
Network Working Group A. Bierman
Internet-Draft YumaWorks, Inc.
Intended status: Standards Track October 19, 2013
Expires: April 22, 2014

NETCONF Efficiency Extensions
draft-bierman-netconf-efficiency-extensions-00

Abstract

 This document describes protocol extensions to improve the efficiency
 of the Network Configuration Protocol (NETCONF). Protocol
 capabilities and operations are defined to reduce network usage and
 transaction complexity.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bierman Expires April 22, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft NETCONF-EX October 2013

Table of Contents

1. Introduction . 4
1.1. Terminology . 4
1.1.1. NETCONF . 4
1.1.2. YANG . 4
1.1.3. RESTCONF . 5
1.1.4. Terms . 5
1.1.5. Tree Diagrams . 6

1.2. Problem Statement . 6
1.2.1. <hello> Exchange 6
1.2.2. Initial Configuration Retrieval 6
1.2.3. Message Encoding 7
1.2.4. Datastore Editing 7
1.2.5. Data Retrieval . 9

1.3. Solution . 10
1.3.1. Capability ID Exchange 10
1.3.2. Configuration ID Advertisement 11
1.3.3. Message Encoding Negotiation 11
1.3.4. <edit2> Operation 11
1.3.5. <get2> Operation 12

2. Definitions . 13
2.1. "capability-id" Capability 13
2.1.1. Overview . 13
2.1.2. Dependencies . 18
2.1.3. Capability Identifier 18
2.1.4. New Operations . 18
2.1.5. Modifications to Existing Operations 18
2.1.6. Interactions with Other Capabilities 19

2.2. "config-id" Capability 19
2.2.1. Overview . 19
2.2.2. Dependencies . 21
2.2.3. Capability Identifier 21
2.2.4. New Operations . 21
2.2.5. Modifications to Existing Operations 22
2.2.6. Interactions with Other Capabilities 22

2.3. "encoding" Capability 22
2.3.1. Overview . 22
2.3.2. Dependencies . 24
2.3.3. Capability Identifier 24
2.3.4. New Operations . 25
2.3.5. Modifications to Existing Operations 25
2.3.6. Interactions with Other Capabilities 25

2.4. <edit2> Protocol Operation 25
2.4.1. <edit2> Input . 26
2.4.2. <edit2> Output . 27
2.4.3. <edit2> YANG Tree Diagram 27
2.4.4. <edit2> Example 28

Bierman Expires April 22, 2014 [Page 2]

Internet-Draft NETCONF-EX October 2013

2.5. <complete-commit> Operation 30
2.5.1. <complete-commit> Input 30
2.5.2. <complete-commit> Output 30
2.5.3. <complete-commit> YANG Tree Diagram 31
2.5.4. <complete-commit> Example 31

2.6. <revert-commit> Operation 31
2.6.1. <revert-commit> Input 31
2.6.2. <revert-commit> Output 31
2.6.3. <revert-commit> YANG Tree Diagram 32
2.6.4. <revert-commit> Example 32

2.7. <get2> Protocol Operation 32
2.7.1. Depth Filters . 32
2.7.2. Time Filters . 33
2.7.3. <get2> Input . 33
2.7.4. <get2> Output . 34
2.7.5. <get2> YANG Tree Diagram 35
2.7.6. <get2> Example . 35

2.8. NETCONF-EX YANG Module 36
2.9. XSD for NETCONF-EX Metadata 53

3. IANA Considerations . 55
3.1. NETCONF-EX XML Namespace 55
3.2. NETCONF-EX XML Schema 55
3.3. NETCONF-EX YANG Module 55

4. Security Considerations 56
5. Normative References . 57
Appendix A. Open Issues . 58
A.1. resource-identifier-type 58
A.2. no YANG for top-level message nodes 58
A.3. only 1 location returned per edit 58
A.4. config-id attribute 58
A.5. <get2> nodeset retrieval 58

Appendix B. Additional Examples 59
B.1. YANG Module Used in Examples 59
B.2. YANG Data Used in Examples 60
B.3. <edit2> Examples . 61
B.3.1. Confirmed Commit on the "running" Datastore 61
B.3.2. Conditional Editing with "if-match" Parameter 63
B.3.3. Bulk Editing with "target-resource" Parameter 65
B.3.4. Edit Validation with "test-only" Parameter 67

B.4. <get2> Examples . 69
B.4.1. If-Modified-Since Non-Empty Filter Retrieval 69
B.4.2. If-Modified-Since Empty Filter Retrieval 71
B.4.3. Keys Only Filter Retrieval 71
B.4.4. Test for Node Existence with Depth=1 73
B.4.5. Retrieve Only Non-Configuration Data Nodes 74

 Author's Address . 76

Bierman Expires April 22, 2014 [Page 3]

Internet-Draft NETCONF-EX October 2013

1. Introduction

 There is a need for standard mechanisms to allow NETCONF [RFC6241]
 application designers to manage NETCONF servers more efficiently when
 used in network environments with poor connectivity, low bandwidth,
 and/or high latency. In such conditions, it is desirable to minimize
 network usage wrt/ the size of protocol messages and the number of
 protocol operations required to perform a network management
 function.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14, [RFC2119].

1.1.1. NETCONF

 The following terms are defined in [RFC6241]:

 o candidate configuration datastore

 o client

 o configuration data

 o datastore

 o configuration datastore

 o protocol operation

 o running configuration datastore

 o server

 o startup configuration datastore

1.1.2. YANG

 The following terms are defined in [RFC6020]:

 o container

 o data node

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6020

Bierman Expires April 22, 2014 [Page 4]

Internet-Draft NETCONF-EX October 2013

 o key leaf

 o leaf

 o leaf-list

 o list

1.1.3. RESTCONF

 The following terms are defined in [RESTCONF]:

 o data resource

 o datastore resource

 o YANG Patch

1.1.4. Terms

 The following terms are defined:

 o capability ID: An opaque string identifier that represents the
 current state of the server capability set. A new capability ID
 is chosen by the server each time the server capability set is
 altered in any way.

 o capability set: The conceptual set of all capability URIs that are
 active on the server, including all parameters. This set does not
 include the ":config-id" capability if it is supported.

 o config ID: An opaque string identifier that represents the state
 of the running datastore contents on the server. A new config ID
 is chosen by the server each time the server running configuration
 datastore is altered in any way.

 o depth filter: A mechanism implemented within the NETCONF server to
 allow a client to retrieve only a limited number of levels within
 the a subtree, instead of retrieving the entire subtree.

 o time filter: A mechanism implemented within the NETCONF server to
 allow a client to retrieve only data that has been modified since
 a specified data and time.

Bierman Expires April 22, 2014 [Page 5]

Internet-Draft NETCONF-EX October 2013

1.1.5. Tree Diagrams

 A simplified graphical representation of the data model is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Abbreviations before data node names: "rw" means configuration
 (read-write) and "ro" state data (read-only).

 o Symbols after data node names: "?" means an optional node and "*"
 denotes a "list" and "leaf-list".

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

1.2. Problem Statement

 This document attempts to address the following problems with NETCONF
 protocol procedures.

1.2.1. <hello> Exchange

 The server <hello> message can be rather large (e.g., greater than
 10,000 bytes), and the information it contains tends to be rather
 static in practice. If a large number of server connections are lost
 and then restarted, the quantity of large <hello> messages from every
 server could impact network performance.

 It would be useful if the <hello> message exchange could be enhanced
 so the server <hello> message size could be minimized. The new
 <hello> message exchange must be completely backward compatible such
 that existing client or server implementations will continue to
 function.

1.2.2. Initial Configuration Retrieval

 A client application often needs to retrieve the entire running
 configuration datastore contents, usually at the start of an editing
 session. The <rpc-reply> for this <get-config> request can be very
 large (e.g., greater than 250,000 bytes).

 If a large number of server connections are lost and then restarted,
 the quantity of large <rpc-reply> messages from every server could

Bierman Expires April 22, 2014 [Page 6]

Internet-Draft NETCONF-EX October 2013

 severely impact network performance.

 It would be useful if the <hello> message exchange could be enhanced
 so an entity-tag value for the current running datastore
 configuration is included in the server <hello> message. A client
 can cache the server configuration identifier and omit an initial
 <get-config> operation if the value from the server <hello> message
 matches the cached value.

1.2.3. Message Encoding

 NETCONF uses a hard-wired message encoding format, namely XML.
 However, XML tends to be verbose, especially for YANG data models
 that have long data node identifiers.

 There is no reason for the NETCONF message encoding to be hardwired,
 except for the <hello> message. It would be useful if the NETCONF
 protocol could support other message encoding formats, such as JSON
 [JSON]. The <hello> message exchange could be enhanced so the client
 and server negotiated the message encoding to use for all other
 messages via an capability exchange included in both <hello>
 messages.

1.2.4. Datastore Editing

 There are several deficiencies with the NETCONF editing procedures
 that could be improved.

 Multi-operation functions can be required. A single edit can take up
 to 9 operations. Several operations are required to complete a set
 of 1 or more edits on a NETCONF server. Each operation uses 1
 request and 1 response message. If the candidate datastore is used,
 then 1 extra operation is required (for the <commit> operation) to
 activate the edit(s). If the startup datastore is used then 1 extra
 operation is required (for the <copy-config> operation) to save the
 running datastore contents in non-volatile storage. If global
 locking is used, then 2 extra operations are required for each
 datastore involved (candidate, running, startup) Since the datastore
 is locked at the start and unlocked at the end of the entire edit
 operation, these extra roundtrip times are intervals in which the
 datastore is being locked, but no datastore access is being done.

 Obtaining locks can be expensive. If the server has more than 1
 datastore (e.g., candidate + running or running + startup), then
 multiple lock requests are required, since the <lock> and <unlock>
 operations on affect 1 datastore at a time. This can cause a long
 delay or even deadlock if multiple clients are attempting to obtain
 global locks at once. E.g., client 1 holds a lock on the candidate

Bierman Expires April 22, 2014 [Page 7]

Internet-Draft NETCONF-EX October 2013

 datastore and is trying to lock the running datastore. At the same
 time, client 2 holds a lock on the running datastore and is trying to
 lock the candidate datastore.

 Using locks can be brittle. NETCONF clients are intended to be
 programmatic, so is not likely that locks will be long-lived. Global
 locks are designed to be short-lived since they block write access to
 the entire datastore. If lock collisions do occur, they are likely
 to be cleared very quickly. It would be useful if the client could
 request how long to wait for locks to clear instead of immediately
 rejecting an edit request due to an 'in-use' error.

 Edit operations are implied by <config> content. NETCONF uses a
 default operation and explicit operation attribute within an
 arbitrarily complete XML subtree to represent a configuration
 datastore. There are several corner-cases that are not standardized,
 and very implementation-dependent:

 - interpretation of implied operations vs. explicit operations
 - order the edits are processed
 - handling of nested operation attributes
 - handling of duplicate subtrees
 - error handling (code points, number of errors, etc.)
 - move operations are not explicit and can interpreted as
 a request to remove and re-add an entry, not just move
 user-ordered data

 Edit operations are not protected against multi-client alterations.
 It is a simple and common practice to retrieve a configuration data
 resource, changing 1 or more fields, and then update the resource on
 the server. Since retrieval and edit operations are separate there
 is always a chance that another client has altered the resource after
 the <get-config> operation, but before the <edit-config> operation,
 by the first client. Each client could be protected if there was an
 entity tag associated with each data resource, and an edit request
 could be rejected if the client attempted to edit a different version
 of the data resource than expected.

 There is no bulk-edit support. If the same edit is needed in
 multiple instances of a particular data resource, then the data must
 be repeated for each instance in the <edit-config> or <copy-config>
 request. The request message size could be minimized if there was a
 way to apply a set of edits to multiple target nodes at once.

 There is no confirmed commit support for the running datastore. The
 ability to backup the running datastore, change it, and revert it
 unless the client confirms the changes has nothing to do with the
 candidate datastore. A NETCONF server with limited memory is not

Bierman Expires April 22, 2014 [Page 8]

Internet-Draft NETCONF-EX October 2013

 likely to support the candidate datastore. This feature is useful
 for any type of network-wide configuration change, regardless of
 device size.

