
Internet Draft Andy Bierman
 Cisco Systems, Inc.
 14 May 2002

Structure of Management Information:
Data Structures

 <draft-bierman-sming-ds-03.txt>

Status of this Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026 [RFC2026].

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet- Drafts as reference material
or to cite them other than as "work in progress".

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Distribution of this document is unlimited. Please send comments to the
SMIng WG mailing list <sming@ops.ietf.org>.

1. Copyright Notice

Copyright (C) The Internet Society (2002). All Rights Reserved.

https://datatracker.ietf.org/doc/html/draft-bierman-sming-ds-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc2026
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft SMI Data Structures May 14, 2002

2. Abstract

This memo defines a portion of the Structure of Management Information
(SMI) for use with network management protocols in the Internet
community. In particular, it describes a new structure and naming
scheme for network management information, allowing the specification of
arbitrarily complex hierarchical data structures.

3. Table of Contents

1 Copyright Notice .. 1
2 Abstract .. 2
3 Table of Contents ... 2
4 The SNMP Network Management Framework 3
5 Overview .. 4
5.1 Terms ... 4
5.2 Design Objectives ... 5
5.3 Data Structure Constructs 6
5.4 Relationship to SMIv2 ... 7
5.5 Hierarchical Instance Naming 8
5.6 SMI-DS Data Object Usage Examples 10
5.6.1 InetAddress Example ... 10
5.6.2 Generic High Capacity Counter Example 13
5.6.3 Converted SMIv2 TABLE Example 15
5.7 Data Structure Augmentations 17
5.8 SYNTAX POINTER Clause ... 24
6 Definitions ... 26
6.1 Namespaces .. 26
6.2 Syntax .. 26
7 Information Modules ... 33
8 Appendix A: SMIv2 Compatibility 34
8.1 Common Constructs ... 34
8.2 SMIv2 to SMI-DS Module Conversion 34
8.3 SMI-DS to SMIv2 Module Conversion 41
8.4 Compatibility Guidelines 41
9 Appendix B: Complete MODULE Example 42
10 Appendix C: Open Issues .. 49
11 Appendix D: Discussion of SMIng Objectives 51
12 Security Considerations .. 66
13 Intellectual Property .. 67
14 Acknowledgements ... 67
15 Normative References ... 68
16 Informative References ... 69
17 Author's Address ... 71
18 Full Copyright Statement 72

Expires November 14, 2002 [Page 2]

Internet Draft SMI Data Structures May 14, 2002

4. The SNMP Network Management Framework

 The SNMP Management Framework presently consists of five major
 components:

 o An overall architecture, described in RFC 2571 [RFC2571].

 o Mechanisms for describing and naming objects and events for the
 purpose of management. The first version of this Structure of
 Management Information (SMI) is called SMIv1 and described in

RFC 1155 [RFC1155], RFC 1212 [RFC1212] and RFC 1215 [RFC1215].
 The second version, called SMIv2, is described in RFC 2578
 [RFC2578], RFC 2579 [RFC2579] and RFC 2580 [RFC2580].

 o Message protocols for transferring management information. The
 first version of the SNMP message protocol is called SNMPv1 and
 described in RFC 1157 [RFC1157]. A second version of the SNMP
 message protocol, which is not an Internet standards track
 protocol, is called SNMPv2c and described in RFC 1901 [RFC1901]
 and RFC 1906 [RFC1906]. The third version of the message
 protocol is called SNMPv3 and described in RFC 1906 [RFC1906],

RFC 2572 [RFC2572] and RFC 2574 [RFC2574].

 o Protocol operations for accessing management information. The
 first set of protocol operations and associated PDU formats is
 described in RFC 1157 [RFC1157]. A second set of protocol
 operations and associated PDU formats is described in RFC 1905
 [RFC1905].

 o A set of fundamental applications described in RFC 2573
 [RFC2573] and the view-based access control mechanism described
 in RFC 2575 [RFC2575].

 A more detailed introduction to the current SNMP Management Framework
 can be found in RFC 2570 [RFC2570].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the mechanisms defined in the SMI.

 This memo does not specify a MIB module.

https://datatracker.ietf.org/doc/html/rfc2571
https://datatracker.ietf.org/doc/html/rfc2571
https://datatracker.ietf.org/doc/html/rfc1155
https://datatracker.ietf.org/doc/html/rfc1155
https://datatracker.ietf.org/doc/html/rfc1212
https://datatracker.ietf.org/doc/html/rfc1212
https://datatracker.ietf.org/doc/html/rfc1215
https://datatracker.ietf.org/doc/html/rfc1215
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc1901
https://datatracker.ietf.org/doc/html/rfc1901
https://datatracker.ietf.org/doc/html/rfc1906
https://datatracker.ietf.org/doc/html/rfc1906
https://datatracker.ietf.org/doc/html/rfc1906
https://datatracker.ietf.org/doc/html/rfc1906
https://datatracker.ietf.org/doc/html/rfc2572
https://datatracker.ietf.org/doc/html/rfc2572
https://datatracker.ietf.org/doc/html/rfc2574
https://datatracker.ietf.org/doc/html/rfc2574
https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc1905
https://datatracker.ietf.org/doc/html/rfc1905
https://datatracker.ietf.org/doc/html/rfc2573
https://datatracker.ietf.org/doc/html/rfc2573
https://datatracker.ietf.org/doc/html/rfc2575
https://datatracker.ietf.org/doc/html/rfc2575
https://datatracker.ietf.org/doc/html/rfc2570
https://datatracker.ietf.org/doc/html/rfc2570

Expires November 14, 2002 [Page 3]

Internet Draft SMI Data Structures May 14, 2002

5. Overview

There is a need for a standardized way of defining aggregated data
structures for the representation of management information, which can
be utilized with existing and future versions of SNMP. The SMIv2 data
model is based on groups of rectangular tables, which are related
because they share one or more INDEX clause components. This model
provides a single containment layer per table, because all the objects
in a conceptual row must be simple types (e.g., Integer32,
SnmpAdminString, Counter64).

