
Workgroup: Internet Engineering Task Force

Internet-Draft: draft-bider-ssh-quic-05

Published: 12 July 2020

Intended Status: Informational

Expires: 13 January 2021

Authors: d. bider

Bitvise Limited

QUIC-based UDP Transport for Secure Shell (SSH)

Abstract

The Secure Shell protocol (SSH) [RFC4251] is widely used for

purposes including secure remote administration, file transfer using

SFTP and SCP, and encrypted tunneling of TCP connections. Because it

is based on TCP, SSH suffers similar problems as motivate the HTTP

protocol to transition to UDP-based QUIC [QUIC]. These include:

unauthenticated network intermediaries can trivially disconnect SSH

sessions; SSH connections are lost when mobile clients change IP

addresses; performance limitations in OS-based TCP stacks; many

round-trips to establish a connection; duplicate flow control on the

level of the connection as well as channels. This memo specifies SSH

key exchange over UDP and leverages QUIC to provide a UDP-based

transport.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Terminology

2. SSH/QUIC key exchange

2.1. Distinguishing SSH key exchange from QUIC datagrams

2.2. Wire Encoding

2.3. Obfuscated Envelope

2.4. Packet Size Limits

2.5. Required QUIC Versions and TLS Cipher Suites

2.6. Random Elements

2.7. Errors in Key Exchange

2.7.1. "disc-reason" Extension Pair

2.7.2. "err-desc" Extension Pair

2.8. SSH_QUIC_INIT

2.8.1. Extensibility

2.9. SSH_QUIC_REPLY

2.9.1. Error Reply

2.9.2. Extensibility

2.10. SSH_QUIC_CANCEL

2.10.1. Extensibility

3. Key Exchange Methods

3.1. Required Key Exchange Methods

3.2. Example 1: "curve25519-sha256"

3.3. Example 2: "diffie-hellman-group14-sha256"

4. SSH_MSG_EXT_INFO and the SSH Version String

4.1. "ssh-version"

4.2. "no-flow-control"

4.3. "delay-compression"

5. QUIC Session Setup

5.1. Shared Secrets

6. Adaptation of SSH to QUIC Streams

6.1. SSH/QUIC Packet Format

6.1.1. Compression

6.2. Use of QUIC Streams

6.3. Packet Sequence Numbers

6.4. Channel IDs

6.5. Disconnection

6.6. Prohibited SSH Packets

6.7. Global SSH Packets

6.8. SSH Channel Packets

6.9. Closing a Channel

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

7. Acknowledgements

8. IANA Considerations

9. Security Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Generating Random Lengths

Author's Address

1. Introduction

THIS DOCUMENT IS AN EARLY VERSION AND IS A WORK IN PROGRESS.

NON-LATEST DRAFT VERSIONS MUST BE DISREGARDED.

IMPLEMENTATION AT THIS STAGE IS EXPERIMENTAL.

CONTACT THE AUTHOR IF YOU INTEND TO IMPLEMENT.

This memo specifies SSH key exchange over UDP, and then leverages

QUIC to provide a UDP-based transport for SSH. QUIC's use of the TLS

handshake is replaced with a one-roundtrip SSH/QUIC key exchange.

The SSH Authentication Protocol [RFC4252] is then conducted over

QUIC stream 0, and the SSH Connection Protocol [RFC4254] is modified

to use QUIC streams.

1.1. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. SSH/QUIC key exchange

2.1. Distinguishing SSH key exchange from QUIC datagrams

UDP datagrams which form the SSH/QUIC key exchange are sent between

the same client and server IP addresses and ports as QUIC datagrams.

It is therefore necessary for clients and servers to distinguish SSH

key exchange datagrams from QUIC datagrams.

A distinction is allowed by that SSH/QUIC only requires the sending

of QUIC Short Header Packets. Therefore, all UDP datagrams where the

first byte has its high bit set MUST be handled as part of an SSH/

QUIC key exchange.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

2.2. Wire Encoding

This memo uses wire encoding types "byte", "uint32", "uint64",

"mpint" and "string" with meanings as described in [RFC4251].

This memo defines the following new wire encoding type.

"short-str" is a shorter version of "string", encoded as follows:

Figure 1

2.3. Obfuscated Envelope

Since SSH servers are commonly used for remote administration, they

are a high-value target for password guessing. One of the most

common complaints from SSH server administrators is the high

frequency of password guessing connections from random clients.

Experience shows that obfuscating the SSH protocol with an

obfuscation keyword is a valuable measure which thwarts password

guessing. This increases practical security of the SSH ecosystem

even if obfuscation does not thwart narrowly targeted attacks.

Every SSH/QUIC connection is parameterized by an obfuscation

keyword. The obfuscation keyword is a sequence of Unicode characters

entered by a user. Applications MUST permit the user to enter any

Unicode characters except code points in the Unicode category "Cc"

(Control). These are decimal code points 0..31 and 127..159,

inclusive.

An SSH/QUIC server SHOULD allow the administrator to configure an

obfuscation keyword for each interface and port on which the server

is accepting SSH/QUIC connections. An SSH/QUIC client MUST allow the

user to configure an obfuscation keyword separately for outgoing

connections to each server address and port.

The obfuscation keyword MUST be optional for users to configure. If

a user does not configure it, the obfuscated envelope is applied as

if the obfuscation keyword was an empty character sequence.

All SSH/QUIC key exchange packets are sent as UDP datagrams in the

following obfuscated envelope:

¶

¶

¶

 byte n = short-str-len (unsigned, 0..255)

 byte[n] short-str-value

¶

¶

¶

¶

¶

¶

 byte[16] obfs-nonce - high bit of first byte MUST be set

 byte[] obfs-payload

 byte[16] obfs-tag

Figure 2

The field "obfs-nonce" contains random bytes generated by the sender

of the UDP datagram. The high bit of the first byte of "obfs-nonce"

MUST be set to distinguish the packet from QUIC datagrams. See

Section 2.1.

The field "obfs-payload" contains the SSH/QUIC key exchange packet

encrypted using AEAD_AES_256_GCM [RFC5116]. The AEAD is invoked as

follows:

The secret key K is a SHA-256 digest of the obfuscation keyword

in UTF-8 encoding.

The nonce N is the field "obfs-nonce".

The plaintext P is the unencrypted packet payload.

Associated data A is empty.

The ciphertext C is stored in "obfs-payload".

The length of encrypted "obfs-payload" is implied by the UDP

datagram length, and is calculated by subtracting the fixed lengths

of "obfs-nonce" and "obfs-tag".

The field "obfs-tag" stores the GCM tag. Receivers MUST check the

tag and MUST ignore datagrams where the GCM tag is invalid.

2.4. Packet Size Limits

Clients and servers MUST accept SSH_QUIC_INIT, SSH_QUIC_REPLY and

SSH_QUIC_CANCEL packets with unencrypted "obfs-payload" sizes at

least up to 32768 bytes. This corresponds to minimum SSH packet size

limits which implementations must support as per [RFC4253], Section

6.1.

2.5. Required QUIC Versions and TLS Cipher Suites

Clients and servers are REQUIRED to implement QUIC protocol version

1 once it is standardized in [QUIC] and [QUIC-TLS].

Clients and servers are REQUIRED to implement the TLS cipher suites

TLS_AES_128_GCM_SHA256 and TLS_AES_256_GCM_SHA384 [RFC8446]. Other

cipher suites are optional.

