
core A. Bierman
Internet-Draft YumaWorks
Intended status: Standards Track P. van der Stok
Expires: August 13, 2016 consultant
 February 10, 2016

YANG Hash
draft-bierman-core-yang-hash-00

Abstract

 This document describes an encoding of YANG names to 30 bit hashes.
 This document extends the CoMI draft to reduce payload and URI of
 CoMI network requests. The technique can be applied to other YANG
 based applications to reduce the payload by replacing the YANG names
 with 30 bit numbers.

Note

 Discussion and suggestions for improvement are requested, and should
 be sent to core@ietf.org.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 13, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Bierman & van der Stok Expires August 13, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Yhash February 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 3
1.1.1. Tree Diagrams . 4

2. YANG Hash Generation . 4
3. Re-Hash Error Procedure 5
4. Re-Hashing Names Procedure 6
5. ietf-yang-hash YANG Module 7
6. YANG Re-Hash Examples . 9
6.1. Multiple Modules . 11
6.2. Same Module . 11

7. Retrieval of Rehashed Data 12
8. YANG Hash representations 13
8.1. YANG Hash in payload 13
8.2. YANG Hash in URL . 13

9. YANG Hash Examples . 14
10. Security Considerations 16
11. IANA Considerations . 16
12. Acknowledgements . 16
13. Changelog . 17
14. References . 17
14.1. Normative References 17
14.2. Informative References 18

Appendix A. Hash clash probability 18
Appendix B. Hash clash storage overhead 21
B.1. Server tables . 21
B.2. Client tables . 22
B.3. Table summary . 22

Appendix C. payload reduction 23
 Authors' Addresses . 27

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is designed for
 Machine to Machine (M2M) applications such as smart energy and
 building control. Constrained devices need to be managed in an
 automatic fashion to handle the large quantities of devices that are
 expected in future installations. The messages between devices need
 to be as small and infrequent as possible. The implementation
 complexity and runtime resources need to be as small as possible.

https://datatracker.ietf.org/doc/html/rfc7252

Bierman & van der Stok Expires August 13, 2016 [Page 2]

Internet-Draft Yhash February 2016

 The drafts [I-D.ietf-netconf-restconf] and [I-D.vanderstok-core-comi]
 describe REST-like interfaces to access structured data defined in
 YANG [RFC6020].

 The payload format CBOR [RFC7049] can be used to reduce the size of
 the transported payload. In that case the size of the payload
 depends for a large part on the YANG names. Reducing the names
 significantly reduces the payload size further (see Appendix C).
 This draft proposes a hashing technique to encode the YANG names into
 30 bit numbers.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Readers of this specification should be familiar with all the terms
 and concepts discussed in [RFC2578].

 The following terms are defined in the NETCONF protocol [RFC6241]:
 client, configuration data, data-store, and server.

 The following terms are defined in the YANG data modelling language
 [RFC6020]: container, data node, key, key leaf, leaf, leaf-list, and
 list.

 The following terms are defined in RESTCONF protocol
 [I-D.ietf-netconf-restconf]: data resource, data-store resource, edit
 operation, query parameter, target resource, and unified data-store.

 The following terms are defined in this document:

 YANG hash: CoMI object identifier, which is a 30-bit numeric hash of
 the YANG object identifier string for the object.

 Rehash bit: Bit 31. If a particular YANG hash value is a re-hash
 for an identifier, then the rehash bit will be set in the object
 identifier. This allows the server to return descendant nodes
 that have been rehashed, instead of returning an error for an
 entire GET request.

 Data-node instance: An instance of a data-node specified in a YANG
 module present in the server. The instance is stored in the
 memory of the server.

 Notification-node instance: An instance of a schema node of type
 notification, specified in a YANG module present in the server.

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6020

Bierman & van der Stok Expires August 13, 2016 [Page 3]

Internet-Draft Yhash February 2016

 The instance is generated in the server at the occurrence of the
 corresponding event and appended to a stream.

1.1.1. Tree Diagrams

 A simplified graphical representation of the data model is used in
 the YANG modules specified in this document. The meaning of the
 symbols in these diagrams is as follows:

 Brackets "[" and "]" enclose list keys.

 Abbreviations before data node names: "rw" means configuration
 data (read-write) and "ro" state data (read-only).

 Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. YANG Hash Generation

 The association between string value and string number is done
 through a hash algorithm. The 30 least significant bits of the
 "murmur3" 32-bit hash algorithm are used. This hash algorithm is
 described online at [murmur3]. Implementations are available online
 [murmur-imp]. When converting 4 input bytes to a 32-bit integer in
 the hash algorithm, the Little-Endian convention MUST be used.

 The "murmur3_32" hash function is executed for the entire path
 string. The value '42' is used as the seed for the hash function.
 The YANG hash is subsequently calculated by taking the 30 least
 significant bits.

 The resulting 30-bit number is used by the server, unless the value
 is already being used for a different object by the server. In this
 case, the re-hash procedure in Section 3 is executed.

 The hash is generated for the string representing the object path
 identifier. A canonical representation of the path identifier is
 used.

 The module name is used to identify the namespace of the object
 node. The prefix cannot be used because it is allowed to change
 over time. The module name is never allowed to change.

Bierman & van der Stok Expires August 13, 2016 [Page 4]

Internet-Draft Yhash February 2016

 The module name MUST be present in the identifier for the first
 node in the object path identifier.