1.2.5. Data Retrieval

 NETCONF data retrieval via the <get> and <get-config> operations can
 be very inefficient. Some vendors do not even support <get> because
 it can be such a resource-intensive operation and return an enormous
 amount of data, especially if all server data is requested at once.

 A client cannot retrieve just the non-configuration data. The
 NETCONF <get> operation allows a client to retrieve data from the
 server but it returns all data, including configuration datastore
 nodes. The <get-config> operation already returns all configuration
 datastore nodes.

 It was originally thought that <get> should return all nodes so the
 client would not have to correlate configuration and non-
 configuration data nodes, since they would be mixed together in the
 reply. Operational experience has shown that the <get> operation
 without reasonable filters to reduce the returned data can
 significantly degrade device performance and return enormous XML
 instance documents in the <rpc-reply>.

 There is no "last-modified" indication or time filtering. The
 NETCONF protocol has no standard mechanisms to indicate to a client
 when a datastore was last modified, or to allow a client to retrieve
 data only if it has been modified since a specified time. This makes
 polling applications very inefficient because they will regularly
 burden the server and the network and themselves with retrieval and
 processing requests for data that has not changed.

 There is no simple list instance discovery mechanism. Sometimes the
 client application wants to discover what data exists on the server,
 particularly list entries. There is a need for a simple mechanism to
 retrieve just the key leaf nodes within a subtree. The NETCONF
 subtree filtering mechanism does provide a very complex way for the
 client to request just key leafs for specific list entries. A
 simpler mechanism is needed which will allow the client to discover
 the list instances present.

 There is no subtree depth control. NETCONF filters allow the client
 to select specific sub-trees within the conceptual datastore on the
 server. However, sometimes the client does not really need the
 entire subtree, which may contain many nested list entries, and be
 very large. There is sometimes a need to limit the depth of the sub-
 trees retrieved from the server. A consistent and simple algorithm

Bierman Expires April 22, 2014 [Page 9]

Internet-Draft NETCONF-EX October 2013

 for determining what data nodes start a new level is needed.

 The content filter specification is not extensible. The NETCONF
 <get> and <get-config> operations use a hard-coded content filtering
 mechanism. They use a "type" XML attribute to indicate which of two
 filter specification types they support, and a "select" XML attribute
 if the :xpath capability is supported and an XPath [XPATH] expression
 filter specification is provided.

 This design does not allow additional content filter specification
 types to be supported by an implementation. It does not allow the
 standard to be easily extended in a modular fashion. In addition,
 this design does not allow YANG statements to be used to properly
 describe the protocol operation. The special
 "get-filter-element-attributes" YANG extension in the ietf-netconf
 module is not extensible, and it does not really count as proper
 YANG, since this extension is outside the YANG language definition.

 There is no standard metadata or standard way to retrieve metadata.
 The <with-defaults> parameter allows 1 specific type of metadata to
 be returned (i.e., 'report-all-tagged' mode). This ad-hoc approach
 does not scale well and is not extensible. It would be useful if
 standard and vendor-specific metadata could be identified and
 retrieved with standard operations.

1.3. Solution

 This document defines some NETCONF protocol operations and new
 capabilities to reduce network usage and increase functionality at
 the same time.

 All NETCONF efficiency extensions are completely backward-compatible
 with the current definitions in [RFC6241]. An old server will ignore
 any new <capability> URIs sent by a new client. An old client will
 ignore any new <capability> URIs sent by the server, and will not use
 the new operations. No existing operations are affected by the new
 operations, so the extensions will be transparent to an existing
 NETCONF client.

1.3.1. Capability ID Exchange

 A new capability called "capability-id" is defined to identify the
 current set of NETCONF <capability> URIs with an opaque string. A
 client can cache this value for each server that supports this
 capability, and send the value in a "capability-id" <capability> URI
 in its <hello> message.

 The server will slightly delay sending its <hello> message to attempt

https://datatracker.ietf.org/doc/html/rfc6241

Bierman Expires April 22, 2014 [Page 10]

Internet-Draft NETCONF-EX October 2013

 to process the client <hello> first. If the client <hello> is
 received, and the "capability-id" URI is found and matches the server
 value, then an abbreviated server <hello> message is sent instead of
 a full <hello> message. Refer to Section 2.1 for details on the
 capability ID exchange procedure.

1.3.2. Configuration ID Advertisement

 A new capability called "config-id" is defined to identify the
 current running datastore configuration contents with an opaque
 string. A client can cache this value for each server that supports
 this capability, along with a copy of its running configuration.
 When a new session is started, the client can examine the "config-id"
 <capability> URI sent by the server. If it is the same as the cached
 value then the client can use the cached running datastore copy
 instead of sending an initial <get-config> operation to the server.
 The :config-id capability is ignored in the calculation of the
 :capability-id capability. Refer to Section 2.2 for details on
 configuration ID advertisement.

1.3.3. Message Encoding Negotiation

 A new capability called "encoding" is defined to allow a client to
 request that an alternate message encoding be used for the NETCONF
 session. The capability is encoded as a comma-separated list of
 media types. This list is ordered by the client in the order of
 highest preference first. The server list is unordered. The first
 match (done in client priority) is the message encoding used for the
 rest of session. Refer to Section 2.3 for details on message
 encoding negotiation.

1.3.4. <edit2> Operation

 A new NETCONF protocol operation called <edit2> is defined to address
 the deficiencies described in Section 1.2.4. This operation allows
 the entire NETCONF edit procedure to be accomplished with 1 request
 message. The editing procedures are aligned with the resource model
 defined in [RESTCONF]. Refer to Section 2.4 for details on <edit2>
 operation.

 The "confirmed-commit" procedure has been integrated into the <edit2>
 operation, and can be supported by any server without requiring
 support for the candidate datastore. It is optional to implement,
 based on the "confirmed-edit" capability defined in Section 2.8.

 Refer to Section 2.5 for details on the <complete-commit> operation
 and Section 2.6 for details on the <revert-commit> operation.

Bierman Expires April 22, 2014 [Page 11]

Internet-Draft NETCONF-EX October 2013

1.3.5. <get2> Operation

 A new NETCONF protocol operation called <get2> is defined to address
 the deficiencies described in Section 1.2.5. This operation allows
 several filter types to be combined to control the data that is
 returned in the <rpc-reply> message, and an extensible framework for
 retrieving metadata associated with datastore or data resources.
 Refer to Section 2.7 for details on <get2> operation.

Bierman Expires April 22, 2014 [Page 12]

Internet-Draft NETCONF-EX October 2013

2. Definitions

 This section defines the NETCONF efficiency extensions:

 - :capability-id Capability
 - :config-id Capability
 - :encoding Capability
 - <edit2> Operation
 - <complete-commit> Operation
 - <revert-commit> Operation
 - <get2> Operation

2.1. "capability-id" Capability

2.1.1. Overview

 The :capability-id capability is used by the client to request an
 abbreviated <hello> message instead of a full <hello> message from
 the server.

Bierman Expires April 22, 2014 [Page 13]

Internet-Draft NETCONF-EX October 2013

 1) Client keeps a cache of server capability sets

 2) Client sends <hello> with "capability-id" <capability> set
 to the cached value

 Client Client <hello> message
 +---------------+ +--------------------+
 | Server | | capability-id=5555 |
 | Capability | ---> | <capability> | --> server
 | Cache | | ... |
 +---------------+ +--------------------+

 3) Server waits a small interval for the client <hello>.
 It will send either a full <hello> or an abbreviated <hello>

 4) Client <hello> received in time and it contains a
 capability-id value that matches the server's current value.
 The server sends an abbreviated <hello> with just 2
 <capability> URIs

 Client Server X Abbreviated <hello> message
 +---------------+ +--------------------+
 | Server | | config-id=1234 |
 | Capability | <------- | capability-id=5555 |
 | Cache | +--------------------+
 +---------------+

 5) The client gets the server <hello> and sees that it has
 a capability-id value and it matches the value that
 was sent by the client. It determines the server returned
 an abbreviated <hello> and uses the cached capability set

 The server MUST maintain a capability ID that represents the current
 state of the capability set. The :config-id capability defined in

Section 2.2 is not included in this set of capabilities. It is
 ignored for purposes capability set identification. Otherwise the
 :capability-id value would change every time the :config-id value
 changed.

 The server will slightly delay sending its <hello> message to attempt
 to process the client <hello> first. If the client <hello> is
 received, and "capability-id" URI is found and matches the server
 value, then an abbreviated server <hello> message is sent instead of
 a full <hello> message. Refer to Section 2.1 for details on the
 capability ID exchange procedure.

Bierman Expires April 22, 2014 [Page 14]

Internet-Draft NETCONF-EX October 2013

2.1.1.1. :capability-id Capability Example

 Initially, the client does not know the current capability-id of the
 server, so it does not include it in its <hello> message to the
 server:

 # Client requests a new session
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:base:1.1</capability>
 </hello>

 The server delays sending its <hello> message and within 1 second
 receives the client <hello> message. The server determines that the
 :capability-id capability is not present in the client <hello>
 message, so a full server <hello> message is sent, which includes the
 current "capability-id" URI value for the capability set.

 In this example, only a small number of YANG module capabilities are
 reported. In a real server, there are usually many YANG module
 capabilities (e.g., 25 - 50) to report. Extra whitespace has been
 added to the XML for display purposes only.

 # Server starts session 1 with full <hello>
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:base:1.1</capability>
 <capability>
 urn:ietf:params:netconf:capability:candidate:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:confirmed-commit:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:confirmed-commit:1.1
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:rollback-on-error:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:validate:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:validate:1.1
 </capability>
 <capability>

Bierman Expires April 22, 2014 [Page 15]

Internet-Draft NETCONF-EX October 2013

 urn:ietf:params:netconf:capability:url:1.0?scheme=file
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:xpath:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:notification:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:interleave:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:partial-lock:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:with-defaults:1.0?
 basic-mode=explicit&also-supported=trim,report-all,
 report-all-tagged
 </capability>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0?
 module=ietf-netconf&revision=2011-06-01
 </capability>
 <capability>
 urn:ietf:params:xml:ns:yang:ietf-netconf-ex?
 module=ietf-netconf-ex&revision=2013-10-19
 </capability>
 <capability>
 urn:ietf:params:xml:ns:yang:ietf-inet-types?
 module=ietf-inet-types&revision=2013-07-15
 </capability>
 <capability>
 urn:ietf:params:xml:ns:yang:ietf-netconf-acm?
 module=ietf-netconf-acm&revision=2012-02-22
 </capability>
 <capability>
 urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring?
 module=ietf-netconf-monitoring&revision=2010-10-04
 </capability>
 <capability>
 urn:ietf:params:xml:ns:yang:ietf-netconf-notifications?
 module=ietf-netconf-notifications&revision=2012-02-06
 </capability>
 <capability>
 urn:ietf:params:xml:ns:netconf:partial-lock:1.0?
 module=ietf-netconf-partial-lock&revision=2009-10-19
 </capability>
 <capability>

Bierman Expires April 22, 2014 [Page 16]

Internet-Draft NETCONF-EX October 2013

 urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults?
 module=ietf-netconf-with-defaults&revision=2011-06-01
 </capability>
 <capability>
 urn:ietf:params:xml:ns:yang:ietf-yang-types?
 module=ietf-yang-types&revision=2013-07-15
 </capability>
 <capability>
 http://example.com/ns/example-ex?
 module=example-ex&revision=2013-10-19
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:capability-id:1.0?id=64ae3ffa
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:config-id?id=1455
 </capability>
 </capabilities>
 <session-id>1</session-id>
 </hello>

 The next time the client starts a session with this server, it
 includes the server capability ID it saved from session 1:

 # Client requests another session
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:base:1.1</capability>
 <capability>
 urn:ietf:params:netconf:capability:capability-id:1.0?id=64ae3ffa
 </capability>
 </hello>

 The server examines the capability-id <capability> URI and determines
 that the capability ID value matches its own current capability ID
 value, so it sends an abbreviated <hello> message to the client:

Bierman Expires April 22, 2014 [Page 17]

Internet-Draft NETCONF-EX October 2013

 # Server starts session 2 with an abbreviated <hello>
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:netconf:capability:capability-id:1.0?id=64ae3ffa
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:config-id?id=2130
 </capability>
 <capabilities>
 <session-id>2</session-id>
 </hello>

2.1.2. Dependencies

 The :capability-id capability is not dependent on any other
 capabilities.