The requirement to implement any particular QUIC protocol version or

TLS cipher suite expires on the 5-year anniversary of the publishing

of this memo. At that point, implementers SHOULD consult any new

¶

¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

standards documents if available, or survey the practical use of

SSH/QUIC for implementation guidance.

2.6. Random Elements

Unlike SSH over TCP, the packets SSH_QUIC_INIT and SSH_QUIC_REPLY do

not provide a "cookie" field for random data. Instead, clients and

servers MUST insert random data using the extensibility mechanisms

described for each SSH key exchange packet.

At the very minimum, clients and servers MUST insert at least 16

Random Bytes or at least one Random Name, in locations as described

for SSH_QUIC_INIT (Section 2.8.1) and SSH_QUIC_REPLY (Section

2.9.2). If at all possible, the random data MUST come from a

cryptographically strong random source. Implementations that are

unable to meet this requirement MUST still insert the minimum amount

of random data, as unpredictably as they are able. Compromising on

this requirement reduces the security of any sessions created on the

basis of such SSH_QUIC_INIT and SSH_QUIC_REPLY.

Lengths of Random Names and Random Bytes SHOULD be chosen at random

such that lengths in the shorter end of the range are significantly

more probable, but long lengths are still selected. See Appendix A.

Random Bytes

Random Bytes are generated with values 0..255, in a range of lengths

as specified for the particular usage context.

Random Name

A Random Name is generated in one of two forms: Assigned Form or

Private Form. One of the two forms is randomly chosen so that

Assigned Form, which is shorter, is more likely. The maximum length

of a Random Name is 64 bytes.

Assigned Form

A Random Name in Assigned Form is generated as a string of random

characters with ASCII values 33..126 (inclusive), except @ and the

comma (","). Other characters MUST NOT be included. To avoid

collisions as effectively as a random UUID, a Random Name in

Assigned Form MUST contain at least 20 random characters if using

the complete character set. A Random Name in Assigned Form MUST then

be of length 20..64 bytes.

Implementations MAY remove up to 7 characters from the character set

-- reducing it to 85..91 characters -- without increasing the

minimum length. If the character set is further reduced to 69..84

¶

¶

¶

¶

¶

¶

¶

characters, implementations MUST generate at least 21 random

characters instead.

Example Random Names in Assigned Form:

Figure 3

Private Form

Implementations MAY generate a Random Name in Private Form by first

generating a Random Name in Assigned Form, then appending a domain

name suffix which the implementer controls. A Random Name generated

this way MUST NOT exceed 64 bytes. Example Random Names in Private

Form:

Figure 4

Alternately, implementations MAY generate a Random Name in Anonymous

Form with the format "(local)@(domain).example.com". In this case,

both "(local)" and "(domain)" are replaced by random ASCII

characters from the set A..Z, a..z, and 0..9. This is to ensure that

the suffix has valid domain name syntax.

To avoid collisions as effectively as a random UUID, a Random Name

in Anonymous Form MUST contain at least 22 random characters. A

Random Name in Anonymous Form MUST then be of length 35..64 bytes.

2.7. Errors in Key Exchange

To assist users, clients and servers SHOULD report key exchange

errors as follows:

If a server cannot send a successful SSH_QUIC_REPLY, it SHOULD

send an Error Reply. See Section 2.9.1.

If a client receives an invalid SSH_QUIC_REPLY, it SHOULD send

an SSH_QUIC_CANCEL. See Section 2.10.

Both packet types use the following extension pairs.

¶

¶

 d`kbi>AGrj~r{3lo_Q4r

 wNT)=/8C<(DB1|tr:>1f[xq>9bG

 u7^dE'\EE_}N}^"J5syI?/8jIxup#s7BM:]>{IT_p3Z~<KLa]bIW643XYh07jqZu

¶

 (qKR8W%&zJu;$RQkWa[b@bitvise.com

 BDPhhC_vI?+8$e_CGty->wJDYIBX.4zzQ$@denisbider.com

 ?`z4bb/}</P[pRJ=SvcCV<k0eUPDIHid#e1giY>&Wuf6O7CE?cA`$j"@bider.us

¶

¶

¶

1.

¶

2.

¶

¶

2.7.1. "disc-reason" Extension Pair

"ext-pair-name" contains "disc-reason".

"ext-pair-data" encodes a uint32 with the SSH disconnect reason

code. Reason codes are defined in the table "Disconnect Messages

Reason Codes and Descriptions" in the IANA registry "Secure Shell

(SSH) Protocol Parameters" [IANA-SSH].

2.7.2. "err-desc" Extension Pair

"ext-pair-name" contains "err-desc".

"ext-pair-data" encodes a human-readable error description in any

language intended to be relevant to the user, encoded as UTF-8.

Receivers that process error descriptions MUST validate that the

description is valid UTF-8. If a description is long, receivers

SHOULD truncate it to a reasonable length depending on the

processing context. For example, a debug log file can record a full

32 kB error description, while a production log file SHOULD truncate

it to a much shorter length.

2.8. SSH_QUIC_INIT

A client begins an SSH/QUIC session by sending one or more copies of

SSH_QUIC_INIT. If multiple copies are sent, copies intended for the

same connection MUST be identical. A reasonable strategy is to send

one copy every 50 - 500 ms until the client receives a valid

SSH_QUIC_REPLY or times out. A server MUST remember recently

received SSH_QUIC_INIT packets and send identical SSH_QUIC_REPLY

responses. If different SSH_QUIC_INIT packets are received from the

same client IP address, the server MUST assume they are intended to

begin separate connections, even if they specify the same "client-

connection-id". A server MAY implement throttling of incoming

connections, by IP address or otherwise, where excessive

SSH_QUIC_INIT packets are disregarded. Once a server receives QUIC

data confirming that a client has processed an SSH_QUIC_REPLY, the

server MUST disregard any further identical copies of the same

SSH_QUIC_INIT, at least until the SSH/QUIC session started by such

an SSH_QUIC_INIT ends.

SSH_QUIC_INIT is an obfuscated datagram (Section 2.3) where "obfs-

payload" encrypts the following:

¶

¶

¶

¶

¶

¶

¶

Figure 5

SSH_QUIC_INIT does not include an SSH version string or compression

negotiation. Instead, clients MUST use SSH_MSG_EXT_INFO for these

purposes. See Section 4.

SSH_QUIC_INIT does not include a "cookie" field for random data.

Clients MUST insert random data using the packet's extensibility

mechanisms. See Section 2.8.1 and Section 2.6.

The field "client-connection-id" contains a QUIC Connection ID of

length 0..20 bytes. The server will use this as the QUIC Destination

Connection ID in QUIC packets sent to the client. Clients MAY send

an empty Connection ID if they are using other means of routing

connections.