 If a child node in the object path identifier is from the same
 module namespace as its parent, then the module-name MUST NOT be
 used in the identifier.

 If a child node in the object path identifier is not from the same
 module namespace as its parent, then the module-name MUST be used
 in the identifier.

 Choice and case node names are not included in the path
 expression. Only 'container', 'list', 'leaf', 'leaf-list', and
 'anyxml' nodes are listed in the path expression.

 The YANG Hash value is calculated for all data nodes in the
 module, even if the server only implements a subset of these
 objects. This includes all "data-def", "rpc", "notification", and
 external data nodes derived from "augment" statements.

 Example: the following canonical identifier is used for the 'mtu'
 leaf in the ietf-interfaces module:

 /ietf-interfaces:interfaces/interface/mtu

 Example: the following canonical identifier is used for the 'ipv4'
 container in the ietf-ip module, which augments the 'interface' list
 in the ietf-interfaces module:

 /ietf-interfaces:interfaces/interface/ietf-ip:ipv4

3. Re-Hash Error Procedure

 In most cases, the hash function is expected to produce unique values
 for all the node names supported by a constrained server. Given a
 known set of YANG modules, both server and client can calculate the
 YANG hashes independently, and offline.

 Even though collisions are expected to happen rather rarely, they
 need to be considered (see Appendix A for clash probabilities).
 Collisions can be detected before deployment, if the vendor knows
 which modules are supported by the server, and hence all YANG hashes
 can be calculated. Collisions occur at a given server dependent on
 the set of modules supported by the server. The client needs to
 discover any re-hash mappings on a per server basis.

Bierman & van der Stok Expires August 13, 2016 [Page 5]

Internet-Draft Yhash February 2016

 If the server needs to re-hash any YANG name, then it MUST create a
 "rehash" entry for all its rehashed node names, as described in

Section 4.

 A re-hashed object identifier has the rehash bit set in the
 identifier, every time it is sent from the server to the client.
 This allows the client to identify nodes for which a "reverse rehash"
 entry may need to be retrieved (see Section 6). A client does not
 need to retrieve the rehash map before retrieving or configuring
 rehashed data nodes.

 If any node identifier provided by the client is not available
 because it has been rehashed, the server MUST return a rehash error,
 containing the 'rehash' entries for all the invalid nodes which were
 specified by the client.

 It is possible that none of the node identifiers provided by the
 client in a GET method are invalid and rehashed, but rather one or
 more descendant nodes within the selected subtree(s) have been
 rehashed. In this case, a rehash error is not returned. Instead the
 requested subtree(s) are returned, and the rehash bit is set for any
 descendant node(s) that have been rehashed. The client will strip
 off the rehash bit and retrieve the 'revhash' entry for these nodes
 (if not already done).

4. Re-Hashing Names Procedure

 A hash collision occurs if two different path identifier strings have
 the same hash value. If the server has around 1000 node names in its
 YANG modules, then the probability of a collision is a half per mil
 (see Appendix A). If a hash collision occurs on the server, then the
 node name that is causing the conflict has to be altered, such that
 the new hash value does not conflict with any value already in use by
 the server.

 For example, rehashing could be done by prefixing a "~" character in
 front of the clashing name and execute murmur3 on the thus modified
 name. If necessary the prefixing can be done multiple times until
 the clashes are resolved. Using the prefixing is not needed from an
 inter-operability point of view but provides a procedure for client
 and server to calculate the rehash without reading the "rehash"
 entry.

Bierman & van der Stok Expires August 13, 2016 [Page 6]

Internet-Draft Yhash February 2016

5. ietf-yang-hash YANG Module

 The "ietf-yang-hash" YANG module is used by the server to report any
 objects that have been mapped to produce a new hash value that does
 not conflict with any other YANG hash values used by the server.

 YANG tree diagram for "ietf-yang-hash" module:

 +--ro yang-hash
 +--ro rehash* [hash]
 +--ro hash uint32
 +--ro object*
 +--ro module string
 +--ro newhash uint32
 +--ro path? string

 <CODE BEGINS> file "ietf-yang-hash@2016-02-10.yang"

 module ietf-yang-hash {
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-hash";
 prefix "yh";

 organization
 "IETF CORE (Constrained RESTful Environments) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/core/>
 WG List: <mailto:core@ietf.org>

 WG Chair: Carsten Bormann
 <mailto:cabo@tzi.org>

 WG Chair: Andrew McGregor
 <mailto:andrewmcgr@google.com>

 Editor: Peter van der Stok
 <mailto:consultancy@vanderstok.org>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 description
 "This module contains re-hash information for the CoMI protocol.