2.1.3. Capability Identifier

 The :capability-id capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:capability-id:1.0

 This capability MUST be advertised in every server <hello> message.
 The :capability-id capability URI MUST contain an "id" argument
 assigned an opaque string value indicating the current capability ID
 value for the server capability set. For example:

 urn:ietf:params:netconf:capability:capability-id:1.0?id=64ae3ffa

 The current config ID value MUST be updated any time a
 "netconf-capability-change" event would be generated by the server.

 If [RFC6470] is supported, then the "capability-id" leaf defined in
Section 2.8 MUST be included in <netconf-capability-change> event

 notifications.

2.1.4. New Operations

 The :capability-id capability does not introduce any new protocol
 operations.

2.1.5. Modifications to Existing Operations

 The <hello> message exchange is modified to allow the server to send
 an abbreviated capability list. If the client does not send this

https://datatracker.ietf.org/doc/html/rfc6470

Bierman Expires April 22, 2014 [Page 18]

Internet-Draft NETCONF-EX October 2013

 capability, or the capability ID value it sends is not the same as
 the current server capability ID, then there are no changes to the
 <hello> exchange, as the server will send a full <hello> message to
 the client, as defined in [RFC6241].

2.1.5.1. Abbreviated <hello> Exchange

 If the server supports the :capability-id capability it SHOULD delay
 sending its <hello> message for a short amount of time. This value
 (called the "hello delay" parameter) is not specified here because a
 standard "hello-timeout" parameter is not available to configure
 NETCONF servers. It is RECOMMENDED that server wait up to 10% of its
 hello timeout interval for the client to send a <hello> message.

 If the <client> message is received before the hello delay timeout
 occurs, then the server examines the client <hello> and sends either
 a full <hello> or abbreviated <hello> message right away.

 If the hello delay timeout expires before the client <hello> message
 is received then the server sends a full <hello> message right away.

 If the client sends a matching config ID value, the the server MUST
 send the "capability-id" <capability> and "config-id" <capability>
 (if supported), in an abbreviated <hello> message. The server SHOULD
 omit all other <capability> elements in the <hello> message.
 Otherwise the server MUST send a full <hello> message, which MUST
 include a "capability-id" <capability> URI identifying the current
 capability ID for the server.

2.1.6. Interactions with Other Capabilities

 The :capability-id capability interacts with the :config-id
 capability. The :config-id capability is ignored by the server when
 calculating a new config ID value. The :config-id capability is also
 included in abbreviated <hello> messages.

2.2. "config-id" Capability

2.2.1. Overview

 The :config-id capability indicates that the server maintains a
 config ID for the running configuration datastore. This identifier
 value is selected by the server and treated as an opaque string by
 the client.

https://datatracker.ietf.org/doc/html/rfc6241

Bierman Expires April 22, 2014 [Page 19]

Internet-Draft NETCONF-EX October 2013

 1) Client keeps a cache of server configurations.
 2) Server always sends its current config-id value
 in the "config-id" <capability> URI.

 Client Server X <hello> message
 +---------------+ +------------------+
 | | | config-id=1234 |
 | Server Config | <------- | <capability> |
 | Cache | | ... |
 +---------------+ +------------------+

 3) Client checks cache for server X, config-id=1234.
 If found, then OK to use the cached configuration copy.
 If not found, then send a <get-config> for the running
 configuration to create or update the cached copy.

 The server SHOULD save the config ID for the running datastore in
 non-volatile storage. When the server boots or restarts, the initial
 configuration ID SHOULD be the same as the last instantiation, if the
 server does not support the :startup capability (so the non-volatile
 stored version mirrors the running datastore). If the server does
 support the :startup capability, then the initial configuration ID
 SHOULD be the same as the version last saved to non-volatile storage.

2.2.1.1. :config-id Capability Example

 The client may or may not have the current config ID value for the
 server when a session starts. Only the server <hello> message will
 include a config-id <capability> URI. This example assumes the
 abbreviated <hello> message can be sent to the client for brevity.

 # Client requests another session
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:base:1.1</capability>
 <capability>
 urn:ietf:params:netconf:capability:capability-id:1.0?id=692267fa
 </capability>
 </hello>

 The server examines the capability-id <capability> URI and determines
 that the capability ID value matches its own current capability ID
 value, so it sends an abbreviated <hello> message to the client. The
 :config-id capability is sent in every server <hello> message. The
 "id" parameter for the :config-id capability is set to the current
 config ID for the running datastore on the server:

Bierman Expires April 22, 2014 [Page 20]

Internet-Draft NETCONF-EX October 2013

 # Server starts session 3 with an abbreviated <hello>
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:netconf:capability:capability-id:1.0?id=692267fa
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:config-id?id=4284
 </capability>
 <capabilities>
 <session-id>3</session-id>
 </hello>

2.2.2. Dependencies

 The :config-id capability is not dependent on any other capabilities.

2.2.3. Capability Identifier

 The :config-id capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:config-id:1.0

 This capability MUST be advertised in every server <hello> message.
 The :config-id capability URI MUST contain an "id" argument assigned
 an opaque string value indicating the current config ID value for the
 running datastore. For example:

 urn:ietf:params:netconf:capability:config-id:1.0?id=6882391

 The current config ID value MUST be updated any time a
 "netconf-config-change" event would be generated by the server.

 If [RFC6470] is supported, then the "config-id" leaf defined in
Section 2.8 MUST be included in <netconf-config-change> event

 notifications.

 If the "with-metadata" parameter in the <get2> operation specifies
 the "config-id" identity, then the server MUST return the current
 config ID for the running datastore, if the "source" parameter
 identifies the running datastore. The server MAY maintain config IDs
 for other datastores as well.

2.2.4. New Operations

 The :config-id capability does not introduce any new protocol
 operations.

https://datatracker.ietf.org/doc/html/rfc6470

Bierman Expires April 22, 2014 [Page 21]

Internet-Draft NETCONF-EX October 2013

2.2.5. Modifications to Existing Operations

 The :config-id capability does not modify any existing protocol
 operations.

2.2.6. Interactions with Other Capabilities

 The :config-id capability does not interact with any other
 capabilities.

2.3. "encoding" Capability

2.3.1. Overview

 The :encoding capability is used by the client to request an
 alternate message encoding be used instead of XML. The client and
 server both send a list of media types for the message encodings they
 support, encoded as a comma-separated list (with no whitespace). The
 client list is an ordered by preference. The server list is
 unordered.

 +-----------+ +-----------+ +--------------+
 | | Client and | | | |
 | <hello> | server select | <rpc> | | <rpc-reply> |
 | | protocol base | | | |
 +-----------+ and encoding +-----------+ +--------------+

 Always encoded --- > Start encoding all messages
 in XML w/base:1.0 in the selected encoding
 message framing and message framing

 Both the client and server will examine the others <hello> message
 for the "encoding" <capability> URI. If not present, then the
 default encoding is used, which is XML.

 The client list is compared against the server list, checked in the
 client specified order. If the same media type appears in the server
 list, then that is the encoding that will be active for the remainder
 of the session (i.e., starting with the first <rpc> request). All
 <rpc>, <rpc-reply>, and <notification> messages MUST be encoded in
 the negotiated encoding.

 Both the client and server MUST support the "application/xml" media
 type to be backward-compatible with [RFC6241].

 If "application/json" encoding is used, then the encoding defined in
 [I-D.lhotka-netmod-json] MUST be used so namespaces will be properly

https://datatracker.ietf.org/doc/html/rfc6241

Bierman Expires April 22, 2014 [Page 22]

Internet-Draft NETCONF-EX October 2013

 identified. Any metadata that needs to encoded MUST be encoded
 according to the procedure defined in [RESTCONF], section 4.4.

 The message framing used for the session is unaffected by this
 capability. The "base1.0" vs. "base1.1" negotiation defined in
 [RFC6241] determines the message framing that is used for the entire
 session.

2.3.1.1. :encoding Capability Example

 In this example, the client supports the following message encodings,
 shown in the preferred order.

 - Efficient XML Interchange (EXI)
 - JSON
 - XML

 Some extra whitespace has been added for display purposes only.

 # Client requests a new session with alternate encoding
 # also requesting an abbreviated hello
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:base:1.1</capability>
 <capability>
 urn:ietf:params:netconf:capability:capability-id:1.0?id=64ae3ffa
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:encoding:1.0?
 types=application/exi,application/json,application/xml
 </capability>
 </hello>

 The server supports the following encodings:

 - XML
 - JSON

 Since the most preferred media type in common is "application/json",
 the JSON encoding used for the remainder of the session.

 In this example, the server sends an full <hello> message to the
 client, truncated for brevity. Extra whitespace has been added for
 display purposes only.

https://datatracker.ietf.org/doc/html/rfc6241

Bierman Expires April 22, 2014 [Page 23]

Internet-Draft NETCONF-EX October 2013

 # Server starts session 4 with JSON encoding
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:base:1.1</capability>
 <capability>
 urn:ietf:params:netconf:capability:encoding:1.0?
 types=application/xml,application/json
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:capability-id:1.0?id=64ae3ffa
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:config-id?id=2130
 </capability>
 <!-- rest of URIs ... -->
 <capabilities>
 <session-id>4</session-id>
 </hello>

 At this point, both the client and server switch to JSON encoding:

 # client send a <kill-session> request
 { "ietf-netconf:rpc" : {
 "@message-id" : "201",
 "kill-session" : {
 "session-id" : 42
 }
 }
 }

 # server sends an <ok/> reply
 { "ietf-netconf:rpc-reply" : {
 "@message-id" : "201",
 "ok" : [null]
 }
 }

2.3.2. Dependencies

 The :encoding capability is not dependent on any other capabilities.

2.3.3. Capability Identifier

 The :encoding capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:encoding:1.0

Bierman Expires April 22, 2014 [Page 24]

Internet-Draft NETCONF-EX October 2013

 This capability MUST be advertised in every server <hello> message.
 The "encoding" capability URI MUST contain a "types" argument
 containing a comma-separated list of media types that represent the
 message encoding formats supported by the server.

 If the client supports the :encoding capability, it SHOULD include an
 "encoding" <capability> URI in its <hello> message. The client MAY
 omit this capability if XML encoding is desired.

 For example (line wrapped for display purposes only)

 urn:ietf:params:netconf:capability:encoding:1.0?
 types=application/json,application/xml

2.3.4. New Operations

 The :encoding capability does not introduce any new protocol
 operations.

2.3.5. Modifications to Existing Operations

 The :encoding capability does not modify any existing protocol
 operations.

2.3.6. Interactions with Other Capabilities

 The :encoding capability does not interact with any other
 capabilities.

2.4. <edit2> Protocol Operation

 The <edit2> operation is specified with a YANG "rpc" statement,
 defined in Section 2.8. This operation allows the entire NETCONF
 transaction procedure to be performed in a single operation or
 multiple operations, depending on the input parameters used.

 There are no XML attributes used (e.g., "operation" from RFC 6241,
 "insert", "value" from RFC 6020). Instead, configuration edits are
 specified with an edit list, using the YANG Patch mechanism defined
 in [RESTCONF]. This is used instead of a complete XML instance
 document, e.g. <config> element, to represent an unordered patch list
 inferred from the diffs. (Although YANG Patch can be used in this
 mode if client wants to merge or replace the entire configuration
 datastore).