The field "server-name-indication" SHOULD contain the server DNS

name if a DNS name was entered by the user when configuring the

connection. This can be invaluable in hosting environments: it

allows servers to expose to clients multiple distinct identities on

the same network address and port. If non-empty, the field MUST

 byte SSH_QUIC_INIT = 1 (see Extensibility)

 short-str client-connection-id (MAY be empty)

 short-str server-name-indication (MUST NOT be empty)

 byte v = nr-quic-versions (MUST NOT be zero)

 uint32[v] client-quic-versions

 string client-sig-algs (MUST NOT be empty)

 byte f = nr-trusted-fingerprints (MAY be zero)

 the following 1 field repeated f times:

 short-str trusted-fingerprint (MUST NOT be empty)

 byte k = nr-client-kex-algs (MUST NOT be zero)

 the following 2 fields repeated k times:

 short-str client-kex-alg-name (MUST NOT be empty)

 string client-kex-alg-data (MUST NOT be empty)

 byte c = nr-cipher-suites (MUST NOT be zero)

 the following 1 field repeated c times:

 short-str quic-tls-cipher-suite

 byte e = nr-ext-pairs (see Extensibility)

 the following 2 fields repeated e times:

 short-str ext-pair-name (MUST NOT be empty)

 string ext-pair-data (MAY be empty)

 byte[0..] padding: all 0xFF to minimal obfs-payload size 1200

¶

¶

¶

encode the DNS name entered by the user as a string consisting of

printable US-ASCII characters. Internationalized domain names MUST

be represented in their US-ASCII encoding. If the user connected

directly to an IP address, this field MUST be empty. This avoids

disclosing private information in case of port forwarded

connections. Example non-empty values:

Figure 6

The fields "client-quic-versions" enumerate QUIC protocol versions

supported by the client. The client MUST send at least one version.

The client MUST send supported versions in the order it prefers the

server to use them.

The field "client-sig-algs" MUST contain at least one signature

algorithm supported by the client for server authentication. These

are the same algorithms as used in SSH_MSG_KEXINIT ([RFC4253],

Section 7.1) in the field "server_host_key_algorithms". The client

MUST send signature algorithms in the order it prefers the server to

use them.

The client SHOULD include algorithms in "client-sig-algs" as

follows:

If the client does not yet trust any host key for the server:

"client-sig-algs" SHOULD include all signature algorithms

supported and enabled by the client for use with any server.

Otherwise, the client already trusts some host keys for the

server. In this case, if the client sends any "trusted-

fingerprint" fields, then "client-sig-algs" SHOULD include all

signature algorithms supported and enabled by the client for use

with any server.

Otherwise, the client already trusts some host keys for the

server, but does not send any "trusted-fingerprint" fields. In

this case, "client-sig-algs" MUST include only signature

algorithms associated with the host keys the client already

trusts for this server.

There MAY be zero or more "trusted-fingerprint" fields. Each

"trusted-fingerprint" contains a binary fingerprint of a host key

that is trusted for this connection by the client. The fingerprint

algorithm is left unspecified. The server SHOULD try to match the

fingerprint using all algorithms it supports which produce the

provided fingerprint size. The current recommended fingerprint

¶

 localhost

 server.example.com

 xn--bcher-kva.example

¶

¶

¶

*

¶

*

¶

*

¶

algorithm is SHA-256, with fingerprint size 32 bytes. Servers MUST

tolerate the presence of unrecognized fingerprints of any size. The

preference order of trusted fingerprints is dominated by the

preference order of algorithms in "client-sig-algs".

The packet MUST include at least one SSH key exchange algorithm,

encoded as a pair of "client-kex-alg-name" and "client-kex-alg-data"

fields. The field "client-kex-alg-name" MUST specify a key exchange

method which would be valid in the field "kex_algorithms" in

SSH_MSG_KEXINIT under [RFC4253], Section 7.1. In addition, the key

exchange method MUST meet criteria in Section 3.

If the client wishes to simply advertise its support for a

particular key exchange algorithm, but does not prefer to use it in

this connection, it MAY enumerate the algorithm with empty "client-

kex-alg-data". Otherwise, if the client wishes to allow the

algorithm to be used, it MUST include non-empty "client-kex-alg-

data". In this case, "client-kex-alg-data" contains the client's

portion of key exchange inputs as specified in Section 3. The client

MAY send multiple key exchange algorithms with filled-out "client-

kex-alg-data". The client MUST send these algorithms in the order it

prefers the server to use them.

There MUST be at least one "quic-tls-cipher-suite" field. Each of

these specifies a TLS cipher suite ([RFC8446], Appendix B.4) which

is supported by the client, and which can be used with a version of

QUIC ([QUIC], [QUIC-TLS]) supported by the client. The client MUST

enumerate supported cipher suites in the order it prefers the server

to use them.

The client MAY send any number of extensions, encoded as a pair of

"ext-pair-name" and "ext-pair-data" fields. This memo defines no

extensions for SSH_QUIC_INIT, but see Section 2.8.1.

The "padding" field contains all 0xFF bytes to ensure that the

unencrypted "obfs-payload" for SSH_QUIC_INIT is at least 1200 bytes

in length. Servers MUST ignore smaller SSH_QUIC_INIT packets. This

is REQUIRED to prevent abuse of SSH_QUIC_INIT for Amplified

Reflection DDoS. If the unencrypted size of "obfs-payload" is

already 1200 bytes or larger, the padding MAY be omitted.

2.8.1. Extensibility

Implementations MUST allow room for future extensibility of

SSH_QUIC_INIT in the following manners:

By using a different packet type in the first byte -- this is,

a value other than 1 used by SSH_QUIC_INIT. Servers MUST NOT

penalize clients for sending unknown packet types unless there

¶

¶

¶

¶

¶

¶

¶

1.

is another reason to penalize the client, such as a blocked IP

address or the sheer volume of datagrams.

By including algorithms in "client-sig-algs" which are unknown

to or not supported by the server. Servers MUST tolerate the

presence of such algorithms.

By including fingerprints in "trusted-fingerprints" that use

algorithms or lengths that are unknown to or not supported by

the server. Servers MUST tolerate the presence of such

fingerprints.

By including SSH key exchange algorithms which are unknown to

or not supported by the server, with algorithm data in a format

that's unknown to or not supported by the server. Servers MUST

tolerate the presence of such algorithms and their data.

By including QUIC TLS cipher suites which are unknown to or not

supported by the server. Servers MUST tolerate the presence of

such cipher suites.

By including extensions which are unknown to or not supported

by the server, with extension data in a format that's unknown

to or not supported by the server. Servers MUST tolerate the

presence of such extensions and their data.

Experience shows that any extensibility which is not actively

exercised is lost due to implementations that lock down expectations

incorrectly. Therefore, all clients MUST do at least one of the

following, in each SSH_QUIC_INIT packet, at random:

In the field "client-sig-algs", include in a random position at

least one Random Name (Section 2.6).

In the fields "client-quic-versions", include in a random

position a version number of the form 0x0A?A?A?A, where ?

indicates a random nibble. See [QUIC], section "Versions". Note

the difference from the random version pattern in the server's

SSH_QUIC_REPLY. Due to the minimal amount of entropy provided

by this rule, this MUST NOT be the only insertion of randomness

made in a packet.

Include in a random position at least one host key fingerprint

consisting of 16..255 Random Bytes (Section 2.6).

Include in a random position at least one SSH key exchange

algorithm where the field "client-kex-alg-name" contains a

Random Name, and the field "client-kex-alg-data" contains

0..1000 Random Bytes.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

In the fields "quic-tls-cipher-suite", include in a random

position at least one entry consisting of 16..255 Random Bytes.

In extension pairs, include in a random position at least one

extension where the field "ext-pair-name" contains a Random

Name, and the field "ext-pair-value" contains 0..1000 Random

Bytes.