 Copyright (c) 2016 IETF Trust and the persons identified as

http://tools.ietf.org/wg/core/

Bierman & van der Stok Expires August 13, 2016 [Page 7]

Internet-Draft Yhash February 2016

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 // RFC Ed.: remove this note
 // Note: extracted from draft-bierman-core-yang-hash-00.txt

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 revision 2016-02-10 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: YANG Hash.";
 }

 container yang-hash {
 config false;
 description
 "Contains information on the YANG Hash values used by
 the server.";

 list rehash {
 key hash;
 description
 "Each entry describes an re-hash mapping in use by
 the server.";

 leaf hash {
 type uint32;
 description
 "The hash value that has a collision. This hash value
 cannot be used on the server. The rehashed
 value for each affected object must be used instead.";
 }

 list object {

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-bierman-core-yang-hash-00.txt

Bierman & van der Stok Expires August 13, 2016 [Page 8]

Internet-Draft Yhash February 2016

 min-elements 2;

 description
 "Each entry identifies one of the objects involved in the
 hash collision and contains the rehash information for
 that object.";

 leaf module {
 type string;
 mandatory true;
 description
 "The module name identifying the module namespace
 for this object.";
 }

 leaf newhash {
 type uint32;
 mandatory true;
 description
 "The new hash value for this object. The rehash bit is
 not set in this value.";
 }

 leaf path {
 type string;
 description
 "The object path identifier string used in the original
 YANG hash calculation. This object MUST be included for
 any objects in the rehash entry with the same 'module'
 value.";
 }
 }
 }
 }

 }

 <CODE ENDS>

6. YANG Re-Hash Examples

 In this example there are two YANG modules, "foo" and "bar".

 module foo {
 namespace "http://example.com/ns/foo";
 prefix "f";

Bierman & van der Stok Expires August 13, 2016 [Page 9]

Internet-Draft Yhash February 2016

 revision 2015-06-07;

 container A {
 list B {
 key name;
 leaf name { type string; }
 leaf counter1 { type uint32; }
 }
 }
 }

 module bar {
 namespace "http://example.com/ns/bar";
 prefix "b";
 import foo { prefix f; }
 revision 2015-06-07;

 augment /f:A/f:B {
 leaf counter2 { type uint32; }
 }
 }

 This set of 3 YANG modules containing a total of 7 objects produces
 the following object list. Note that actual hash values are not
 shown, since these modules do not actually cause the YANG Hash
 clashes described in the examples.

 Object Path Hash

 foo:

 container /foo:A h1
 list /foo:A/B h2
 leaf /foo:A/B/name h3
 leaf /foo:A/B/counter1 h4

 bar:

 leaf /foo:A/B/bar1:counter2 h5

Bierman & van der Stok Expires August 13, 2016 [Page 10]

Internet-Draft Yhash February 2016

6.1. Multiple Modules

 In this example, assume that the 'B' and 'counter2' objects produce
 the same hash value, so 'h2' and 'h5' both have the same value (e.g.
 '1234'):

 The client might retrieve an entry from the list "/foo:A/B", which
 would cause this subtree to be returned. Instead, the server will
 return a message with the resource type "core.mg.yang-hash",
 representing the "yang-hash" data structure. Only the entry for the
 requested identifier is returned, even if multiple 'rehash' list
 entries exist.

 REQ: GET example.com/mg/h2?keys="entry2"

 RES: 4.00 "Bad Request" (Content-Format: application/cbor)
 {
 "ietf-yang-hash:yang-hash" : {
 "rehash" : [
 {
 "hash" : 1234,
 "object" : [
 {
 "module" : "foo",
 "newhash" : 5678
 },
 {
 "module" : "bar",
 "newhash" : 8182
 }
]
 }
]
 }
 }

6.2. Same Module

 In this example, assume that the 'B', 'counter1', and 'counter2'
 objects produce the same hash value, so 'h2', 'h4', and 'h5' objects
 all have the same value (e.g. '1234'):

 The client might retrieve an entry from the list "/foo:A/B", which
 would cause this subtree to be returned. Instead, the server will
 return a message with the resource type "core.mg.yang-hash",
 representing the "yang-hash" data structure. Only the entry for the

Bierman & van der Stok Expires August 13, 2016 [Page 11]

Internet-Draft Yhash February 2016

 requested identifier is returned, even if multiple 'rehash' list
 entries exist.

 REQ: GET example.com/mg/h2?keys="entry2"

 RES: 4.00 "Bad Request" (Content-Format: application/cbor)
 {
 "ietf-yang-hash:yang-hash" : {
 "rehash" : [
 {
 "hash" : 1234,
 "object" : [
 {
 "module" : "foo",
 "newhash" : 5678,
 "path" : "/foo:A/B"

 },
 {
 "module" : "foo",
 "newhash" : 2134,
 "path" : "/foo:A/B/counter1"
 },
 {
 "module" : "bar",
 "newhash" : 8182,
 "path" : "/foo:A/B/bar:counter2"
 }
]
 }
]
 }
 }

7. Retrieval of Rehashed Data

 In this example, assume that the 'B', 'counter1', and 'counter2'
 objects produce the same hash value, so 'h2', 'h4', and 'h5' objects
 all have the same value (e.g. '1234'):

 The client might retrieve the top-level container "/foo:A", which
 would cause this subtree to be returned. Since the identifier (h1)
 has not been re-hashed, the server will return the requested data.
 The new hashes for 'h2', 'h4',and 'h5' will be returned, except the
 rehash bit will be set for these identifiers.

Bierman & van der Stok Expires August 13, 2016 [Page 12]

Internet-Draft Yhash February 2016

 The notation "R+" indicates that the rehash bit is set.

 REQ: GET example.com/mg/h1

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 h1 : {
 R+5678 : {
 { h3 : "entry1"}:
 {R+2134: 615,
 R+8182: 7},
 { h3 : "entry2"}:
 {R+2134: 491,
 R+8182: 26}
 }
 }
 }

 The client will notice that the rehash bit is set for 3 nodes. The
 client will need to retrieve the full "yang-hash" container at this
 point, if that has not already been done. The rehashed identifiers
 will be in "rehash" list, contained in the "newhash" leaf for the
 "object" list.