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6020

Bierman Expires April 22, 2014 [Page 25]

Internet-Draft NETCONF-EX October 2013

2.4.1. <edit2> Input

 o target: name of the configuration datastore being edited

 o target-resource: XPath node-set expression representing 1 or more
 target resources within the datastore to edit.

 o yang-patch: container of ordered edits to apply to the target
 resource(s).

 o test-only: flag to request that the edit request be validated but
 no edits should actually be applied

 o if-match: if the entity tag for the target resource(s) does not
 exactly match the supplied value then the edit request is
 rejected.

 o with-locking: if present then the server will provide exclusive
 write access to this <edit2> operation and possible confirmed-
 commit procedure.

 o max-lock-wait: amount of time the client is willing to wait for
 locks to clear, if "with-locking" parameter is present.

 o activate-now: if present and the target is the candidate
 datastore, then an implicit <commit> operation will be performed
 if the edit operation is successfully applied.

 o nvstore-now: if present and the server supports the startup
 datastore, and the edits have been activated in the running
 datastore, then an implicit <copy-config> operation (from the
 running to the startup datastore) will be attempted by the server.

 o confirmed: request that a confirmed commit be started or extended.

 o confirm-timeout: the amount of time for the server to wait for an
 <edit2> request that extends, a <complete-commit> request to
 finish, or a <revert-commit> request to cancel a confirmed commit
 procedure in progress.

 o persist: identifier string to use in the "persist-id" parameter to
 extend, complete, or cancel a confirmed commit procedure.

 o persist-id: identifier string to extend a confirmed commit
 procedure in progress.

Bierman Expires April 22, 2014 [Page 26]

Internet-Draft NETCONF-EX October 2013

2.4.2. <edit2> Output

 Positive Response:

 This operation returns data containing a "yang-patch-status" report
 (defined in [RESTCONF]) instead of an "ok" element. This report
 contains an "ok" element that is present if the entire operation
 succeeded.

 Error Response:

 The <rpc-error> element can be returned, e.g., if the message
 contains invalid parameter syntax. The server MUST report editing
 errors in the "edit" list within the "yang-patch-status" container.

2.4.3. <edit2> YANG Tree Diagram

 Key: DRI = data-resource-identifier

 +---x edit2
 +--ro input
 | +--ro target
 | | +--ro (datastore-target)
 | | +--:(candidate)
 | | | +--ro candidate? empty
 | | +--:(running)
 | | +--ro running? empty
 | +--ro target-resource? yang:xpath1.0
 | +--ro yang-patch
 | | +--ro patch-id? string
 | | +--ro comment? string
 | | +--ro edit [edit-id]
 | | +--ro edit-id string
 | | +--ro operation enumeration
 | | +--ro target data-resource-identifier
 | | +--ro point? data-resource-identifier
 | | +--ro where? enumeration
 | | +--ro value
 | +--ro test-only? empty
 | +--ro if-match? yang-entity-tag
 | +--ro with-locking? empty
 | +--ro max-lock-wait? uint32
 | +--ro activate-now? empty
 | +--ro nvstore-now? empty
 | +--ro confirmed? empty
 | +--ro confirm-timeout? uint32
 | +--ro persist? string

Bierman Expires April 22, 2014 [Page 27]

Internet-Draft NETCONF-EX October 2013

 | +--ro persist-id? string
 +--ro output
 +--ro yang-patch-status
 +--ro patch-id? string
 +--ro (global-status)?
 | +--:(global-errors)
 | | +--ro errors
 | | +--ro error
 | | +--ro error-type enumeration
 | | +--ro error-tag string
 | | +--ro error-app-tag? string
 | | +--ro error-path? DRI
 | | +--ro error-message? string
 | | +--ro error-info
 | |
 | +--:(ok)
 | +--ro ok? empty
 +--ro edit-status
 +--ro edit [edit-id]
 +--ro edit-id string
 +--ro (edit-status-choice)?
 +--:(ok)
 | +--ro ok? empty
 +--:(location)
 | +--ro location? inet:uri
 +--:(errors)
 +--ro errors
 +--ro error
 +--ro error-type enumeration
 +--ro error-tag string
 +--ro error-app-tag? string
 +--ro error-path? DRI
 +--ro error-message? string
 +--ro error-info

2.4.4. <edit2> Example

 In this example, an "all-in-one" YANG Patch edit is shown. the
 following conditions apply:

 - The server supports the :candidate and :startup capabilities
 - The "example-ex" YANG module is supported by the server

 The starting state of the "/forests" data structure is described in
Appendix B.2. The client is adding an "oak" tree and changing the

 location of the "birch" tree in the "north" forest.

Bierman Expires April 22, 2014 [Page 28]

Internet-Draft NETCONF-EX October 2013

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ex="http://example.com/ns/example-ex">
 <target><candidate/></target>
 <target-resource>
 /ex:forests/ex:forest[ex:name='north']
 </target-resource>
 <yang-patch>
 <patch-id>north-forest-patch</patch-id>
 <comment>
 Add an oak tree and change location of the birch tree
 </comment>
 <edit>
 <edit-id>oak</edit-id>
 <operation>create</operation>
 <target>/ex:trees</target>
 <value>
 <ex:tree>
 <ex:name>oak</ex:name>
 <ex:location>hillside</ex:location>
 </ex:tree>
 </value>
 </edit>
 <edit>
 <edit-id>birch</edit-id>
 <operation>merge</operation>
 <target>/ex:trees/ex:tree/birch</target>
 <value>
 <ex:location>west valley</ex:location>
 </value>
 </edit>
 </yang-patch>
 <activate-now/>
 <nvstore-now/>
 </edit2>
 </rpc>

 The edit succeeds, and the "yang-patch-status" container is returned
 to the client with the <location> path expression of the new palm
 tree resource, and <ok/> status for the birch tree edit:

Bierman Expires April 22, 2014 [Page 29]

Internet-Draft NETCONF-EX October 2013

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <yang-patch-status
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ex="http://example.com/ns/example-ex">
 <patch-id>north-forest patch</patch-id>
 <ok/>
 <edit-status>
 <edit>
 <edit-id>oak</edit-id>
 <location>
 /ex:forests/ex:forest/north/ex:trees/ex:tree/oak
 </location>
 </edit>
 <edit>
 <edit-id>birch</edit-id>
 <ok/>
 </edit>
 </edit-status>
 </yang-patch-status>
 </rpc-reply>

 Refer to Appendix B.3 for additional <edit2> protocol operation
 examples.

2.5. <complete-commit> Operation

 A new NETCONF protocol operation called <complete-commit> is defined
 to complete a confirmed commit procedure.

2.5.1. <complete-commit> Input

 There is one optional parameter for this protocol operation:

 o persist-id: an identifier string that MUST match the "persist"
 value, if it was used in the confirmed-commit procedure.

2.5.2. <complete-commit> Output

 Positive Response:

 The there is a confirmed-commit procedure in progress and it is
 successfully completed, then an <ok/> element is returned.

 Negative Response: An <rpc-error> response is sent if the request
 cannot be completed for any reason.

Bierman Expires April 22, 2014 [Page 30]

Internet-Draft NETCONF-EX October 2013

2.5.3. <complete-commit> YANG Tree Diagram

 +---x complete-commit
 +--ro input
 +--ro persist-id? string

2.5.4. <complete-commit> Example

 In this example, the client has previously started a confirmed commit
 procedure using the "persist" parameter set to the value "abcdef".

 <rpc message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <complete-commit
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <persist-id>abcdef</persist-id>
 </complete-commit>
 </rpc>

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

2.6. <revert-commit> Operation

 A new NETCONF protocol operation called <revert-commit> is defined to
 cancel a confirmed commit procedure and revert the running datastore.
 The <cancel-commit> operation in [RFC6241] cannot be used because it
 requires the implementation of the candidate capability.

2.6.1. <revert-commit> Input

 There is one optional parameter for this protocol operation:

 o persist-id: an identifier string that MUST match the "persist"
 value, if it was used in the confirmed-commit procedure.

2.6.2. <revert-commit> Output

 Positive Response:

 If there is a confirmed-commit procedure in progress and it is
 successfully cancelled, and the running datastore successfully
 reverted, then an <ok/> element is returned.

 Negative Response: An <rpc-error> response is sent if the request

https://datatracker.ietf.org/doc/html/rfc6241

Bierman Expires April 22, 2014 [Page 31]

Internet-Draft NETCONF-EX October 2013

 cannot be completed for any reason.

2.6.3. <revert-commit> YANG Tree Diagram

 +---x revert-commit
 +--ro input
 +--ro persist-id? string

2.6.4. <revert-commit> Example

 In this example, the client has previously started a confirmed commit
 procedure using the "persist" parameter set to the value "abcdef".

 <rpc message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <revert-commit
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <persist-id>abcdef</persist-id>
 </revert-commit>
 </rpc>

 <rpc-reply message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

2.7. <get2> Protocol Operation

 The <get2> operation is specified with a YANG "rpc" statement,
 defined in Section 2.8. A specific datastore is selected for the
 source of the retrieval operation. Several different types of
 filters are provided. Filters are combined in a conceptual
 "logical-AND" operation, and are optional to use by the client. Not
 all filtering mechanisms are mandatory-to-implement for the server.

2.7.1. Depth Filters

 A depth filter indicates how many subtree levels should be returned
 in the <rpc-reply>. This filter is specified with the "depth" input
 parameter for the <get2> protocol operation. The default "0"
 indicates that all levels from the requested subtrees should be
 returned.

 A new level is started for each YANG data node within the requested
 subtree. All top level data nodes are considered to be child nodes
 (level 1) of a conceptual <config> root.

Bierman Expires April 22, 2014 [Page 32]

Internet-Draft NETCONF-EX October 2013

 If no content filters are provided, then level 1 is considered to
 include all top-level data nodes within the source datastore.
 Otherwise only the levels in selected subtrees will be considered,
 and not any additional top-level data nodes.

 If the depth requested is equal to "1", then only the requested data
 nodes (or top-level data nodes) will be returned. This mechanism can
 be used to detect the existence of containers and list entries within
 a particular subtree, without returning any of the descendant nodes.

 Higher depth values indicates the number of descendant nodes to
 include in the response. For example, if the depth requested is
 equal to "2", then only the requested data nodes (or top-level data
 nodes) and their immediate child data nodes will be returned.

2.7.2. Time Filters

 A time filter specifies that data should only be returned if the
 last-modified timestamp for the target datastore is more recent than
 the timestamp specified in the "if-modified-since" parameter.

 If this feature is supported, then the server will maintain a
 "last-modified" timestamp for the running datastore. The server MAY
 support additional nested timestamps for data nodes within the
 datastore. The server MAY support timestamps for other datastores.

 When a request containing the "if-modified-since" parameter is
 received, the server will compare that timestamp to the
 "last-modified" timestamp for the source datastore. If it is greater
 than the specified value then data may be returned (depending on
 other filters). If the datastore timestamp value is less than or
 equal to the specified value, then an empty <data> element will be
 returned in the <rpc-reply>.

 If the "full-delta" parameter is present, and the server maintains
 "last-modified" timestamps for any data nodes within the source
 datastore, then the same type of comparison will be done for the data
 node to determine if it should be included in the response. If no
 "last-modified" timestamp is maintained for a data node, then the
 server will use the "last-modified" timestamp for its nearest
 ancestor, or for the datastore itself if there are none.

2.7.3. <get2> Input

 o source: A container indicating the conceptual datastore for the
 retrieval request.

Bierman Expires April 22, 2014 [Page 33]

Internet-Draft NETCONF-EX October 2013

 o filter-spec: A choice indicating the content filter specification
 for the retrieval request.

 o keys-only: A leaf indicating that only the key leafs, combined
 with other filtering criteria, should be returned.

 o if-modified-since: A leaf indicating the time filter specification
 for the retrieval request, according to the procedures in

Section 2.7.2.

 o full-delta: If present and the "if-modified-since" parameter is
 also present, then the entire datastore will be filtered by last
 modification time, not just the entire datastore.

 o depth: A leaf indicating the subtree depth level for the retrieval
 request, according to the procedures in Section 2.7.1.

 o with-defaults: A leaf indicating the type of defaults handling
 requested, according to procedures in [RFC6243].

 o with-metadata: A leaf-list indicating the specific metadata that
 the server should add to the response, such as "last-modified" or
 "etag", encoded in XML according to the schema in Section 2.9.

 o with-locking: if present then the server will provide exclusive
 write access to this <get2> operation so the target datastore is
 not modified during the entire retrieval operation.

 o max-lock-wait: amount of time the client is willing to wait for
 locks to clear, if "with-locking" parameter is present.

2.7.4. <get2> Output

 Positive Response: A <data> element is returned which contains the
 data corresponding to the input parameters specified in the request.
 The child nodes of the <data> container correspond to top-level YANG
 data nodes.