2.9. SSH_QUIC_REPLY

Implementations MUST take care to prevent abuse of the SSH/QUIC key

exchange for Amplified Reflection DDoS attacks. This means:

A server MUST NOT send more than one SSH_QUIC_REPLY in response

to any individual SSH_QUIC_INIT.

A server MUST NOT respond to any SSH_QUIC_INIT with unencrypted

"obfs-payload" smaller than 1200 bytes.

Before sending an SSH_QUIC_REPLY, the server MUST verify that

the reply is shorter than the SSH_QUIC_INIT packet to which it

is replying. If this is not the case, the server MUST send an

Error Reply (Section 2.9.1). Such an Error Reply MUST be

shorter than the SSH_QUIC_INIT packet.

SSH_QUIC_REPLY is an obfuscated datagram (Section 2.3) where "obfs-

payload" encrypts the following:

Figure 7

5.

¶

6.

¶

¶

1.

¶

2.

¶

3.

¶

¶

 byte SSH_QUIC_REPLY = 2

 short-str client-connection-id

 short-str server-connection-id (Non-empty except on error)

 byte v = nr-quic-versions (MUST NOT be zero)

 uint32[v] server-quic-versions

 string server-sig-algs (MUST NOT be empty)

 string server-kex-algs (MUST NOT be empty)

 byte c = nr-cipher-suites (MUST NOT be zero)

 the following 1 field repeated c times:

 short-str quic-tls-cipher-suite

 byte e = nr-ext-pairs (see Extensibility)

 the following 2 fields repeated e times:

 short-str ext-pair-name (MUST NOT be empty)

 string ext-pair-data (MAY be empty)

 string server-kex-alg-data (Non-empty except on error)

SSH_QUIC_REPLY does not include an SSH version string or compression

negotiation. Instead, servers MUST use SSH_MSG_EXT_INFO for these

purposes. See Section 4.

SSH_QUIC_REPLY does not include a "cookie" field for random data.

Servers MUST insert random data using the packet's extensibility

mechanisms. See Section 2.9.2 and Section 2.6.

The field "client-connection-id" encodes the "client-connection-id"

sent by the client in SSH_QUIC_INIT.

The field "server-connection-id" contains a QUIC Connection ID of

length 1..20 bytes. The client will use this as the QUIC Destination

Connection ID in QUIC packets sent to the server. This field MUST be

empty if sending an Error Reply (Section 2.9.1), and MUST NOT be

empty otherwise.

The fields "server-quic-versions" enumerate QUIC protocol versions

supported by the server. The server MUST send at least one version.

The QUIC version used for the connection is the first version

enumerated in "client-quic-versions" which is also present in

"server-quic-versions". If there is no such version, see Section

2.9.1.

The field "server-sig-algs" MUST contain at least one signature

algorithm supported by the server. The server SHOULD enumerate all

signature algorithms for which it has host keys. These are the same

algorithms as used in SSH_MSG_KEXINIT ([RFC4253], Section 7.1) in

the field "server_host_key_algorithms". In the SSH/QUIC key

exchange, the server MUST use a host key it possesses that (1)

matches any fingerprint enumerated in the "trusted-fingerprint"

fields in SSH_QUIC_INIT; and (2) can be used with the earliest

possible signature algorithm enumerated in "client-sig-algs". If

there are multiple such host keys, the client's preference order in

"client-sig-algs" dominates the preference order of "trusted-

fingerprint". If there is no such host key, the server MUST use any

host key that can be used with the earliest possible signature

algorithm enumerated in "client-sig-algs". If there is no such host

key either, see Section 2.9.1.

The field "server-kex-algs" MUST contain at least one SSH key

exchange algorithm supported by the server. The key exchange

algorithm which is used in the connection is the first algorithm

sent in client's SSH_QUIC_INIT where: (1) the field "client-kex-alg-

data" is non-empty, and (2) the algorithm is also present in

"server-kex-algs". If there is no such key exchange algorithm, see

Section 2.9.1.

¶

¶

¶

¶

¶

¶

¶

There MUST be at least one "quic-tls-cipher-suite" field. Each of

these specifies a TLS cipher suite ([RFC8446], Appendix B.4) which

is supported by the server, and which can be used with a version of

QUIC ([QUIC], [QUIC-TLS]) supported by the server. The TLS cipher

suite which is used for the connection is the first suite sent in

the client's SSH_QUIC_INIT where: (1) the cipher suite is supported

by the negotiated QUIC protocol version, and (2) the cipher suite is

present in the server's SSH_QUIC_REPLY. If there is no such cipher

suite, see Section 2.9.1.

The server MAY send any number of extensions, encoded as a pair of

"ext-pair-name" and "ext-pair-data" fields. Some extensions are

defined for use with an Error Reply (see Section 2.9.1). Other

extensions MAY be defined in the future; see Section 2.9.2.

The field "server-kex-alg-data" MUST be empty if the packet is an

Error Reply. Otherwise, this field contains information for the SSH

key exchange method: see Section 3. Generally, this includes the

server's portion of key exchange inputs; the server's host key; and

the server's signature of the calculated exchange hash.

2.9.1. Error Reply

If a server encounters an error which it is useful and appropriate

to communicate to the client, the server MAY send an "Error Reply"

version of SSH_QUIC_REPLY. Such a reply is created as follows:

The server includes and populates all fields of SSH_QUIC_REPLY as

it would normally, except that the fields "server-connection-id"

and "server-kex-alg-data" MUST remain empty.

In the extension pair fields, a "disc-reason" Extension Pair MUST

be included. An "err-desc" Extension Pair MAY also be included.

See Section 2.7.

Extensibility considerations for SSH_QUIC_REPLY in Section 2.9.2

also apply to an Error Reply.

If the server does not support any of the QUIC protocol versions

enumerated by the client, the server SHOULD send an Error Reply with

the disconnect reason code

SSH_DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED.

In the following circumstances, the server SHOULD send an Error

Reply with the disconnect reason code

SSH_DISCONNECT_KEY_EXCHANGE_FAILED:

If the server could have sent a successful SSH_QUIC_REPLY, but it

would have been larger than the client's SSH_QUIC_INIT, even

though the SSH_QUIC_INIT met or exceeded the minimum length.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

If the server possesses no server host key that can be used with

a signature algorithm enumerated in the client's SSH_QUIC_INIT.

If the server supports no key exchange algorithms matching the

ones for which the client sent "client-kex-alg-data" in

SSH_QUIC_INIT.

If the server supports no TLS cipher suites enumerated in the

client's SSH_QUIC_INIT.

Besides "disc-reason", an "err-desc" extension pair SHOULD be

included to describe the specific error.

2.9.2. Extensibility

Implementations MUST allow room for future extensibility of

SSH_QUIC_REPLY in the following manners:

By including algorithms in "server-sig-algs" which are unknown

to or not supported by the client. Clients MUST tolerate the

presence of such algorithms.

By including SSH key exchange algorithms which are unknown to

or not supported by the client, with algorithm data in a format

that's unknown to or not supported by the client. Clients MUST

tolerate the presence of such algorithms and their data.

By including QUIC TLS cipher suites which are unknown to or not

supported by the client. Clients MUST tolerate the presence of

such cipher suites.

By including extensions which are unknown to or not supported

by the client, with extension data in a format that's unknown

to or not supported by the client. Clients MUST tolerate the

presence of such extensions and their data.