8. YANG Hash representations

 YANG hashes are represented in two fashions.

8.1. YANG Hash in payload

 When a YANG hash value is printed in the payload, error-path or other
 string, then the lowercase hexadecimal representation is used.
 Leading zeros are used so the value uses 8 hex characters.

8.2. YANG Hash in URL

 When a URL contains a YANG hash, it is encoded using base64url "URL
 and Filename safe" encoding as specified in [RFC4648].

 The hash H is represented as a 30-bit integer, divided into five
 6-bit integers as follows:

 B1 = (H & 0x3f000000) >> 24
 B2 = (H & 0xfc0000) >> 18
 B3 = (H & 0x03f000) >> 12
 B4 = (H & 0x000fc0) >> 6
 B5 = H & 0x00003f

https://datatracker.ietf.org/doc/html/rfc4648

Bierman & van der Stok Expires August 13, 2016 [Page 13]

Internet-Draft Yhash February 2016

 Subsequently, each 6-bit integer Bx is translated into a character Cx
 using Table 2 from [RFC4648], and a string is formed by concatenating
 the characters in the order C1, C2, C3, C4, C5.

 For example, the YANG hash 0x29abdcca is encoded as "pq9zK".

9. YANG Hash Examples

 The YANG hash value for 'current-datetime' is calculated by
 constructing the schema node identifier for the object:

 /ietf-system:system-state/clock/current-datetime

 The 30 bit murmur3 hash value (see Section 2) is calculated on this
 string with hash: 0x047c468b and EfEaM. The request using this hash
 value is shown below:

 REQ: GET example.com/mg/EfEaM

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 0x047c468b : "2014-10-26T12:16:31Z"
 }

 The YANG hash values for 'clock', 'current-datetime', and 'boot-
 datetime' are calculated by constructing the schema node identifier
 for the objects, and then calculating the 30 bit murmur3 hash values
 (shown in parenthesis):

 /ietf-system:system-state/clock (0x021ca491 and CDKSQ)
 /ietf-system:system-state/clock/current-datetime (0x047c468b)
 /ietf-system:system-state/clock/boot-datetime (0x1fb5f4f8)

 The YANG hash values for 'neighbor', 'ip', and 'link-layer-address'
 are calculated by constructing the schema node identifier for the
 objects, and then calculating the 30 bit murmur3 hash values (shown
 in parenthesis):

 /ietf-interfaces:interfaces/interface/ietf-ip:ipv6/neighbor
 (0x2445e478 and kReR4)
 /ietf-interfaces:interfaces/interface/ietf-ip:ipv6/neighbor/ip
 (0x2283ed40 and ig-la)
 /ietf-interfaces:interfaces/interface/ietf-ip:ipv6/neighbor/
 link-layer-address (0x3d6915c7)

 The YANG translation of the SMI specifying the ipNetToMediaTable
 [RFC4293] yields:

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4293

Bierman & van der Stok Expires August 13, 2016 [Page 14]

Internet-Draft Yhash February 2016

 container IP-MIB {
 container ipNetToPhysicalTable {
 list ipNetToPhysicalEntry {
 key "ipNetToPhysicalIfIndex
 ipNetToPhysicalNetAddressType
 ipNetToPhysicalNetAddress";
 leaf ipNetToMediaIfIndex {
 type: int32;
 }
 leaf ipNetToPhysicalIfIndex {
 type if-mib:InterfaceIndex;
 }
 leaf ipNetToPhysicalNetAddressType {
 type inet-address:InetAddressType;
 }
 leaf ipNetToPhysicalNetAddress {
 type inet-address:InetAddress;
 }
 leaf ipNetToPhysicalPhysAddress {
 type yang:phys-address {
 length "0..65535";
 }
 }
 leaf ipNetToPhysicalLastUpdated {
 type yang:timestamp;
 }
 leaf ipNetToPhysicalType {
 type enumeration { ... }
 }
 leaf ipNetToPhysicalState {
 type enumeration { ... }
 }
 leaf ipNetToPhysicalRowStatus {
 type snmpv2-tc:RowStatus;
 }
 }
 }

 The YANG hash values for 'ipNetToPhysicalEntry' and its child nodes
 are calculated by constructing the schema node identifier for the
 objects, and then calculating the 30 bit murmur3 hash values (shown
 in parenthesis):

 /IP-MIB:IP-MIB/ipNetToPhysicalTable (0x0aba15cc and kuhXM)
 /IP-MIB:IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry
 (0xo6aaddbc and Gqt28)
 /IP-MIB:IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry/
 ipNetToPhysicalIfIndex (0x346b3071)

Bierman & van der Stok Expires August 13, 2016 [Page 15]

Internet-Draft Yhash February 2016

 /IP-MIB:IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry/
 ipNetToPhysicalNetAddressType (0x3650bb64)
 /IP-MIB:IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry/
 ipNetToPhysicalNetAddress (0x06fd4d91)
 /IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry/
 ipNetToPhysicalPhysAddress (0x26180bcb)
 /IP-MIB:IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry/
 ipNetToPhysicalLastUpdated (0x3d6bbe90)
 /IP-MIB:IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry/
 ipNetToPhysicalType (0x35ecbb3d)
 /IP-MIB:IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry/
 ipNetToPhysicalState (0x13038bb5)
 /IP-MIB:IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry/
 ipNetToPhysicalRowStatus (0x09e1fa37)