 If the server supports the "timestamps" YANG feature, and the target
 is the running datastore, then a "last-modified" attribute SHOULD be
 included in the <rpc-reply> element.

 Negative Response: An <rpc-error> response is sent if the request
 cannot be completed for any reason.

https://datatracker.ietf.org/doc/html/rfc6243

Bierman Expires April 22, 2014 [Page 34]

Internet-Draft NETCONF-EX October 2013

2.7.5. <get2> YANG Tree Diagram

 +---x get2
 +--ro input
 | +--ro source
 | | +--ro (datastore-source)?
 | | +--:(candidate)
 | | | +--ro candidate? empty
 | | +--:(running)
 | | | +--ro running? empty
 | | +--:(startup)
 | | | +--ro startup? empty
 | | +--:(url)
 | | | +--ro url? inet:uri
 | | +--:(operational)
 | | +--ro operational? empty
 | +--ro (filter-spec)?
 | | +--:(subtree-filter)
 | | | +--ro subtree-filter
 | | +--:(xpath-filter)
 | | +--ro xpath-filter? yang:xpath1.0
 | +--ro keys-only? empty
 | +--ro if-modified-since? yang:date-and-time
 | +--ro full-delta? empty
 | +--ro depth? uint32
 | +--ro with-defaults? with-defaults-mode
 | +--ro with-metadata* identityref
 | +--ro with-locking? empty
 | +--ro max-lock-wait? uint32
 +--ro output
 +--ro data

2.7.6. <get2> Example

 In this example, the retrieval the "forests" resource is shown. the
 following conditions apply:

 - The server supports the :candidate and :startup capabilities
 - The "example-ex" YANG module is supported by the server

 The starting state of the "/forests" data structure is described in
Appendix B.2. The client is retrieving just the "forests" node,

 along with the "last-modified" and "etag" metadata for that node.
 The "config-id" for the datastore is also requested. Locking is
 requested (with a maximum lock wait time of 5 seconds), just to make
 sure the metadata does not change during the request.

Bierman Expires April 22, 2014 [Page 35]

Internet-Draft NETCONF-EX October 2013

 <rpc message-id="104"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ncex="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <subtree-filter>
 <forests xmlns="http://example.com/ns/example-ex" />
 </subtree-filter>
 <depth>1</depth>
 <with-metadata>ncex:timestamps</with-metadata>
 <with-metadata>ncex:etags</with-metadata>
 <with-metadata>ncex:config-id</with-metadata>
 <with-locking />
 <max-lock-wait>5</max-lock-wait>
 </get2>
 </rpc>

 The server has a "forests" node so this node is returned along with
 the requested metadata for the node. Note that the XML namespace for
 the "ncex" metadata is the XSD target namespace defined in

Section 2.9, not the YANG namespace URI defined in Section 2.8.

 <rpc-reply message-id="104"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:m="urn:ietf:params:xml:ns:netconf:netconf-ex:1.0"
 m:last-modified="2012-09-09T02:00:00Z"
 m:config-id="3aee5601">
 <forests xmlns="http://example.com/ns/example-ex"
 m:last-modified="2012-09-09T02:00:00Z"
 m:etag="3aee5601" />
 </data>
 </rpc-reply>

 Refer to Appendix B.4 for additional <get2> protocol operation
 examples.

2.8. NETCONF-EX YANG Module

 This module imports the "with-defaults-parameters" grouping from
 [RFC6243].

 Several YANG features are imported from [RFC6241]. These correspond
 to the NETCONF capabilities (e.g., candidate, url, startup, xpath)
 but defined as YANG features instead of URIs.

 Some data types are imported from [RFC6991]:

https://datatracker.ietf.org/doc/html/rfc6243
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6991

Bierman Expires April 22, 2014 [Page 36]

Internet-Draft NETCONF-EX October 2013

 - date-and-time
 - uri
 - xpath1.0

 Several YANG groupings are imported from [RESTCONF]:

 - errors
 - yang-patch
 - pang-patch-status

 Two notifications are augmented from [RFC6470].

 - netconf-capability-change
 - netconf-configuration-change

 RFC Ed.: update the date below with the date of RFC publication and
 remove this note.

 <CODE BEGINS> file "ietf-netconf-ex@2013-10-19.yang"

 module ietf-netconf-ex {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-ex";
 prefix ncex;

 import ietf-inet-types {
 prefix inet;
 }

 import ietf-netconf {
 prefix nc;
 }

 import ietf-netconf-notifications {
 prefix ncn;
 }

 import ietf-netconf-with-defaults {
 prefix ncwd;
 }

 import ietf-restconf {
 prefix rc;
 }

 import ietf-yang-types {
 prefix yang;
 }

https://datatracker.ietf.org/doc/html/rfc6470

Bierman Expires April 22, 2014 [Page 37]

Internet-Draft NETCONF-EX October 2013

 organization
 "IETF NETCONF (Network Configuration Protocol) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Bert Wijnen
 <mailto:bertietf@bwijnen.net>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>";

 description
 "This module contains a collection of YANG definitions for the
 efficient operation of a NETCONF server. Protocol operations
 are defined to reduce network usage and transaction complexity.

 Copyright (c) 2013 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 // RFC Ed.: remove this note
 // Note: extracted from
 // draft-bierman-netconf-efficiency-extensions-00.txt

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 revision "2013-10-19" {
 description
 "Initial revision. <get2> operation originally published
 in draft-bierman-netconf-get2-03.txt";
 reference

http://tools.ietf.org/wg/netconf/
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-bierman-netconf-efficiency-extensions-00.txt
https://datatracker.ietf.org/doc/html/draft-bierman-netconf-get2-03.txt

Bierman Expires April 22, 2014 [Page 38]

Internet-Draft NETCONF-EX October 2013

 "RFC XXXX: NETCONF Efficiency Extensions";
 }

 /* Features */

 feature timestamps {
 description
 "This feature indicates that the server implements
 the <get2> operations parameters which require
 last modification timestamps to be maintained by
 the server.

 If this feature is advertised then one global
 'last-modified' timestamp for the entire
 running configuration datastore MUST be supported.

 The server MAY support additional timestamps
 for additional datastores and data nodes
 within a datastore. The 'with-metadata'
 parameter can be used to identify
 which data nodes support a 'last-modified'
 timestamp.";
 }

 feature with-defaults {
 description
 "This feature indicates that the server supports the
 'with-defaults' parameter for the <get2> operation.
 A NETCONF server SHOULD support this feature.";
 reference
 "RFC 6243: With-defaults Capability for NETCONF";
 }

 feature confirmed-edit {
 description
 "This feature indicates that the server supports the
 confirmed commit procedure for the <edit2> protocol
 operation.";
 }

 /* Identities */

 identity metadata {
 description
 "Base for all metadata identifiers used by the
 'with-metadata' parameter in the <get2> operation.";

https://datatracker.ietf.org/doc/html/rfc6243

Bierman Expires April 22, 2014 [Page 39]

Internet-Draft NETCONF-EX October 2013

 }

 identity timestamps {
 base metadata;
 description
 "Describes metadata identifying the last modification
 time of the associated datastore or data resource.";
 }

 identity etags {
 base metadata;
 description
 "Describes metadata identifying the entity tag value
 of the associated datastore or data resource.";
 }

 identity config-id {
 base metadata;
 description
 "Describes metadata identifying the config ID
 of the associated datastore or data resource.";
 }

 /* Typedefs */

 typedef yang-entity-tag {
 type string;
 description
 "Contains an opaque string representing a specific instance
 of a datastore or data resource. A client can use this
 string for equality comparisons between yang-entity-tag
 values.

 If any configuration data node values changes, or the
 relative order of any user-ordered data changes, then
 the server MUST change the entity tag value for the
 running datastore to a different value. If the server
 maintains entity-tag values for configuration data nodes,
 then the server MUST change the yang-entity-tag value for
 any affected data node.

 Only yang-entity-tag values for the same target resource
 instance can be compared. Only the 'strong entity tag'
 form is required. A server MAY support the 'weak
 entity tag' form. If so, then 2 YANG data node resource
 instances are considered to be equivalent if they
 contain the same value subtrees and all user-ordered

Bierman Expires April 22, 2014 [Page 40]

Internet-Draft NETCONF-EX October 2013

 data nodes share the same relative order.";
 reference
 "RFC 2616, section 3.11.";
 }

 /* Groupings */

 grouping lock-parms {
 description
 "Common parameters to control datastore locking.";

 leaf with-locking {
 type empty;
 description
 "If this parameter is present then the request MUST be
 performed with exclusive write access to all datastores
 involved in the operation. An 'operation-not-supported'
 error-tag value is returned if the target datastore for
 the operation does not support locking (e.g., 'url' or
 'operational').

 If the server cannot provide exclusive write access
 for the entire requested operation then an 'in-use'
 error-tag value is returned.

 If the 'max-lock-wait' parameter is also present then
 the server MAY choose to wait up to that amount of
 time attempting to obtain exclusive write access,
 before returning an error.";
 }

 leaf max-lock-wait {
 when "../with-locking" {
 description
 "Only relevant if locking is requested.";
 }
 type uint32 {
 range "1 .. 600";
 }
 units seconds;
 description
 "If this parameter is present and the 'with-locking'
 parameter is also present, then the server MAY wait
 up to the specified number of seconds attempting
 to obtain exclusive write access for the requested
 operation.";
 }

https://datatracker.ietf.org/doc/html/rfc2616#section-3.11

Bierman Expires April 22, 2014 [Page 41]

Internet-Draft NETCONF-EX October 2013

 }

 /* Protocol Operations */

 rpc get2 {
 description
 "Retrieve NETCONF datastore information";
 input {
 container source {
 description
 "The datastore (or non-configuration data)
 to use for the source for the retrieval operation.";

 choice datastore-source {
 default running;
 description
 "The configuration source for the retrieval operation.
 The running configuration is the default choice if
 this parameter is not present.";
 leaf candidate {
 if-feature nc:candidate;
 type empty;
 description
 "The candidate configuration datastore is the
 retrieval source.";
 }
 leaf running {
 type empty;
 description
 "The running configuration datastore is the
 retrieval source.";
 }
 leaf startup {
 if-feature nc:startup;
 type empty;
 description
 "The startup configuration datastore is the
 retrieval source.";
 }
 leaf url {
 if-feature nc:url;
 type inet:uri;
 description
 "The URL-based configuration is the
 retrieval source.";
 }
 leaf operational {

Bierman Expires April 22, 2014 [Page 42]

Internet-Draft NETCONF-EX October 2013

 type empty;
 description
 "The retrieval source is the collection of all
 operational (non-configuration) data nodes supported
 by the server.

 Any ancestor container and/or list and list key nodes
 are also returned. No other leafs or leaf-lists will
 be included in the reply.

 The server MAY return ancestor container, and/or list
 and list key nodes that do not contain any
 non-configuration nodes. This can occur for several
 reasons, e.g., the implementation streams replies
 and cannot defer instrumentation or access control
 filtering of descendant data nodes.";
 }
 }
 }

 choice filter-spec {
 description
 "The content filter specification for this request";

 anyxml subtree-filter {
 description
 "This parameter identifies the portions of the
 target datastore to retrieve.";
 reference "RFC 6241, Section 6.";
 }
 leaf xpath-filter {
 if-feature nc:xpath;
 type yang:xpath1.0;
 description
 "This parameter contains an XPath expression
 identifying the portions of the target
 datastore to retrieve.";
 }
 }

 leaf keys-only {
 type empty;
 description
 "This parameter selects only data nodes which
 are key leaf nodes. Parent container and
 list nodes are also returned, but no other leafs,
 or any leaf-lists will be included in the reply.";
 }

https://datatracker.ietf.org/doc/html/rfc6241#section-6

Bierman Expires April 22, 2014 [Page 43]

Internet-Draft NETCONF-EX October 2013

 leaf if-modified-since {
 if-feature timestamps;
 type yang:date-and-time;
 description
 "This parameter selects the target datastore
 only if the last-modified timestamp for the
 datastore is more recent than the specified time.
 If not, then an empty <data> element is returned.

