part 19:Common media application format (CMAF)
 for segmented media"ISO/IEC 23000-19

 [RFC5506] Support for Reduced-Size Real-Time Transport Control
 Protocol(RTCP): Opportunities and Consequences. I.
 Johansson, M. Westerlund. April 2009. (Format: TXT, HTML)
 (Updates RFC3550, RFC3711, RFC4585)(Status: PROPOSED
 STANDARD) (DOI: 10.17487/RFC5506)

https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc5374
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/bcp0014
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc6051
https://datatracker.ietf.org/doc/html/rfc6222
https://datatracker.ietf.org/doc/html/rfc7022
https://datatracker.ietf.org/doc/html/rfc7160
https://datatracker.ietf.org/doc/html/rfc7164
https://datatracker.ietf.org/doc/html/rfc8083
https://datatracker.ietf.org/doc/html/rfc8108
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc4585

Bale et aL. Expires April 7, 2022 [Page 16]

Internet-Draft MSYNC October 4, 2021

 [RFC4585] Extended RTP Profile for Real-time Transport Control
 Protocol(RTCP)-Based Feedback (RTP/AVPF). J. Ott, S.
 Wenger, N. Sato, C. Burmeister, J. Rey. July 2006.
 (Format: TXT, HTML) (Updated by RFC5506, RFC8108) (Status:
 PROPOSED STANDARD) (DOI:10.17487/RFC4585)

5.2. Informative References

 [RFC3711] The Secure Real-time Transport Protocol (SRTP). M. Baugher,
 D. McGrew, M. Naslund, E. Carrara, K. Norrman. March 2004.
 (Format: TXT, HTML) (Updated by RFC5506, RFC6904) (Status:
 PROPOSED STANDARD) (DOI: 10.17487/RFC3711)

 [RFC5374] Multicast Extensions to the Security Architecture for the
 Internet Protocol. B. Weis, G. Gross, D. Ignjatic.
 November 2008. (Format: TXT, HTML) (Status: PROPOSED
 STANDARD) (DOI: 10.17487/RFC5374)

 [RFC6585] Unicast-Based Rapid Acquisition of Multicast RTP Sessions.
 B. VerSteeg, A. Begen, T. Van Caenegem, Z. Vax. June 2011.
 (Format: TXT, HTML) (Status: PROPOSED STANDARD) (DOI:
 10.17487/RFC6285)

 [RFC8216] HTTP Live Streaming. R. Pantos, Ed., W. May. August 2017.
 (Format:TXT, HTML) (Status: INFORMATIONAL) (DOI:
 10.17487/RFC8216)

Acknowledgments

 The authors will be ever grateful to their late colleague Arnaud
 Leclerc who has been the initiator of that work.

 The authors would like to thank the following people for their
 feedback: Yann Barateau (Eutelsat).

Authors' Addresses

 Sophie Bale
 Broadpeak
 15 rue Claude Chappe
 Zone des Champs Blancs
 35510 Cesson-Sevigne
 France

 Email: sophie.bale@broadpeak.tv

https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc8108
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc6904

Bale et aL. Expires April 7, 2022 [Page 17]

Internet-Draft MSYNC October 4, 2021

 Remy Brebion
 Broadpeak
 15 rue Claude Chappe
 Zone des Champs Blancs
 35510 Cesson-Sevigne
 France

 Email: remy.brebion@broadpeak.tv

 Guillaume Bichot (Editor)
 Broadpeak
 15 rue Claude Chappe
 Zone des Champs Blancs
 35510 Cesson-Sevigne
 France

 Email: guillaume.bichot@broadpeak.tv

Bale et aL. Expires April 7, 2022 [Page 18]