 The YANG Hash values for the YANG Patch request objects are
 calculated as follows:

 0x2c3f93c7: /ietf-yang-patch:yang-patch
 0x2fb8873e: /ietf-yang-patch:yang-patch/patch-id
 0x011640f0: /ietf-yang-patch:yang-patch/comment
 0x16804b72: /ietf-yang-patch:yang-patch/edit
 0x2bd93228: /ietf-yang-patch:yang-patch/edit/edit-id
 0x1959d8c9: /ietf-yang-patch:yang-patch/edit/operation
 0x1346e0aa: /ietf-yang-patch:yang-patch/edit/target
 0x0750e196: /ietf-yang-patch:yang-patch/edit/point
 0x0b45277e: /ietf-yang-patch:yang-patch/edit/where
 0x2822c407: /ietf-yang-patch:yang-patch/edit/value

10. Security Considerations

 The replacement of name-strings by numbers does not affect the
 security of the transmitted requests.

11. IANA Considerations

 No considerations for IANA apply.

12. Acknowledgements

 We are very grateful to Bert Greevenbosch who suggested the use of
 hashes and specified the use of murmur3. Many thanks for their
 contributions go to Alexander Pelov, Juergen Schonwalder, Anuj Sehgal
 and Michel Veillette.

Bierman & van der Stok Expires August 13, 2016 [Page 16]

Internet-Draft Yhash February 2016

 This material is based upon work supported by the The Space &
 Terrestrial Communications Directorate (S&TCD) under Contract No.
 W15P7T-13-C-A616. Any opinions, findings and conclusions or
 recommendations expressed in this material are those of the author(s)
 and do not necessarily reflect the views of The Space & Terrestrial
 Communications Directorate (S&TCD) .

13. Changelog

 Version 0 is extracted from comi draft version 8
 [I-D.vanderstok-core-comi]. Changed Appendix A, and added

Appendix C.

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [murmur3] , "murmurhash family", Web
http://en.wikipedia.org/wiki/MurmurHash, .

 [murmur-imp]
 , "murmurhash implementation", Web https://code.google.com

/p/smhasher/, .

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc6020
http://www.rfc-editor.org/info/rfc6020
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
http://en.wikipedia.org/wiki/MurmurHash
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/

Bierman & van der Stok Expires August 13, 2016 [Page 17]

Internet-Draft Yhash February 2016

14.2. Informative References

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, DOI 10.17487/

RFC2578, April 1999,
 <http://www.rfc-editor.org/info/rfc2578>.

 [RFC4293] Routhier, S., Ed., "Management Information Base for the
 Internet Protocol (IP)", RFC 4293, DOI 10.17487/RFC4293,
 April 2006, <http://www.rfc-editor.org/info/rfc4293>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-07 (work in
 progress), July 2015.

 [I-D.vanderstok-core-comi]
 Stok, P., Bierman, A., Schoenwaelder, J., and A. Sehgal,
 "CoAP Management Interface", draft-vanderstok-core-comi-08
 (work in progress), October 2015.

 [coll-prob]
 Preshing, j., "Hash collision probabilities", Web

http://preshing.com/20110504/hash-collision-probabilities,
 May 2011.

 [birthday]
 Wikipedia, , "Birthday problem", Web https://

en.wikipedia.org/wiki/Birthday_problem, .

Appendix A. Hash clash probability

 +--------+---------+---------+---------+---------+---------+--------+
Number	28 bits	29 bits	30 bits	31 bits	32 bits	33
of						bits
names						
+--------+---------+---------+---------+---------+---------+--------+						
10	1,7E-07	8,4E-08	4,2E-08	2,1E-08	1,1E-08	5,2E-0
						9
100	1,8E-05	9,2E-06	4,6E-06	2,3E-06	1,2E-06	5,8E-0
						7

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2578
http://www.rfc-editor.org/info/rfc2578
https://datatracker.ietf.org/doc/html/rfc4293
http://www.rfc-editor.org/info/rfc4293
https://datatracker.ietf.org/doc/html/rfc6241
http://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-07
https://datatracker.ietf.org/doc/html/draft-vanderstok-core-comi-08
http://preshing.com/20110504/hash-collision-probabilities
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_problem

Bierman & van der Stok Expires August 13, 2016 [Page 18]

Internet-Draft Yhash February 2016

200	7,4E-05	3,7E-05	1,9E-05	9,3E-06	4,6E-06	2,3E-0
						6
10^3	1,9E-03	9,3E-04	4,7E-04	2,3E-04	1,2E-04	5,8E-0
						5
4000	3,0E-02	1,5E-02	7,5E-03	3,7E-03	1,9E-03	9,3E-0
						4
10^4	1,9E-01	9,3E-02	4,6E-02	2,3E-02	1,2E-02	5,8E-0
						3
 +--------+---------+---------+---------+---------+---------+--------+

 Table 1: Probability of one or more clashes

 This appendix calculates the probability of a hash clash as function
 of the hash size and the number of YANG names. The standard way to
 calculate the probability of a clash is to calculate the probability
 that no clashes occur [birthday], [coll-prob].