 If the target datastore does not maintain a
 last-modified timestamp, then this parameter is
 ignored.";
 }

 leaf full-delta {
 if-feature timestamps;
 type empty;
 description
 "This parameter selects only data nodes which
 have been modified since the specified time.
 It is ignored unless the 'if-modified-since'
 parameter is also provided and the target datastore
 supports a last-modified timestamp.";
 }

 leaf depth {
 type uint32;
 default 0;
 description
 "This parameter selects how many conceptual
 sub-tree levels should be returned in the
 <rpc-reply>.

 If this parameter is equal to '0', then entire
 subtrees will be returned.

 If this parameter is greater than '0', then
 only the specified number of subtree levels will
 be returned.";
 }

 uses ncwd:with-defaults-parameters {
 if-feature with-defaults;
 description
 "This parameter controls the retrieval of
 default values.";
 reference
 "RFC 6243: With-defaults Capability for NETCONF";

https://datatracker.ietf.org/doc/html/rfc6243

Bierman Expires April 22, 2014 [Page 44]

Internet-Draft NETCONF-EX October 2013

 }

 leaf-list with-metadata {
 type identityref {
 base metadata;
 }
 description
 "This parameter will cause the server to return
 metadata in the <rpc-reply> (e.g. as XML attributes
 in XML encoding) associated with the specified
 metadata identity. If the server does not support
 any specified metadata identifier, then the
 operation fails with an 'invalid-value' error.";
 }

 uses lock-parms {
 description
 "Exclusive write access can be requested to
 ensure that no other sessions modify the
 configuration data during the retrieval operation";
 }

 }

 output {
 anyxml data {
 description
 "Copy of the requested datastore subset which
 matched the filter criteria (if any).
 An empty data container indicates that the
 request did not produce any results.";
 }
 }
 }

 rpc edit2 {
 description
 "Edit NETCONF datastore contents.
 All operations requested in the yang-patch edit list
 are applied, or the target datastore is left unchanged.";

 input {
 container target {
 description
 "The datastore to use as the target for this
 edit operation.";

Bierman Expires April 22, 2014 [Page 45]

Internet-Draft NETCONF-EX October 2013

 choice datastore-target {
 mandatory true;
 description
 "The configuration target for the edit operation.";

 leaf candidate {
 if-feature nc:candidate;
 type empty;
 description
 "The candidate configuration datastore is the
 edit target.";
 }
 leaf running {
 if-feature nc:writable-running;
 type empty;
 description
 "The running configuration datastore is the
 edit target.";
 }
 }
 }

 leaf target-resource {
 if-feature nc:xpath;
 type yang:xpath1.0;
 description
 "This parameter identifies 1 or more data node
 instances for which the yang-patch edits
 will be applied. The target-resource expression
 MUST evaluate to a node-set result.

 Each operation in the yang-patch edit list will
 be applied to each target-resource instance, as if
 it were the document root for the operation.

 If multiple instances are represented by the
 target-resource value, then the server will apply
 all edits to all instances. If any errors occur,
 then all edits from this request will be undone
 from the target datastore.

 The user MUST have appropriate write permissions for
 all data accessed by every operation within the edit
 list.

 If this parameter is not present or not supported
 then the target resource is the root node of the
 datastore identified by the 'target' parameter.";

Bierman Expires April 22, 2014 [Page 46]

Internet-Draft NETCONF-EX October 2013

 }

 uses rc:yang-patch {
 description
 "The yang-patch parameter contains the ordered list
 of edits to perform on the target resource(s).

 The conceptual document root for the 'target'
 parameter is defined to be the value of a data node
 represented by the 'target-resource' parameter or the
 target datastore conceptual root node if that parameter
 is not present.";
 }

 leaf test-only {
 type empty;
 description
 "If this parameter is present the server will not
 actually perform the requested edits. Instead the
 edit request will be validated as if it were going
 to be applied. Any parameter errors or datastore
 validation errors SHOULD be reported in the response.

 No attempt to apply, activate the edits or save them
 in non-volatile storage will be made if this parameter
 is present.";
 }

 leaf if-match {
 type yang-entity-tag;
 description
 "If this parameter is set, then the entire edit request
 will be rejected unless the entity tag for the target
 resource matches this value. An rpc-error with
 an 'operation-failed' error-tag value MUST returned,
 and the edit operation MUST NOT be attempted.
 The 'error-app-tag' field SHOULD be set to
 'precondition-failed'.

 If the target datastore does not maintain a
 last-modified timestamp, then this parameter is
 ignored.";
 }

 uses lock-parms {
 description
 "Exclusive write access can be requested to
 ensure that no other sessions modify the

Bierman Expires April 22, 2014 [Page 47]

Internet-Draft NETCONF-EX October 2013

 configuration data during the edit operation
 and possibly the entire confirmed commit procedure.

 If the 'with-locking' parameter is used to start or
 extend a confirmed commit procedure, then the
 exclusive write access will be maintained until the
 confirmed commit procedure terminates somehow.

 If the 'with-locking' parameter is used for a
 plain edit operation, then exclusive write access
 will be maintained until this operation has completed.";
 }

 leaf activate-now {
 type empty;
 description
 "If present and the edit operation succeeds,
 then the server will activate the configuration
 changes right away. The server will conceptually
 perform a <commit> operation after the edit
 operation. The user MUST have execute
 permission for the <commit> operation or
 the operation fails with an 'access-denied' error.

 This parameter has no affect unless the
 'datasource-target' choice is the 'candidate' leaf.";
 }

 leaf nvstore-now {
 type empty;
 description
 "If present and the edit operation succeeds,
 and the configuration changes are activated
 in the running datastore, then the server
 will persist the configuration changes right away
 in non-volatile store. The server will conceptually
 perform a <copy-config> operation from the running
 to the startup datastore. The user MUST have execute
 permission for the <copy-config> operation or
 the operation fails with an 'access-denied' error.

 This parameter has no affect unless the
 'startup' capability is supported by the server.";
 }

 leaf confirmed {
 if-feature confirmed-edit;
 type empty;

Bierman Expires April 22, 2014 [Page 48]

Internet-Draft NETCONF-EX October 2013

 description
 "If the requested edit operation succeeds and the
 configuration changes are applied to the running
 datastore, then a confirmed commit procedure is
 requested by the client.

 A confirmed commit procedure is an <edit2> operation
 that contains this parameter. The <complete-commit>
 operation is used to complete the confirmed commit
 procedure. The <revert-commit> operation is used
 to cancel the confirmed commit procedure and
 revert the running datastore back to the contents
 before the first confirmed commit operation.

 If no <complete-commit> or <revert-commit> operation
 is invoked within the timeout interval then
 the server will revert the running datastore
 back to the contents before the first confirmed
 edit operation.

 This is the same as the confirmed commit procedure
 in RFC 6241 except the candidate capability is
 not required.

 The server will save the running datastore contents
 before the edit operation is activated, if there
 is no confirmed edit already in progress.

 If the 'with-locking' parameter is present then
 the server will maintain exclusive write access
 for the specified session until the confirmed
 edit procedure is completed somehow.";
 reference
 "RFC 6241, Section 8.3.4.1";
 }

 leaf confirm-timeout {
 when "../confirmed" {
 description
 "Only relevant if the <confirmed>parameter is present";
 }
 if-feature confirmed-edit;
 type uint32 {
 range "1..max";
 }
 units "seconds";
 default "600"; // 10 minutes
 description

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241#section-8.3.4.1

Bierman Expires April 22, 2014 [Page 49]

Internet-Draft NETCONF-EX October 2013

 "The timeout interval for a confirmed edit procedure.
 If exclusive write access was granted for this confirmed
 commit procedure, then it is removed if the timeout
 occurs and the confirmed commit procedure is terminated.";

 reference "RFC 6241, Section 8.3.4.1";
 }

 leaf persist {
 if-feature confirmed-edit;
 type string;
 description
 "This parameter is used to make a confirmed commit
 procedure persistent. A persistent confirmed commit
 is not aborted if the NETCONF session terminates.
 The only way to abort a persistent confirmed commit
 is to let the timer expire, or to use the
 <revert-commit> operation.

 The value of this parameter is a token that MUST be
 given in the 'persist-id' parameter of the <edit2>,
 <complete-commit>, or <revert-commit> operations in
 order to extend, confirm, or cancel the persistent
 confirmed commit procedure.

 The token SHOULD be a random string.";
 reference "RFC 6241, Section 8.3.4.1";
 }

 leaf persist-id {
 if-feature confirmed-edit;
 type string;
 description
 "This parameter is given in order to extend a persistent
 confirmed edit. The value must be equal to the value
 given in the 'persist' parameter to the <commit>
 operation. If it does not match, the operation fails
 with an 'invalid-value' error.";
 reference "RFC 6241, Section 8.3.4.1";
 }
 }

 output {
 uses rc:yang-patch-status;
 }
 }

https://datatracker.ietf.org/doc/html/rfc6241#section-8.3.4.1
https://datatracker.ietf.org/doc/html/rfc6241#section-8.3.4.1
https://datatracker.ietf.org/doc/html/rfc6241#section-8.3.4.1

Bierman Expires April 22, 2014 [Page 50]

Internet-Draft NETCONF-EX October 2013

 rpc complete-commit {
 if-feature confirmed-edit;
 description
 "This operation is used to complete an ongoing confirmed
 commit procedure. If exclusive write access was granted
 for this confirmed commit procedure, then it is removed
 if this operation is successfully completed.

 If the confirmed commit is persistent, the parameter
 'persist-id' MUST be given, and it MUST match the value of
 the 'persist' parameter given in the <edit2> operation.
 If not confirmed commit procedure is in progress then
 the operation fails with an 'operation-failed' error.";
 reference "RFC 6241, Section 8.4.5.1";

 input {
 leaf persist-id {
 type string;
 description
 "This parameter is given in order to complete a
 persistent confirmed commit procedure. The
 value MUST be equal to the value given in the
 'persist' parameter to the <edit2> operation.
 If it does not match, the operation fails with
 an 'invalid-value' error.";
 }
 }
 }

 rpc revert-commit {
 if-feature confirmed-edit;
 description
 "This operation is used to cancel an ongoing confirmed commit.
 If exclusive write access was granted for this confirmed
 commit procedure, then it is removed if this operation
 is successfully completed.

 If the confirmed commit is persistent, the parameter
 'persist-id' MUST be given, and it MUST match the value of
 the 'persist' parameter. If not confirmed commit
 procedure is in progress then the operation fails
 with an 'operation-failed' error.";
 reference "RFC 6241, Section 8.4.4.1";

 input {
 leaf persist-id {
 type string;

https://datatracker.ietf.org/doc/html/rfc6241#section-8.4.5.1
https://datatracker.ietf.org/doc/html/rfc6241#section-8.4.4.1

Bierman Expires April 22, 2014 [Page 51]

Internet-Draft NETCONF-EX October 2013

 description
 "This parameter is given in order to cancel a persistent
 confirmed commit and revert the running configuration
 datastore to its state before the confirmed commit
 procedure started. The value MUST be equal to the value
 given in the 'persist' parameter to the <edit2>
 operation.

 If it does not match, the operation fails with an
 'invalid-value' error.";
 }
 }
 }

 /* Notifications */

 augment /ncn:netconf-capability-change {
 description
 "Add the updated capability-id capability value
 to a capability change event.";

 leaf capability-id {
 type string;
 description
 "Contains the new capability ID for the server,
 representing the capability set after the
 capability changes.";
 }
 }

 augment /ncn:netconf-config-change {
 description
 "Add the updated config-id capability value
 to a configuration change event.";

 leaf config-id {
 type string;
 description
 "Contains the new configuration ID for the
 running datastore on the server, representing
 the datastore after the configuration changes.";
 }
 }

 }

Bierman Expires April 22, 2014 [Page 52]

Internet-Draft NETCONF-EX October 2013

 <CODE ENDS>

2.9. XSD for NETCONF-EX Metadata

 The following XML Schema document [XSD] defines the "last-modified"
 and "etag" attributes, described within this document. The
 "last-modified" attribute is only relevant if the server supports the
 "timestamps" YANG feature within the "ietf-netconf-ex" YANG module.

 The "last-modified" attribute uses the XSD data type "dateTime", in
 accordance with Section 3.2.7.1 of XML Schema Part 2: Datatypes.
 This is equivalent to the YANG data type "date-and-time".