Experience shows that any extensibility which is not actively

exercised is lost due to implementations that lock down expectations

incorrectly. Therefore, all servers MUST do at least one of the

following, in each SSH_QUIC_REPLY packet, at random:

In the fields "server-quic-versions", include in a random

position a version number of the form 0xFA?A?A?A, where ?

indicates a random nibble. See [QUIC], section "Versions". Note

the difference from the random version pattern in the client's

SSH_QUIC_INIT. Due to the minimal amount of entropy provided by

this rule, this MUST NOT be the only insertion of randomness

made in a packet.

*

¶

*

¶

*

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

1.

¶

In the field "server-sig-algs", include in a random position

one Random Name (Section 2.6).

In the field "server-kex-algs", include in a random position

one Random Name (Section 2.6).

In the fields "quic-tls-cipher-suite", include in a random

position one entry consisting of 16..64 Random Bytes.

In extension pairs, include in a random position one extension

pair where the field "ext-pair-name" contains a Random Name,

and the field "ext-pair-value" contains 0..100 Random Bytes.

2.10. SSH_QUIC_CANCEL

If a client cannot process the server's successful SSH_QUIC_REPLY,

the client SHOULD report the error to the server using

SSH_QUIC_CANCEL.

A client MUST NOT send an SSH_QUIC_CANCEL in response to an

SSH_QUIC_REPLY which is itself an Error Reply. A client MUST assume

that such a connection was already canceled by the server.

A client SHOULD send two or more copies of SSH_QUIC_CANCEL, in

transmissions separated by a fraction of a second, to increase the

likelihood of successful delivery. The server sends no

acknowledgment to SSH_QUIC_CANCEL. After the server has received

SSH_QUIC_CANCEL, it MUST ignore subsequent copies of SSH_QUIC_CANCEL

for the same connection.

SSH_QUIC_CANCEL is an obfuscated datagram (Section 2.3) where "obfs-

payload" encrypts the following:

Figure 8

The "server-connection-id" field MUST equal the "server-connection-

id" field in the server's SSH_QUIC_REPLY.

In the extension pair fields, a "disc-reason" Extension Pair MUST be

included. An "err-desc" Extension Pair MAY also be included. See

Section 2.7.

2.

¶

3.

¶

4.

¶

5.

¶

¶

¶

¶

¶

 byte SSH_QUIC_CANCEL = 3

 short-str server-connection-id

 byte e = nr-ext-pairs (see Extensibility)

 the following 2 fields repeated e times:

 short-str ext-pair-name (MUST NOT be empty)

 string ext-pair-data (MAY be empty)

¶

¶

2.10.1. Extensibility

Extensibility considerations also apply to SSH_QUIC_CANCEL:

Clients MAY include extensions which are unknown to or not

supported by the server, with extension data in a format that's

unknown to or not supported by the server.

Servers MUST tolerate the presence of such extensions and their

data.

Clients SHOULD include, in a random position, at least one

extension pair where the field "ext-pair-name" contains a Random

Name, and the field "ext-pair-value" contains 0..300 Random

Bytes.

3. Key Exchange Methods

Clients and servers MAY use any key exchange method which is defined

for SSH over TCP, whether it is assigned or private, as long as it

meets all of the following criteria:

The algorithm requires exactly one message from the client to

the server, for example SSH_MSG_KEX_ECDH_INIT. We call this

message KEXMSG_CLIENT.

The algorithm requires exactly one reply from the server to the

client, for example SSH_MSG_KEX_ECDH_REPLY. We call this

message KEXMSG_SERVER.

The algorithm specifies a hash function HASH, for example

SHA-256, SHA-384, or SHA-512.

The algorithm specifies calculation of an exchange hash H by

applying HASH to a concatenation of encoded fields.

The algorithm uses a server host key to sign H.

The algorithm includes the server's public host key, and the

signature of H, in its KEXMSG_SERVER message to the client.

The algorithm produces a shared secret K, represented as a

signed (positive or negative) multi-precision integer.

Any such algorithm is modified for use in SSH over QUIC as follows:

The field "client-kex-alg-data" in SSH_QUIC_INIT encodes the

same fields, in the same order, as KEXMSG_CLIENT, including the

leading byte for the SSH packet type.

¶

*

¶

*

¶

*

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

6.

¶

7.

¶

¶

1.

¶

The field "server-kex-alg-data" in SSH_QUIC_REPLY encodes the

same fields, in the same order, as KEXMSG_SERVER, including the

leading byte for the SSH packet type.

The calculation of H specified by the algorithm is not

performed. Instead, H is calculated by applying the hash

function HASH to a concatenation of the following:

Figure 9

When a field is excluded as above, the entire encoding of the field

is omitted: both the encoding of the content and the encoding of the

length.

The SSH packet type byte is included:

To ensure there are at least two fields in the encoded content.

This avoids situations where an outer string (the field "client-

kex-alg-data") would contain a single inner string (from

KEXMSG_CLIENT). This could confuse implementers to incorrectly

encode a single string only.

For future consistency. The packet type byte may be useful for

multiple-roundtrip key exchange methods, for example those using

GSS-API [RFC4462]. Such key exchange methods are not currently

defined for SSH/QUIC, but can be.

3.1. Required Key Exchange Methods

Clients and servers are REQUIRED to implement the key exchange

method "curve25519-sha256" [RFC8731]. All other key exchange methods

are optional.

Clients and servers MAY permit the user to disable a required key

exchange method. However, required methods MUST be enabled by

default.

The requirement to implement any particular key exchange method

expires on the 5-year anniversary of the publishing of this memo. At

that point, implementers SHOULD consult any new standards documents

2.

¶

3.

¶

 string Unencrypted "obfs-payload" content of SSH_QUIC_INIT

 string Unencrypted "obfs-payload" content of SSH_QUIC_REPLY,

 excluding the entire field "server-kex-alg-data"

 The fields of "server-kex-alg-data", excluding signature field

 mpint K

¶

¶

*

¶

*

¶

¶

¶

if available, or survey the practical use of SSH/QUIC for

implementation guidance.

3.2. Example 1: "curve25519-sha256"

When using the SSH key exchange method "curve25519-sha256", the

SSH_QUIC_INIT field "client-kex-alg-data" is derived from

SSH_MSG_KEX_ECDH_INIT ([RFC5656], Section 4) and contains the

following:

Figure 10

The SSH_QUIC_REPLY field "server-kex-alg-data" is derived from

SSH_MSG_KEX_ECDH_REPLY and contains the following:

Figure 11

The shared secret K is calculated as in [RFC8731]. Then the exchange

hash H is calculated by applying SHA-256 to a concatenation of the

following:

Figure 12

3.3. Example 2: "diffie-hellman-group14-sha256"

When using the SSH key exchange method "diffie-hellman-group14-

sha256" [RFC8268], the SSH_QUIC_INIT field "client-kex-alg-data" is

derived from SSH_MSG_KEXDH_INIT ([RFC4253], Section 8) and contains

the following:

Figure 13

¶

¶

 byte SSH_MSG_KEX_ECDH_INIT = 30

 string Q_C, client's ephemeral public key octet string

¶

 byte SSH_MSG_KEX_ECDH_REPLY = 31

 string K_S, server's public host key

 string Q_S, server's ephemeral public key octet string

 string the signature on the exchange hash

¶

 string Content of SSH_QUIC_INIT

 string Content of SSH_QUIC_REPLY, except "server-kex-alg-data"

 byte SSH_MSG_KEX_ECDH_REPLY = 31

 string K_S, server's public host key

 string Q_S, server's ephemeral public key octet string

 mpint K

¶

 byte SSH_MSG_KEXDH_INIT = 30

 mpint e

The SSH_QUIC_REPLY field "server-kex-alg-data" is derived from

SSH_MSG_KEXDH_REPLY and contains the following:

Figure 14

The shared secret K is calculated as in [RFC4253]. Then the exchange

hash H is calculated by applying SHA-256 to a concatenation of the

following:

Figure 15

4. SSH_MSG_EXT_INFO and the SSH Version String

A common user complaint to SSH application authors is that SSH over

TCP sends the application version in plain text. The application

version cannot be omitted, otherwise implementations cannot support

a number of behaviors which other software versions implement

incorrectly.