 The probability of no clashes when generating k numbers with a hash
 size of N=2^bits is given by:

 D(N,k) = ((N-1)/N)*((N-2)/N)*....(N-(k-1))/N (1)

 which can be approximated with:

 exp(-k*(k-1)/2N) (2)

 The probability that one or more clashes occur is given by:

 1 - exp(-k*(k-1)/2N) ~ k*(k-1)/2N (3)

 Table 1 shows the probabilities for a given set of values of N=2^bits
 and number of YANG node names k. Probabilities which are larger than
 0.5 are not shown because the used approximations are not accurate
 any more.

Bierman & van der Stok Expires August 13, 2016 [Page 19]

Internet-Draft Yhash February 2016

 The overhead in servers and clients depends on the number of clashes.
 Therefore it is interesting to know the probability that more than
 one clash occurs. The probability of generating k numbers with a
 hash size of N=2^bits, where 2 numbers are identical and all the rest
 is different, is composed of the following parts. The probability
 that the second number is equal to the first is 1/N. The possible
 number of configurations of 2 equal numbers out of k is given by
 SUM_i=1,k-1 (i). The probability of k-1 different numbers is given
 by D(N,k-1). The probability of generating exactly one clash of two
 numbers is given by:

 (SUM_1,k-1 (i))*D(N,k-1)/N

 Where we used formula (1). Working out the summation and using (2),
 the probability that exactly one pair of hashes clashes is given by:

 (k*(k-1)/2N)*exp(-(k-1)*(k-2)/2N)

 The probability that more than one pair clashes is given by the
 probability that a clash occurs minus the probability that only one
 pair clashes. This leads to:

 1 - exp(-k*(k-1)/2N) - (k*(k-1)/2N)*exp(-(k-1)*(k-2)/2N)

 Substituting formula 3, gives:

 k*(k-1)/2N - k*(k-1)/2N + (k*(k-1)^2*(k-2)/4N^2 =

 (k*(k-1)^2*(k-2)/4N^2

 +--------+---------+---------+---------+---------+---------+--------+
Number	28 bits	29 bits	30 bits	31 bits	32 bits	33
of						bits
names						
+--------+---------+---------+---------+---------+---------+--------+						
10	2,3E-14	5,6E-15	1,4E-15	3,5E-16	8,8E-17	2,2E-1
						7
100	3,3E-10	8,3E-11	2,1E-11	5,2E-12	1,3E-12	3,3E-1
						3
200	5,4E-09	1,4E-09	3,4E-10	8,5E-1	2,1E-11	5,3E-1
						2
10^3	3,5E-06	8,6E-07	2,2E-07	5,4E-08	1,4E-08	3,4E-0
						9
4000	8,9E-04	2,2E-04	5,6E-05	1,4E-05	3,5E-06	8,7E-0

Bierman & van der Stok Expires August 13, 2016 [Page 20]

Internet-Draft Yhash February 2016

						7
10^4	3,5E-02	8,7E-03	2,2E-03	5,4E-04	1,4E-04	3,4E-0
						5
 +--------+---------+---------+---------+---------+---------+--------+

 Table 2: Probability of more than 2 entries equal clashes

 The corresponding probabilities are shown in Table 2. Assuming a
 hash size of 2^30, and about 1000 YANG nodes in a server, the
 probability of one clashing pair is 0.5*10^-3, and the probability
 that more clashes occur is 2*10^-7.

Appendix B. Hash clash storage overhead

 Clashes may occur in servers dynamically during the operation of
 their clients, and clashes must be handled on a per server basis in
 the client. When rehashing is possible, clashing names on a given
 server are prefixed with a character (for example "~") and are
 rehashed, thus leading to hash values which uniquely identify the
 data nodes in the server. This appendix calculates the storage space
 needed when a clash occurs in a set of servers running the same
 server code. Appendix A shows that more than one clash in a server
 set is exceptional, which suggests at most two clashing object names
 in a given server.

 The sizes of server and client tables needed to handle the clashes in
 client and server are calculated separately, because they differ
 significantly.

B.1. Server tables

 When a request arrives at the server, the server must relate the
 incoming hash value to the memory locations where the related values
 are stored. In the server a translation table must be provided that
 relates a hash value to a memory address where either the raw data or
 a description of the data (as prescribed by the YANG compiler) are
 stored. The required storage space is a sequence of (32 bit yang
 hash, 64 bit memory address) for every YANG data node. The
 translation table size in a server is 12 bytes times the number of
 YANG data nodes in the server.

 For every clashing hash value the following server clash table
 entries are needed: Clashed hash value, module name, and new hash.
 To reduce table size in the client, module name can be replaced with
 a 1 byte module identifier. The module identifier represents the
 index value of an array of module names. Server clash table size is:
 2 hashes (8 bytes) + 1 module identifier (1 byte)

Bierman & van der Stok Expires August 13, 2016 [Page 21]

Internet-Draft Yhash February 2016

B.2. Client tables

 In the client, the compiled code must refer to a hash value. To cope
 with on-the-fly rehashing, the compiled code needs to invoke a
 procedure that returns the possibly rehashed value as function of the
 original hash value, module name, and server address. The client
 needs to store a client clash table containing: the clashed hash
 value, module name, server IPv6 address (or name), and rehash value
 for as many rehashes occurring in a given server. Many servers
 contain an identical set of YANG modules. The servers containing the
 same module set belong to the same server type. The server type is
 used to administrate the hash clash occurrence. To reduce client
 clash table size, module name can be replaced with a 1 byte module
 identifier. The module identifier represents the index value of an
 array of module names. A table of IPv6 server addresses must already
 exist in the client. To reduce client clash table size further, the
 server IPv6 address can be replaced with a 1 byte server type
 identifier. The server table can be ordered according to server
 type. A table with server type and pointer to sub-table start
 suffices to find all IPv6 addresses belonging to a server type.