 The "etag" attribute uses the XSD data type "string", in accordance
 with the "yang-entity-tag" YANG typedef defined in Section 2.8.

 The "config-id" attribute uses the XSD data type "string".

 <CODE BEGINS> file "netconf-ex.xsd"

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:netconf:netconf-ex:1.0"
 targetNamespace="urn:ietf:params:xml:ns:netconf:netconf-ex:1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xml:lang="en">

 <xs:annotation>
 <xs:documentation>
 This schema defines the syntax for the "last-modified"
 and "etag" attributes described within this document.
 </xs:documentation>
 </xs:annotation>

 <!--
 config-id attribute
 -->
 <xs:attribute name="config-id" type="xs:string">
 <xs:annotation>
 <xs:documentation>
 This attribute indicates the current config ID
 for the running configuration datastore,
 corresponding to the XML element containing this attribute.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

Bierman Expires April 22, 2014 [Page 53]

Internet-Draft NETCONF-EX October 2013

 <!--
 last-modified attribute
 -->
 <xs:attribute name="last-modified" type="xs:dateTime">
 <xs:annotation>
 <xs:documentation>
 This attribute indicates the date and time when
 a modification was last detected by the server
 for the datastore or data node corresponding to
 the XML element containing this attribute.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

 <!--
 etag attribute
 -->
 <xs:attribute name="etag" type="xs:string">
 <xs:annotation>
 <xs:documentation>
 This attribute indicates the entity tag
 for the datastore or data node corresponding to
 the XML element containing this attribute.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

 </xs:schema>

 <CODE ENDS>

Bierman Expires April 22, 2014 [Page 54]

Internet-Draft NETCONF-EX October 2013

3. IANA Considerations

3.1. NETCONF-EX XML Namespace

 This document registers a URI in the IETF XML registry [RFC3688].
 Following the format in RFC 3688, the following registration is
 requested:

 URI: urn:ietf:params:xml:ns:netconf:netconf-ex:1.0
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

3.2. NETCONF-EX XML Schema

 This document registers a URI for the NETCONF XML schema in the IETF
 XML registry [RFC3688].

 // RFC Ed. remove this line and uncomment next line when published
 //IANA has updated the following URI to reference this document.

 URI: urn:ietf:params:xml:schema:netconf-ex

3.3. NETCONF-EX YANG Module

 This document registers 1 YANG module in the YANG Module Names
 registry [RFC6020].

 name: ietf-netconf-ex
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-ex
 prefix: ncex
 // RFC Ed. remove this line and replace XXXX in next line
 reference: RFC XXXX

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc6020

Bierman Expires April 22, 2014 [Page 55]

Internet-Draft NETCONF-EX October 2013

4. Security Considerations

 This document does not introduce any new security concerns in
 addition to those specified in [RFC6241], section 9.

Bierman Expires April 22, 2014 [Page 56]

https://datatracker.ietf.org/doc/html/rfc6241#section-9

Internet-Draft NETCONF-EX October 2013

5. Normative References

 [I-D.lhotka-netmod-json]
 Lhotka, L., "Modeling JSON Text with YANG",

draft-lhotka-netmod-yang-json-02 (work in progress),
 September 2013.

 [JSON] Bray, T., Ed., "The JSON Data Interchange Format",
draft-ietf-json-rfc4627bis-03 (work in progress),

 September 2013.

 [RESTCONF]
 Bierman, A., Bjorklund, M., Watsen, K., and R. Fernando,
 "RESTCONF Protocol", draft-bierman-netconf-restconf-02
 (work in progress), October 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, June 2011.

 [RFC6243] Bierman, A. and B. Lengyel, "With-defaults Capability for
 NETCONF", RFC 6243, June 2011.

 [RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, February 2012.

 [RFC6991] Schoenwaelder, J., "Common YANG Data Types", RFC 6991,
 July 2013.

 [XPATH] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium
 Recommendation REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

 [XSD] Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

https://datatracker.ietf.org/doc/html/draft-lhotka-netmod-yang-json-02
https://datatracker.ietf.org/doc/html/draft-ietf-json-rfc4627bis-03
https://datatracker.ietf.org/doc/html/draft-bierman-netconf-restconf-02
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6243
https://datatracker.ietf.org/doc/html/rfc6470
https://datatracker.ietf.org/doc/html/rfc6991
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028

Bierman Expires April 22, 2014 [Page 57]

Internet-Draft NETCONF-EX October 2013

Appendix A. Open Issues

A.1. resource-identifier-type

 The resource-identifier-type typedef from yang-patch is a RESTCONF
 path expression, not an XPath path expression. The error-path
 parameter also uses RESTCONF path strings. Should either or both of
 these be XPath instead?

A.2. no YANG for top-level message nodes

 The YANG module of the node is needed for JSON encoding, but there is
 no YANG schema definition for the <rpc>, <rpc-reply>, or
 <notification> elements. The namespace for <rpc> and <rpc-reply> is
 "ietf-netconf", but no module name at all exists for the
 <notification> element.

A.3. only 1 location returned per edit

 The bulk edit mode of <edit2> can allow multiple sub-resources to be
 created at once. YANG Patch does not support bulk editing, so only
 one "location" leaf is allowed to be returned in the
 "yang-patch-status" response for a bulk edit

A.4. config-id attribute

 Should the "config-id" (etag for the running datastore root) be
 returned in every <get2> response or only if requested? (Currently
 only if requested.)

A.5. <get2> nodeset retrieval

 Should there be a retrieval mode for <get2> where only the nodes in
 an XPath node-set are returned? NETCONF returns all ancestor nodes
 and all ancestor or sibling key leafs as well. Sometime the XPath
 designer knows the context of the result node-set (e.g. path
 expression for 1 instance of a nested list). The XML scaffolding can
 add a lot of extra bytes to the <rpc-reply>.

Bierman Expires April 22, 2014 [Page 58]

Internet-Draft NETCONF-EX October 2013

Appendix B. Additional Examples

B.1. YANG Module Used in Examples

 The "example-ex" YANG module models a collection of forests. Each
 forest has a collection of trees. For simplicity, only 1 tree of
 each type is allowed in a forest.

 +--rw forests
 +--rw forest [name]
 +--rw name string
 +--ro tree-count? uint32
 +--rw trees
 +--rw tree [name]
 +--rw name string
 +--rw location? string
 +--ro height? decimal64

 module example-ex {

 namespace "http://example.com/ns/example-ex";
 prefix ex;
 organization "Example, Inc.";
 contact "support@example.com";

 description "Module used in NETCONF-EX examples.";
 revision 2013-10-19 {
 description "Initial version";
 reference "Example Spec 12.44";
 }

 container forests {
 description "A collection of forests";

 list forest {
 key name;
 description "A single forest";

 leaf name {
 type string;
 description "The forest name";
 }

 leaf tree-count {
 type uint32;
 config false;
 description "The number of trees in this forest";

Bierman Expires April 22, 2014 [Page 59]

Internet-Draft NETCONF-EX October 2013

 }

 container trees {
 description "A collection of trees";

 list tree {
 key name;
 description "A single tree";

 leaf name {
 type string;
 description "The tree name";
 }
 leaf location {
 type string;
 description "The tree location";
 }

 leaf height {
 type decimal64 {
 fraction-digits 3;
 }
 units meters;
 config false;
 description "The tree height";
 }
 } // list tree
 } // container trees
 } // list forest
 } // container forests
 }

B.2. YANG Data Used in Examples

 The follow instances are assumed in the following examples.

 list forest: "north":
 list tree: "birch", "ash", "maple"

 list forest: "south":
 list tree: "banyan", "palm"

 leaf "location": "hillside", "west valley", "southwest pasture",
 "east meadow", "greenhouse"

 The forests and trees are configured, which represent trees the
 company has planted and growing over time.

Bierman Expires April 22, 2014 [Page 60]

Internet-Draft NETCONF-EX October 2013

 The operational data (tree height) represents the data that the
 company monitors for each tree over time.

B.3. <edit2> Examples

B.3.1. Confirmed Commit on the "running" Datastore

 In this example, the server supports the :writable-running and
 :startup capabilities:

 <rpc message-id="105"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ex="http://example.com/ns/example-ex">
 <target><running/></target>
 <target-resource>
 /ex:forests/ex:forest[ex:name='north']
 </target-resource>
 <yang-patch>
 <patch-id>oak-tree-patch</patch-id>
 <comment>Create an oak tree</comment>
 <edit>
 <edit-id>oak</edit-id>
 <operation>create</operation>
 <target>/ex:trees</target>
 <value>
 <ex:tree>
 <ex:name>oak</ex:name>
 <ex:location>hillside</ex:location>
 </ex:tree>
 </value>
 </edit>
 </yang-patch>
 <with-locking/>
 <max-lock-wait>10</max-lock-wait>
 <confirmed/>
 <confirm-timeout>60</confirm-timeout>
 <persist>24ef8829a4</persist>
 </edit2>
 </rpc>

 The edit succeeds, and the "yang-patch-status" container is returned
 to the client with the <location> path expression of the new oak tree
 resource. The candidate and running datastores remain locked after
 this operation because a confirmed commit procedure is in progress.
 The startup datastore was not locked during this operation because
 the "nvstore-now" parameter was not provided.

Bierman Expires April 22, 2014 [Page 61]

Internet-Draft NETCONF-EX October 2013

 <rpc-reply message-id="105"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <yang-patch-status
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ex="http://example.com/ns/example-ex">
 <patch-id>oak-tree-patch</patch-id>
 <ok/>
 <edit-status>
 <edit>
 <edit-id>oak</edit-id>
 <location>
 /ex:forests/ex:forest/north/ex:trees/ex:tree/oak
 </location>
 </edit>
 </edit-status>
 </yang-patch-status>
 </rpc-reply>

 After configuration verification (e.g., 20 seconds), the client
 decides to keep these configuration changes and sends a
 <complete-commit> request.

 <rpc message-id="106"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <complete-commit
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <persist>24ef8829a4</persist>
 </complete-commit>
 </rpc>

 The server completes the confirmed commit procedure and returns an
 "ok" element to indicate success:

 <rpc-reply message-id="106"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 After the operation succeeds, the server releases all locks that were
 being held to allow exclusive write access for the entire confirmed
 commit procedure.

 The client can now save the activated configuration changes to the
 startup configuration using the <copy-config> protocol operation, as
 described in RFC 6241, section 8.7.5.1.

https://datatracker.ietf.org/doc/html/rfc6241#section-8.7.5.1

Bierman Expires April 22, 2014 [Page 62]

Internet-Draft NETCONF-EX October 2013

B.3.2. Conditional Editing with "if-match" Parameter

 In this example the client is going to change the location of the
 "palm" tree is the "south" forest. The entity tag for the tree
 resource is retrieved with the resource:

 <rpc message-id="107"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ncex="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <xpath-filter> <!-- wrapped for display -->
 /ex:forests/ex:forest[ex:name='south']/ex:trees/
 ex:tree[ex:name='palm']
 </xpath-filter>
 <depth>1</depth>
 <with-metadata>ncex:etags</with-metadata>
 </get2>
 </rpc>

 The server returns a subtree containing data nodes representing the
 "palm" tree. The "etag" attribute is returned for this resource and
 its ancestors. Only the "tree" node itself, as requested with the
 "depth parameter.