A prominent example is the order of arguments in the SFTP request

SSH_FXP_SYMLINK. To send a request that will have the desired

effects, the client MUST consult the server's version string to know

whether the server uses the standard order of fields, or a reverse

order used by OpenSSH.

SSH over QUIC removes the version string from the SSH key exchange.

Instead, all clients and servers are REQUIRED to send and accept

SSH_MSG_EXT_INFO [RFC8308], and to include the "ssh-version"

extension defined here.

Clients MUST send SSH_MSG_EXT_INFO as the very first SSH packet over

QUIC stream 0. The client MUST include the "ssh-version" extension

in this SSH_MSG_EXT_INFO.

Servers MUST send SSH_MSG_EXT_INFO either:

as the very first SSH packet over QUIC stream 0, and/or

¶

 byte SSH_MSG_KEXDH_REPLY = 31

 string server public host key and certificates (K_S)

 mpint f

 string signature of H

¶

 string Content of SSH_QUIC_INIT

 string Content of SSH_QUIC_REPLY, except "server-kex-alg-data"

 byte SSH_MSG_KEXDH_REPLY = 31

 string server public host key and certificates (K_S)

 mpint f

 mpint K

¶

¶

¶

¶

¶

1. ¶

immediately preceding the server's SSH_MSG_USERAUTH_SUCCESS.

A server MUST include the "ssh-version" extension in at least one of

its SSH_MSG_EXT_INFO. If the server sends SSH_MSG_EXT_INFO at both

opportunities, it MAY omit "ssh-version" at the first opportunity,

but only if it will send it in the second opportunity. The second

SSH_MSG_EXT_INFO sent by the server MAY change a previously sent

"ssh-version" extension value to include more specific detail. For

example, the server MAY send a more accurate server software version

when the client has authenticated. The client MUST use the "ssh-

version" value which was most recently received from the server.

4.1. "ssh-version"

The "ssh-version" extension is encoded in SSH_MSG_EXT_INFO as

follows:

Figure 16

The extension value, "ssh-version-string", contains the same SSH

version string as sent at the start of SSH over TCP ([RFC4253],

Section 4.2), but stripping the prefix "SSH-2.0-". Examples inspired

by version strings used in practice:

Figure 17

4.2. "no-flow-control"

The extension "no-flow-control" has no effect in SSH/QUIC. It SHOULD

NOT be sent in SSH/QUIC and MUST be ignored by both parties.

4.3. "delay-compression"

Semantics of the "delay-compression" extension are modified as per

Section 6.1.1.

2. ¶

¶

¶

 string "ssh-version"

 string ssh-version-string

¶

 GenericSoftware

 Product_1.2.00

 0.12 Library: Application 1.23p1

¶

¶

5. QUIC Session Setup

When the server has sent its SSH_QUIC_REPLY, and when the client has

received it, they each initialize the QUIC session [QUIC] [QUIC-TLS]

as follows:

The QUIC protocol version is set to the first version advertised

in the client's SSH_QUIC_INIT which is also present in the

server's SSH_QUIC_REPLY.

Session state is set as if a TLS handshake had just completed.

The TLS cipher suite is set to the first TLS cipher suite

advertised in SSH_QUIC_INIT which is also present in

SSH_QUIC_REPLY.

The QUIC Key Phase bit is set to 0.

The shared secrets that would have been obtained from the TLS

handshake are instead generated from the SSH key exchange

(Section 5.1).

Clients and servers MUST immediately begin to use QUIC Short Header

Packets. Implementations MUST NOT send QUIC Long Header Packets,

since they could be confused with the SSH/QUIC key exchange.

5.1. Shared Secrets

QUIC-TLS [QUIC-TLS] uses a client secret and a server secret from

which it generates an AEAD key, an IV, and a header protection key

for each sending direction.

An SSH key exchange produces a shared secret K, represented as an

SSH multi-precision integer, and an exchange digest H, represented

as binary data [RFC4253]. An SSH key exchange is parameterized with

a hash function we call HASH. Note that HASH can be a different hash

function, producing a different hash length, than the hash function

used by the negotiated TLS cipher suite.

To compute the initial QUIC client and server secrets, the client

and server encode the following binary data, which we call

"secret_data":

Figure 18

The client and server secrets are then calculated as follows:

¶

*

¶

* ¶

*

¶

* ¶

*

¶

¶

¶

¶

¶

 mpint K

 string H

¶

Figure 19

The HMAC construct is as specified in [RFC2104], instantiated using

the SSH key exchange hash function, HASH.

QUIC keys and IVs are derived from these secrets using the regular

QUIC-TLS key derivation process [QUIC-TLS]. Keys generated from

these secrets are considered 1-RTT keys.

Clients and servers MUST implement QUIC key updates using the

regular QUIC-TLS key update process [QUIC-TLS], respecting the QUIC-

TLS minimum key update frequencies.

6. Adaptation of SSH to QUIC Streams

6.1. SSH/QUIC Packet Format

Each side serializes its SSH packets for sending over QUIC as

follows:

Figure 20

Since security is provided by QUIC-TLS [QUIC-TLS], MAC and random

padding are omitted at this stage.

The "payload-len" field has its high bit set if the "payload" field

is compressed. See Section 6.1.1.

The "payload" field contains the same packet information as the

"payload" field in the Binary Packet Protocol defined in [RFC4253].

6.1.1. Compression

Compression MAY be negotiated using the "delay-compression"

extension in [RFC8308]. If "delay-compression" was negotiated, then:

If compression is enabled for the server-to-client direction, the

server MAY compress packets on any stream after it has sent

SSH_MSG_USERAUTH_SUCCESS.

If compression is enabled for the client-to-server direction, the

client MAY compress packets on any stream after it has received

SSH_MSG_USERAUTH_SUCCESS.

 client_secret = HMAC-HASH("ssh/quic client", secret_data)

 server_secret = HMAC-HASH("ssh/quic server", secret_data)

¶

¶

¶

¶

 uint32 n = payload-len, high bit set if compressed

 byte[n] payload (compressed or uncompressed)

¶

¶

¶

¶

*

¶

*

¶

Due to multiple streams in SSH/QUIC, the packet SSH_MSG_NEWCOMPRESS

is not an effective mechanism to signal the start of compression and

MUST NOT be sent. It is replaced by the high bit in "payload-len".

6.2. Use of QUIC Streams

To avoid an unnecessary layer of flow control which has performance

and complexity impacts in SSH over TCP, SSH/QUIC uses QUIC streams

for SSH channels and dispenses with flow control on the level of SSH

channels. This simplifies future SSH/QUIC implementations which

might not implement SSH over TCP.