 The client clash table reduces to clashed hash value (4 bytes),
 module identifier (1 byte), server type identifier (1 byte) and
 rehash value (4 bytes).

B.3. Table summary

 Sizes of all the tables are:

 Server clash table: 9 bytes per clashing object name.

 Client clash table: 10 bytes per server type, per clashing object
 name.

 Array of module names: Sum of module name sizes.

 Server identifier table: 1 byte server type + 4 bytes pointer per
 server type.

 The existence of the translation table in a server is required
 independent of rehashing. The table sizes calculated to estimate the
 storage requirements coming from CoMI clashes. Assume the following
 numbers:

 o 500 data nodes per server

 o 10 server types

Bierman & van der Stok Expires August 13, 2016 [Page 22]

Internet-Draft Yhash February 2016

 o 30 modules

 o Module name is on average 20 bytes

 o Maximum of 2 clashing object names occurring in 2 server types

 This yields the following overhead estimates:

 Server tables size:

 * Server clash table: 2*9 bytes represents 18 bytes

 * Module name array: 30*20 represents 600 bytes

 Client table sizes:

 * Client clash table: 10*2*2 represents 40 bytes for 2 object
 names in 2 server types.

 * Module name array: 30*20 represents 600 bytes.

 * Server identifier table: 10*5 = 50 bytes

 In conclusion:

 1. Storage space size in client is independent of number of servers
 but depends on number of server types.

 2. There is a common storage size for the module array of 600 bytes.

 3. Assuming 2 clashing object names in 2 server types, additional
 storage space in client is 40 bytes and in server 18 bytes.

 4. When the module array is suppressed (removing 600 bytes storage
 space), the server clash table and the client clash table
 increase with 40 bytes and 80 bytes respectively.

Appendix C. payload reduction

 The hashing of the YANG identifier in the transported payload reduces
 the size of the YANG objects transported in the payload. This note
 calculates the payload size reduction and the number of YANG objects
 that can be transported in a single 802.154 CoAP packet. The payload
 is assumed to be a sequence of maps, where the entry ("ident" :
 value) is referred to as a map, as shown below. The value can be an
 integer or a string.

Bierman & van der Stok Expires August 13, 2016 [Page 23]

Internet-Draft Yhash February 2016

 {
 "ident1" : value 1,
 "ident2" : value 2.
 Etc
 }

 In general, we can assume that the payload size (SI) of a YANG
 identifier string lies between 6 to 128 bytes with an average of
 30-40 bytes. The payload size (SV) of a value can range between 1
 byte to 128 bytes. The transport format is CBOR. The overhead
 coming from CBOR is composed of:

 o One byte to indicate the number of maps (> 2 maps in the example
 above).

 o Two bytes per map: one describing the identifier, and one
 describing the value.

 When the CBOR byte describes an integer (major type 0), the size of
 the following integer is 0, when integer < 24. Otherwise the size of
 the following integer is 1 to 8 bytes. The size of the string
 remains unchanged when preceded by a CBOR byte (major type 2). When
 the string size < 24 , no extra bytes are needed; when the string
 size lies between 24 and 128 one extra CBOR byte overhead is needed.
 The parameters SE, SV and SI are introduced with the following
 meaning:

 o SE is the size of the identifier encoded by a hash or other
 unsigned integer, with 0 < SE < 5; because the hash size is 4
 bytes and the minimum managed encoded identifier is assumed to
 take 1 byte.

 o SV is the size of the value, with 0 <= SV < 128.

 o SI is the size of the original YANG hash identifier string, with 4
 < SI < 64.

 The impact of the conversion from YANG identifier string to unsigned
 integer is straightforward to calculate per map. It is assumed that
 one CBOR byte or two CBOR bytes are needed dependent on the sizes SI
 and SV. A map size with the original YANG identifier string is given
 by:

 o Map size is: 2 + SI + SV, when SI, SV < 24;

 o Map size is: 3 + SI + SV, when SI < 24 and SV > 23, or SI > 23 and
 SV < 24;

Bierman & van der Stok Expires August 13, 2016 [Page 24]

Internet-Draft Yhash February 2016

 o Map size is: 4 + SI + SV, when SI, SV > 23.

 The map size when SI is converted to an unsigned integer with size SE
 is given by:

 o Encoded map size is: 2 + SE + SV, when SV < 24;

 o Encoded map size is: 3 + SE + SV, when SV > 23.

 The improvement of the conversion can be written as

 o (2+SE+SV)/(2+SI+SV) when SI, SV < 24;

 o (2+SE+SV)(3+SI+SV) when SI > 23 and SV < 24;

 o (3+SE+SV)/(3+SI+SV) when SI < 24, and SV > 23;

 o (3+SE+SV)/(4+SI+SV) when SI, SV > 23.