 <rpc-reply message-id="107"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:lm="urn:ietf:params:xml:ns:netconf:netconf-ex:1.0">
 <data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 lm:last-modified="2012-09-09T02:00:00Z">
 <forests xmlns="http://example.com/ns/example-ex"
 lm:etag="34ef6892">
 <forest lm:etag="ef11eb99">
 <name>south</name>
 <trees lm:etag="ef11eb99">
 <tree lm:etag="3477cc82" />
 </trees>
 </forest>
 </forests>
 </data>
 </rpc-reply>

 The client then edits the list entry (e.g, reassigns tree location)
 but submits an "if-match" parameter with the "etag" value it received
 for the tree resource being edited:

Bierman Expires April 22, 2014 [Page 63]

Internet-Draft NETCONF-EX October 2013

 <rpc message-id="108"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ex="http://example.com/ns/example-ex">
 <target><candidate/></target>
 <target-resource> <!-- wrapped for display -->
 /ex:forests/ex:forest[ex:name='south']/ex:trees
 /ex:tree[ex:name='palm']
 </target-resource>
 <yang-patch>
 <patch-id>move-palm-tree</patch-id>
 <comment>Move the palm tree</comment>
 <edit>
 <edit-id>palm</edit-id>
 <operation>merge</operation>
 <target>/</target>
 <value>
 <ex:location>greenhouse</ex:location>
 </value>
 </edit>
 </yang-patch>
 <if-match>3477cc82</if-match>
 <with-locking/>
 <max-lock-wait>10</max-lock-wait>
 <activate-now/>
 <nvstore-now/>
 </edit2>
 </rpc>

 In this example the tree resource has been edited by another client
 since the <get2> reply for this client, so the edit request is not
 even attempted. Instead an "operation-failed" is returned:

Bierman Expires April 22, 2014 [Page 64]

Internet-Draft NETCONF-EX October 2013

 <rpc-reply message-id="108"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <yang-patch-status
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ex="http://example.com/ns/example-ex">
 <patch-id>move-palm-tree</patch-id>
 <errors>
 <error>
 <error-type>protocol</error-type>
 <error-tag>operation-failed</error-tag>
 <error-app-tag>precondition-failed</error-app-tag>
 <error-path> <!-- wrapped for display -->
 /ex:forests/ex:forest[ex:name='south']/ex:trees/
 ex:tree[ex:name='palm']
 </error-path>
 <error-message xml:lang="en">
 if-match precondition failed
 </error-message>
 </error>
 </errors>
 </yang-patch-status>
 </rpc-reply>

B.3.3. Bulk Editing with "target-resource" Parameter

 In this example, the server supports the :candidate and :startup
 capabilities, so all 3 datastores (including running) are locked for
 the <edit2> operation. There is a new pine tree for each forest that
 is being created and sent to the greenhouse.

Bierman Expires April 22, 2014 [Page 65]

Internet-Draft NETCONF-EX October 2013

 <rpc message-id="109"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ex="http://example.com/ns/example-ex">
 <target><candidate/></target>
 <target-resource>
 /ex:forests/ex:forest
 </target-resource>
 <yang-patch>
 <patch-id>pine-tree-patch</patch-id>
 <comment>Add 2 new pine trees to greenhouse</comment>
 <edit>
 <edit-id>pine</edit-id>
 <operation>create</operation>
 <target>/ex:trees</target>
 <value>
 <ex:tree>
 <ex:name>pine</ex:name>
 <ex:location>greenhouse</ex:location>
 </ex:tree>
 </value>
 </edit>
 </yang-patch>
 <with-locking/>
 <max-lock-wait>10</max-lock-wait>
 <activate-now/>
 <nvstore-now/>
 </edit2>
 </rpc>

 The edit succeeds, and the "yang-patch-status" container is returned
 to the client with the status information.

Bierman Expires April 22, 2014 [Page 66]

Internet-Draft NETCONF-EX October 2013

 <rpc-reply message-id="109"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <yang-patch-status
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ex="http://example.com/ns/example-ex">
 <patch-id>pine-tree-patch</patch-id>
 <ok/>
 <edit-status>
 <edit>
 <edit-id>pine</edit-id>
 <location>
 /ex:forests/ex:forest/north/ex:trees/ex:tree/pine
 </location>
 <!-- FIXME: multiple location nodes not currenty
 supported by YANG Patch!
 <location>
 /ex:forests/ex:forest/south/ex:trees/ex:tree/pine
 </location>
 -->
 </edit>
 </edit-status>
 </yang-patch-status>
 </rpc-reply>

B.3.4. Edit Validation with "test-only" Parameter

 In this example, the client is checking if it can change the location
 field in the "palm" tree list entry by using the "test-only"
 parameter:

Bierman Expires April 22, 2014 [Page 67]

Internet-Draft NETCONF-EX October 2013

 <rpc message-id="110"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ex="http://example.com/ns/example-ex">
 <target><candidate/></target>
 <target-resource>
 /ex:forests/ex:forest[ex:name='south']/ex:trees
 </target-resource>
 <yang-patch>
 <patch-id>palm-tree-move</patch-id>
 <comment>Move the palm tree to riverside</comment>
 <edit>
 <edit-id>palm</edit-id>
 <operation>merge</operation>
 <target>/ex:tree/palm</target>
 <value>
 <ex:location>riverside</ex:location>
 </value>
 </edit>
 </yang-patch>
 <test-only/>
 </edit2>
 </rpc>

 Since "riverside" is not a supported location, an "invalid-value"
 error is returned for the requested edit operation:

Bierman Expires April 22, 2014 [Page 68]

Internet-Draft NETCONF-EX October 2013

 <rpc-reply message-id="110"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <yang-patch-status
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ex="http://example.com/ns/example-ex">
 <patch-id>palm-tree-move</patch-id>
 <edit-status>
 <edit>
 <edit-id>palm</edit-id>
 <errors>
 <error>
 <error-type>protocol</error-type>
 <error-tag>invalid-value</error-tag>
 <error-path> <!-- wrapped for display -->
 /ex:forests/ex:forest[ex:name='south']/ex:trees/
 ex:tree[ex:name='palm']
 </error-path>
 <error-message xml:lang="en">
 value is invalid
 </error-message>
 </error>
 </errors>
 </edit>
 </edit-status>
 </yang-patch-status>
 </rpc-reply>

B.4. <get2> Examples

B.4.1. If-Modified-Since Non-Empty Filter Retrieval

 In this example, the running datastore was last modified at
 "2012-09-09T01:43:27Z" because the forest named "north" was modified
 at this time.

 o The forest named "north" was last modified after the specified
 "if-modified-since" timestamp.

 o The forest named "south" was last modified before the specified
 "if-modified-since" timestamp.

 o The server maintains a last-modified timestamp for the running
 datastore and the "forest" list entries.

 o The client is requesting only the changed entries after 2012-09-
 09T01:43:27Z, so the "full-delta" parameter is set.

Bierman Expires April 22, 2014 [Page 69]

Internet-Draft NETCONF-EX October 2013

 o The client is also requesting that timestamps be returned within
 the data nodes. If any part of the "forest" subtree is modified
 then this timestamp will be updated.

 <rpc message-id="111"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ncex="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <subtree-filter>
 <forests xmlns="http://example.com/ns/example-ex" />
 </subtree-filter>
 <if-modified-since>2012-09-09T01:43:27Z</if-modified-since>
 <full-delta/>
 <with-metadata>ncex:timestamps</with-metadata>
 </get2>
 </rpc>

 <rpc-reply message-id="111"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:lm="urn:ietf:params:xml:ns:netconf:netconf-ex:1.0">
 <data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 lm:last-modified="2012-09-09T02:00:00Z">
 <forests xmlns="http://example.com/ns/example-ex">
 <forest lm:last-modified="2012-09-09T02:00:00Z">
 <name>north</name>
 <trees>
 <tree>
 <name>birch</name>
 <location>hillside</location>
 </tree>
 <tree>
 <name>ash</name>
 <location>southwest pasture</location>
 </tree>
 <tree>
 <name>maple</name>
 <location>east meadow</location>
 </tree>
 </trees>
 </forest>
 </forests>
 </data>
 </rpc-reply>

Bierman Expires April 22, 2014 [Page 70]

Internet-Draft NETCONF-EX October 2013

B.4.2. If-Modified-Since Empty Filter Retrieval

 In this example the client has changed the "if-modified-since"
 timestamp to a time in the future.

 o No "forest" list entry has been modified since this time so an
 empty data node is returned.

 o Note that the "last-modified" timestamp is returned for the node
 representing the datastore, even though no data nodes have been
 modified since the specified time. This allows the client to
 easily retrieve the last-modified timestamp for the entire
 datastore.

 <rpc message-id="112"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 xmlns:ncex="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <subtree-filter>
 <forests xmlns="http://example.com/ns/example-ex" />
 </subtree-filter>
 <if-modified-since>2012-09-09T03:43:27Z</if-modified-since>
 <with-metadata>ncex:timestamps</with-metadata>
 </get2>
 </rpc>

 <rpc-reply message-id="112"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:lm="urn:ietf:params:xml:ns:netconf:netconf-ex:1.0">
 <data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex"
 lm:last-modified="2012-09-09T02:00:00Z" />
 </rpc-reply>

B.4.3. Keys Only Filter Retrieval

 This example retrieves only the names from the "forests" subtree in
 the running datastore.

 o The default source (running) is used.

 o The default depth="0" is used to retrieve all subtree levels.

 o The "keys-only" leaf is set

 o The "forests" subtree is selected. The xpath-filter is used
 instead of the subtree-filter.

Bierman Expires April 22, 2014 [Page 71]

Internet-Draft NETCONF-EX October 2013

 o Whitespace added to xpath-filter element for display purposes
 only.

 <rpc message-id="113"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <xpath-filter xmlns:ex=http://example.com/ns/example-ex">
 /ex:forests
 </xpath-filter>
 <keys-only />
 </get2>
 </rpc>

 <rpc-reply message-id="113"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <forests xmlns="http://example.com/ns/example-ex">
 <forest>
 <name>north</name>
 <trees>
 <tree>
 <name>birch</name>
 </tree>
 <tree>
 <name>ash</name>
 </tree>
 <tree>
 <name>maple</name>
 </tree>
 </trees>
 </forest>
 <forest>
 <name>south</name>
 <trees>
 <tree>
 <name>banyan</name>
 </tree>
 <tree>
 <name>palm</name>
 </tree>
 </trees>
 </forest>
 </forests>
 </data>
 </rpc-reply>

Bierman Expires April 22, 2014 [Page 72]

Internet-Draft NETCONF-EX October 2013

B.4.4. Test for Node Existence with Depth=1

 This example retrieves the "trees" node to determine which forests
 have any trees.

 o Only 1 subtree level is requested, instead of the default of all
 levels.

 o The default source (running) is used.

 o The "trees" subtree is selected.

 o The depth parameter is set to "1" to only retrieve the requested
 layer "trees" and its ancestor nodes and the configuration leaf
 nodes from each "forest" entry.

 <rpc message-id="114"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <subtree-filter>
 <forests xmlns="http://example.com/ns/example-ex">
 <forest>
 <trees />
 </forest>
 </forests>
 </subtree-filter>
 <depth>1</depth>
 </get2>
 </rpc>

 <rpc-reply message-id="114"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <forests xmlns="http://example.com/ns/example-ex">
 <forest>
 <name>north</name>
 <trees />
 </forest>
 <forest>
 <name>south</name>
 <trees />
 </forest>
 </forests>
 </data>
 </rpc-reply>

Bierman Expires April 22, 2014 [Page 73]

Internet-Draft NETCONF-EX October 2013

B.4.5. Retrieve Only Non-Configuration Data Nodes

 This example retrieves only the name leafs from the "forest" list
 within the "forests" subtree, in the running datastore.

 o The "source" leaf is set to the "operational" data source

 o The "forests" subtree is selected

Bierman Expires April 22, 2014 [Page 74]

Internet-Draft NETCONF-EX October 2013

 <rpc message-id="115"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get2 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <source><operational/></source>
 <subtree-filter>
 <forests xmlns="http://example.com/ns/example-ex" />
 </subtree-filter>
 </get2>
 </rpc>

 <rpc-reply message-id="115"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-ex">
 <forests xmlns="http://example.com/ns/example-ex">
 <forest>
 <name>north</name>
 <trees>
 <tree>
 <name>birch</name>
 <height>41.013</height>
 </tree>
 <tree>
 <name>ash</name>
 <height>16.523</height>
 </tree>
 <tree>
 <name>maple</name>
 <height>51.204</height>
 </tree>
 </trees>
 </forest>
 <forest>
 <name>south</name>
 <trees>
 <tree>
 <name>banyan</name>
 <height>91.433</height>
 </tree>
 <tree>
 <name>palm</name>
 <height>83.439</height>
 </tree>
 </trees>
 </forest>
 </forests>
 </data>
 </rpc-reply>

Bierman Expires April 22, 2014 [Page 75]

Internet-Draft NETCONF-EX October 2013

Author's Address

 Andy Bierman
 YumaWorks, Inc.

 Email: andy@yumaworks.com

Bierman Expires April 22, 2014 [Page 76]