Conducting SSH channels over QUIC streams requires modifications of

the SSH Connection Protocol [RFC4254]. The following sections

describe these modifications.

6.3. Packet Sequence Numbers

In SSH over TCP, every SSH packet has an implicit sequence number

which is unique for the direction of sending (to server vs. to

client). The packet type SSH_MSG_UNIMPLEMENTED makes reference to

this sequence number.

In SSH/QUIC, sequence numbers are separate for each sending

direction, as well as each QUIC stream. This requires modification

of SSH_MSG_UNIMPLEMENTED. This packet type is changed as follows:

Figure 21

6.4. Channel IDs

SSH over TCP uses 32-bit channel IDs which can be reused in the same

session and do not have to be used sequentially. Conflicts in

channel IDs are avoided by identifying each channel with two

separate channel IDs: one designated by the sender and one by the

recipient. [RFC4254]

QUIC streams use 62-bit channel IDs which cannot be reused and MUST

be used sequentially. Both sides use the same stream ID. Conflicts

in stream IDs are avoided by using the least significant bit to

indicate whether the stream was opened by the client or by the

server. [QUIC]

SSH/QUIC uses QUIC stream IDs. This requires modification of SSH

channel-related packets. See Section 6.8.

¶

¶

¶

¶

¶

 byte SSH_MSG_UNIMPLEMENTED

 uint64 QUIC stream ID on which the packet was received

 uint32 packet sequence number in stream, first packet = 0

¶

¶

¶

6.5. Disconnection

The SSH packet type SSH_MSG_DISCONNECT is replaced by sending the

QUIC frame CONNECTION_CLOSE of type 0x1d. The "Error Code" field in

CONNECTION_CLOSE contains the value that would have been sent in the

"reason code" in SSH_MSG_DISCONNECT. The "Reason Phrase" field in

CONNECTION_CLOSE contains the value that would have been sent in

"description" in SSH_MSG_DISCONNECT. The "language tag" field of

SSH_MSG_DISCONNECT is not sent.

6.6. Prohibited SSH Packets

In SSH/QUIC, the following SSH packet types MUST NOT be sent:

Figure 22

If they receive packets of these types, clients and servers MAY

disconnect with SSH_DISCONNECT_PROTOCOL_ERROR (Section 6.5).

Alternately, the receiver MAY send SSH_MSG_UNIMPLEMENTED (Section

6.3).

6.7. Global SSH Packets

In SSH/QUIC, the following SSH packet types MUST be sent on QUIC

stream 0. With the exception of SSH_MSG_UNIMPLEMENTED (Section 6.3),

these packets use the same encoded formats as in SSH over TCP:

¶

¶

 SSH_MSG_DISCONNECT 1

 SSH_MSG_NEWCOMPRESS 8

 SSH_MSG_KEXINIT 20

 SSH_MSG_NEWKEYS 21

 key exchange packets 30-49

 SSH_MSG_CHANNEL_WINDOW_ADJUST 93

 SSH_MSG_CHANNEL_CLOSE 97

¶

¶

Figure 23

6.8. SSH Channel Packets

All SSH/QUIC channels MUST be opened as bidirectional QUIC streams.

This means QUIC stream IDs where the least significant bits are 10

or 11 MUST NOT be used in SSH/QUIC. Implementations that receive

such stream IDs MUST disconnect with SSH_DISCONNECT_PROTOCOL_ERROR

(Section 6.5)

A client MUST NOT open a non-zero QUIC stream before the server has

sent SSH_MSG_USERAUTH_SUCCESS. If a client does so, the server MUST

disconnect with SSH_DISCONNECT_PROTOCOL_ERROR.

A server MUST NOT open a non-zero QUIC stream before it has sent

SSH_MSG_USERAUTH_SUCCESS. However, a client MUST be prepared for the

possibility that, due to network delays, a stream opened by the

server can be received by the client before

SSH_MSG_USERAUTH_SUCCESS. Therefore, if the client receives a

server-initiated stream before SSH_MSG_USERAUTH_SUCCESS, it MUST

assume that the server has also sent SSH_MSG_USERAUTH_SUCCESS. If

the client then receives packets on QUIC stream 0 which invalidate

this assumption, the client MUST disconnect with

SSH_DISCONNECT_PROTOCOL_ERROR.

The initiator of any non-zero QUIC stream MUST send

SSH_MSG_CHANNEL_OPEN as the first packet. If the receiver refuses

the channel, it replies with SSH_MSG_CHANNEL_OPEN_FAILURE. Both

sides then MUST close the QUIC stream as per Section 6.9. In this

case, even though a QUIC stream was opened, an SSH channel was not.

Therefore, other SSH_MSG_CHANNEL_xxxx packets MUST NOT be sent. This

includes SSH_MSG_CHANNEL_EOF.

 SSH_MSG_IGNORE 2

 SSH_MSG_UNIMPLEMENTED 3 (Changed format!)

 SSH_MSG_DEBUG 4

 SSH_MSG_SERVICE_REQUEST 5

 SSH_MSG_SERVICE_ACCEPT 6

 SSH_MSG_EXT_INFO 7

 SSH_MSG_USERAUTH_REQUEST 50

 SSH_MSG_USERAUTH_FAILURE 51

 SSH_MSG_USERAUTH_SUCCESS 52

 SSH_MSG_USERAUTH_BANNER 53

 SSH_MSG_USERAUTH_INFO_REQUEST 60

 SSH_MSG_USERAUTH_INFO_RESPONSE 61

 SSH_MSG_GLOBAL_REQUEST 80

 SSH_MSG_REQUEST_SUCCESS 81

 SSH_MSG_REQUEST_FAILURE 82

¶

¶

¶

¶

If the receiver accepts the channel, it replies with

SSH_MSG_CHANNEL_OPEN_CONFIRMATION. Both sides then send SSH packets

of types SSH_MSG_CHANNEL_xxxx. In SSH/QUIC, these packets have the

following formats:

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

¶

 byte SSH_MSG_CHANNEL_OPEN

 string channel type in US-ASCII only

 uint32 maximum packet size

 channel-type-specific data follows

 byte SSH_MSG_CHANNEL_OPEN_CONFIRMATION

 uint32 maximum packet size

 channel-type-specific data follows

 byte SSH_MSG_CHANNEL_OPEN_FAILURE

 uint32 reason code

 string description in UTF-8

 string language tag

 byte SSH_MSG_CHANNEL_DATA

 string data

 byte SSH_MSG_CHANNEL_EXTENDED_DATA

 uint32 data_type_code

 string data

 byte SSH_MSG_CHANNEL_EOF

 byte SSH_MSG_CHANNEL_REQUEST

 string request type in US-ASCII characters only

 boolean want reply

 type-specific data follows

 byte SSH_MSG_CHANNEL_SUCCESS

[QUIC]

Figure 32

6.9. Closing a Channel

The SSH packet type SSH_MSG_CHANNEL_CLOSE is replaced by QUIC stream

state transitions [QUIC]. Each side considers a channel closed when

the QUIC stream is both in a terminal sending state, and a terminal

receiving state. This means:

The QUIC sending stream state has become "Data Recvd" or "Reset

Recvd".

The QUIC receiving stream state has become "Data Read" or "Reset

Read".