 Table 3 shows the size reduction for different SI and SV values and
 SE = 4:

 +-------+------+------+------+------+------+-------+------+
 | SV-> | 0 | 4 | 10 | 20 | 30 | 40 | 60 |
 +-------+------+------+------+------+------+-------+------+
 | SI=6 | 0,75 | 0,83 | 0,89 | 0,93 | 0,95 | 0,96 | 0,97 |
 | | | | | | | | |
 | SI=10 | 0,83 | 0,88 | 0,91 | 0,94 | 0,95 | 0,96 | 0,97 |
 | | | | | | | | |
 | SI=20 | 0,91 | 0,92 | 0,94 | 0,95 | 0,96 | 0,97 | 0,98 |
 | | | | | | | | |
 | SI=30 | 0,97 | 0,97 | 0,98 | 0,98 | 0,98 | 0,99 | 0,99 |
 | | | | | | | | |
 | SI=40 | 0,98 | 0,98 | 0,98 | 0,98 | 0,99 | 0,99 | 0,99 |
 +-------+------+------+------+------+------+-------+------+

 Table 3: Payload size reduction as function of SI and SV

 Another way to look at it is to see how many maps fit in a packet.
 Assuming a 802.15.4 packet with short addresses, the IEEE header is
 13 bytes. The CoAP header assuming only mesh traffic takes 6 bytes.
 The URI is composed of 3 options, where each option header takes 1
 byte: total of 3 bytes. The URI is assumed to be split up in the
 following 3 parts:

 o URI-host "example.net" takes 13 bytes, which necessitates 1 length
 byte: total of 14 bytes.

Bierman & van der Stok Expires August 13, 2016 [Page 25]

Internet-Draft Yhash February 2016

 o URI-path = "mg" takes 4 bytes.

 o URI-path = "hash value" takes 7 bytes.

 Total URI takes 3+14+4+7 = 28 bytes. For the CoMI payload, there
 remains 127 -13 - 6 - 28 = 80 bytes. Subtracting the byte indicating
 the number of CBOR maps, the payload size for the maps is 79 bytes.

 N.B. no security overhead is included.

 When the YANG string identifier needs to be stored, the number of
 storable maps is given by:

 o 79/(2+SI+SV) for SI, SV < 24;

 o 79/(3+SI+SV) for SI < 24 and SV > 23, or SI > 23 and SV < 24;

 o 79/(4+SI+SV) for SI, SV > 23.

 Table 4 shows the number of transported maps for different values of
 SI and SV.

 +-------+----+---+-----+-----+-----+-----+-----+
 | SV-> | 0 | 4 | 10 | 20 | 30 | 40 | 60 |
 +-------+----+---+-----+-----+-----+-----+-----+
 | SI=6 | 9 | 6 | 4 | 2 | 2 | 1 | 1 |
 | | | | | | | | |
 | SI=10 | 6 | 4 | 3 | 2 | 1 | 1 | 1 |
 | | | | | | | | |
 | SI=20 | 3 | 3 | 2 | 1 | 1 | 1 | 0 |
 | | | | | | | | |
 | SI=30 | 2 | 2 | 1 | 1 | 1 | 1 | 0 |
 | | | | | | | | |
 | SI=40 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
 +-------+----+---+-----+-----+-----+-----+-----+

 Table 4: Nr of transported maps as function of SI and SV

 Assuming the encoding of the YANG identifier to an unsigned integer
 with size 0 < SE < 5, the number of storable maps is given by:

 o 79/(2+SE+SV) for SV < 24;

 o 79/(3+SE+SV) for SV > 23.

 Table 5 shows the number of transported maps for different values of
 SE and SV, independent of SI.

Bierman & van der Stok Expires August 13, 2016 [Page 26]

Internet-Draft Yhash February 2016

 +------+----+----+-----+-----+-----+-----+-----+
 | SV-> | 0 | 4 | 10 | 20 | 30 | 40 | 60 |
 +------+----+----+-----+-----+-----+-----+-----+
 | SE=1 | 26 | 11 | 6 | 3 | 2 | 1 | 1 |
 | | | | | | | | |
 | SE=2 | 19 | 9 | 5 | 3 | 2 | 1 | 1 |
 | | | | | | | | |
 | SE=3 | 15 | 8 | 5 | 3 | 2 | 1 | 1 |
 | | | | | | | | |
 | SE=4 | 13 | 7 | 4 | 3 | 2 | 1 | 1 |
 +------+----+----+-----+-----+-----+-----+-----+

 Table 5: Nr of transported maps as function of SE and SV,

 The value of SI for the average YANG string identifier is 30. When
 the size of the value part of the map is less than 10 (SV < 10) and
 SI=30, the impact of the hashing is significant: 10 maps can be
 transported instead of 1 or 2. Further reducing the value of SE from
 4 to 1 increases the number of transported maps with a factor 2 to
 1,2.

Authors' Addresses

 Andy Bierman
 YumaWorks
 685 Cochran St.
 Suite #160
 Simi Valley, CA 93065
 USA

 Email: andy@yumaworks.com

 Peter van der Stok
 consultant

 Phone: +31-492474673 (Netherlands), +33-966015248 (France)
 Email: consultancy@vanderstok.org
 URI: www.vanderstok.org

Bierman & van der Stok Expires August 13, 2016 [Page 27]