The SSH packet type SSH_MSG_CHANNEL_EOF continues to be used. This

packet often does NOT correspond with the end of the stream in its

direction. As in SSH over TCP, SSH channel requests MAY be sent

after SSH_MSG_CHANNEL_EOF, and MUST be handled gracefully by

receivers. A common example is the request "exit-status", which is

sent by a server to communicate a process exit code to the SSH

client, and is commonly sent after the end of output.

7. Acknowledgements

Paul Ebermann for first review and the encouragement to use QUIC

streams.

Ilari Liusvaara for "server-name-indication" and value 1200 for

SSH_QUIC_INIT padding target.

8. IANA Considerations

This document requests no changes to IANA registries.

9. Security Considerations

Clients and servers MUST insert into SSH_QUIC_INIT and

SSH_QUIC_REPLY at least the minimum amount of cryptographically

random data as specified in the section Random Elements.

Compromising on this requirement reduces the security of any session

created on the basis of such an SSH_QUIC_INIT or SSH_QUIC_REPLY.

10. References

10.1. Normative References

 byte SSH_MSG_CHANNEL_FAILURE

¶

*

¶

*

¶

¶

¶

¶

¶

¶

[QUIC-TLS]

[RFC2104]

[RFC2119]

[RFC4251]

[RFC4253]

[RFC5116]

[RFC5656]

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", 2020, <https://

tools.ietf.org/html/draft-ietf-quic-transport-29>.

Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

2020, <https://tools.ietf.org/html/draft-ietf-quic-

tls-29>.

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,

January 2006, <https://www.rfc-editor.org/info/rfc4251>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Transport Layer Protocol", RFC 4253, DOI 10.17487/

RFC4253, January 2006, <https://www.rfc-editor.org/info/

rfc4253>.

McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, DOI 10.17487/

RFC5116, January 2008, <https://www.rfc-editor.org/info/

rfc5116>.

Stebila, D. and J. Green, "Elliptic Curve Algorithm

Integration in the Secure Shell Transport Layer", RFC

https://tools.ietf.org/html/draft-ietf-quic-transport-29
https://tools.ietf.org/html/draft-ietf-quic-transport-29
https://tools.ietf.org/html/draft-ietf-quic-tls-29
https://tools.ietf.org/html/draft-ietf-quic-tls-29
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4251
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116

[RFC8174]

[RFC8308]

[RFC8446]

[RFC8731]

[IANA-SSH]

[RFC4250]

[RFC4252]

[RFC4254]

[RFC4462]

[RFC8268]

5656, DOI 10.17487/RFC5656, December 2009, <https://

www.rfc-editor.org/info/rfc5656>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bider, D., "Extension Negotiation in the Secure Shell

(SSH) Protocol", RFC 8308, DOI 10.17487/RFC8308, March

2018, <https://www.rfc-editor.org/info/rfc8308>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Adamantiadis, A., Josefsson, S., and M. Baushke, "Secure

Shell (SSH) Key Exchange Method Using Curve25519 and

Curve448", RFC 8731, DOI 10.17487/RFC8731, February 2020,

<https://www.rfc-editor.org/info/rfc8731>.

10.2. Informative References

IANA, "Secure Shell (SSH) Protocol Parameters", ,

<https://www.iana.org/assignments/ssh-parameters/>.

Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)

Protocol Assigned Numbers", RFC 4250, DOI 10.17487/

RFC4250, January 2006, <https://www.rfc-editor.org/info/

rfc4250>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,

January 2006, <https://www.rfc-editor.org/info/rfc4252>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Connection Protocol", RFC 4254, DOI 10.17487/RFC4254,

January 2006, <https://www.rfc-editor.org/info/rfc4254>.

Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,

"Generic Security Service Application Program Interface

(GSS-API) Authentication and Key Exchange for the Secure

Shell (SSH) Protocol", RFC 4462, DOI 10.17487/RFC4462,

May 2006, <https://www.rfc-editor.org/info/rfc4462>.

Baushke, M., "More Modular Exponentiation (MODP) Diffie-

Hellman (DH) Key Exchange (KEX) Groups for Secure Shell

(SSH)", RFC 8268, DOI 10.17487/RFC8268, December 2017,

<https://www.rfc-editor.org/info/rfc8268>.

https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8308
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8731
https://www.iana.org/assignments/ssh-parameters/
https://www.rfc-editor.org/info/rfc4250
https://www.rfc-editor.org/info/rfc4250
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4254
https://www.rfc-editor.org/info/rfc4462
https://www.rfc-editor.org/info/rfc8268

Appendix A. Generating Random Lengths

The SSH/QUIC extensibility mechanism calls for generating random

lengths such that values in the shorter end of the range are

significantly more probable, but long lengths are still selected.

The following C example shows a simple two-step process to prefer

shorter lengths:

Figure 33

Author's Address

denis bider

Bitvise Limited

4105 Lombardy Ct

Colleyville, TX 76034

United States

Email: ietf-draft@denisbider.com

¶

 int RandomIntBetweenZeroAnd(int maxValueInclusive);

 int RandomLen_PreferShort(int minLen, int maxLen)

 {

 int const SPAN_THRESHOLD = 7;

 int lenSpan = maxLen - minLen;

 if (lenSpan <= 0)

 return minLen;

 if (lenSpan > SPAN_THRESHOLD)

 if (0 != RandomIntBetweenZeroAnd(3))

 return minLen + RandomIntBetweenZeroAnd(SPAN_THRESHOLD);

 return minLen + RandomIntBetweenZeroAnd(lenSpan);

 }

mailto:ietf-draft@denisbider.com

	QUIC-based UDP Transport for Secure Shell (SSH)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Terminology

	2. SSH/QUIC key exchange
	2.1. Distinguishing SSH key exchange from QUIC datagrams
	2.2. Wire Encoding
	2.3. Obfuscated Envelope
	2.4. Packet Size Limits
	2.5. Required QUIC Versions and TLS Cipher Suites
	2.6. Random Elements
	Random Bytes
	Random Name
	Assigned Form
	Private Form

	2.7. Errors in Key Exchange
	2.7.1. "disc-reason" Extension Pair
	2.7.2. "err-desc" Extension Pair

	2.8. SSH_QUIC_INIT
	2.8.1. Extensibility

	2.9. SSH_QUIC_REPLY
	2.9.1. Error Reply
	2.9.2. Extensibility

	2.10. SSH_QUIC_CANCEL
	2.10.1. Extensibility

	3. Key Exchange Methods
	3.1. Required Key Exchange Methods
	3.2. Example 1: "curve25519-sha256"
	3.3. Example 2: "diffie-hellman-group14-sha256"

	4. SSH_MSG_EXT_INFO and the SSH Version String
	4.1. "ssh-version"
	4.2. "no-flow-control"
	4.3. "delay-compression"

	5. QUIC Session Setup
	5.1. Shared Secrets

	6. Adaptation of SSH to QUIC Streams
	6.1. SSH/QUIC Packet Format
	6.1.1. Compression

	6.2. Use of QUIC Streams
	6.3. Packet Sequence Numbers
	6.4. Channel IDs
	6.5. Disconnection
	6.6. Prohibited SSH Packets
	6.7. Global SSH Packets
	6.8. SSH Channel Packets
	6.9. Closing a Channel

	7. Acknowledgements
	8. IANA Considerations
	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Generating Random Lengths
	Author's Address