The practice of spreading a multi-layer data structure across several
rectangular tables causes MIB modules to be much too verbose, hard to
understand, and even harder to implement. The containment relationships
between tables are usually described in INDEX clauses and various
DESCRIPTION clauses.

This practice has a negative impact on agent implementations, which are
harder to implement and test, due to row creation and row activation
ordering issues. This practice adds complexity to management
application development as well.

Software development and human readability would benefit from a data
definition language which more closely represents the basic data
structures that exist in almost all programming languages.

[ed. - This revision is intended to introduce the SMI Data Structure
concepts and is not yet defined in sufficient detail to be suitable as a
formal specification.]

5.1. Terms

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119. [RFC2119]

This document uses some terms that need introduction:

Aggregated Data Object
 This term refers to any data object which provides some sort of
 containment for other data objects, which is any variable construct
 other than LEAF (e.g., ARRAY, UNION, or STRUCT).

Data Object
 This term refers to any SMI Data Structure variable declaration, at

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Expires November 14, 2002 [Page 4]

Internet Draft SMI Data Structures May 14, 2002

 any level of containment.

MIB Object
 This term generically refers to a SMIv2 OBJECT-TYPE macro
 definition. It may also refer to an SMI Data Structure definition.

OID This is a shorthand term for 'OBJECT IDENTIFIER'.

LEAF This term refers to any accessible data object with a syntax that
 resolves to a SMI base type. To avoid confusion, the term appears
 in capital letters when referring to any data object definition
 which represents a base type.

SMI Data Structure (SMI-DS)
 This term refers to the concepts and definitions defined in this
 document.

5.2. Design Objectives

The working group objectives for this work are detailed in the SMIng
Objectives document [RFC3216]. (Refer to Appendix D for a detailed
discussion of each accepted objective.)

The primary high-level design goals of this work are:

 - Significantly enhance the usefulness of the SMI as a network
 management data definition language, by creating a modern
 programming language like data model supporting aggregated
 containment.

 - Enhance SMI object instance naming to support aggregated
 hierarchical data structures, while remaining backwardly-compatible
 with SMIv2 naming.

 - Improve readability by enhancing reusability and removing as much
 redundant text as possible. The SMI should be as easy to use as
 possible, for the largest number of people. Therefore, a priority
 hierarchy can be established, starting with MIB readers, then MIB
 writers, management software developers, and MIB compiler writers.

 - Maintain 100% forward and backward translation compatibility with
 SMIv2. It must be possible to convert all valid SMIv2 constructs
 to SMI-DS constructs without loss of semantics (i.e., forward
 compatibility). It should also be possible to translate any SMI-DS
 construct to one or more SMIv2 constructs, if the associated

https://datatracker.ietf.org/doc/html/rfc3216

Expires November 14, 2002 [Page 5]

Internet Draft SMI Data Structures May 14, 2002

 feature(s) exist in SMIv2. Refer to Appendix A for details on
 SMIv2 <--> SMI-DS translations.

 - Preserve as many of the SMIv2 mechanisms and 'installed knowledge-
 base' as possible. There will a transition period lasting several
 years, in which SMIv2 MIBs will be converted to SMIv3 format. It
 is important that MIB readers and writers be able to understand
 both SMI syntaxes during this period, and so it will be beneficial
 to keep them as close as possible. Clauses that have not changed
 at all in semantics between SMI versions should maintain the same
 syntax.

 - Make sure accessible data objects (i.e., LEAF objects) can be used
 with existing versions of SNMP.

There are some relevant topics which not design objectives addressed by
this draft:

 - Compatibility with any version of ASN.1.

 - Equally weighted importance for support of COPS-PR and SNMP. There
 is a huge disparity in deployment of applications utilizing these
 protocols. The solution space is biased in favor of SNMP because
 that will benefit the largest number of people.

 - Idiot proof MIB design. Data structures can help better organize
 the information found in a MIB, but they cannot prevent bad design
 choices or badly written DESCRIPTION clauses.

5.3. Data Structure Constructs

There are four basic constructs available in the SMI-DS language for the
definition of data objects.

LEAF This construct is conceptually equivalent to an OBJECT-TYPE macro
 definition for an accessible MIB object in SMIv2, except a LEAF can
 be defined at any level of containment. A LEAF type definition or
 variable declaration resolves to any SMIng base type. In SMI-DS,
 all other constructs must eventually resolve to some number of
 these objects, and only LEAF data objects are actually accessible
 via SNMP.

ARRAY
 This construct provides a multi-dimensional array structure,
 similar to the SEQUENCE construct in SMIv2. However, instead of

Expires November 14, 2002 [Page 6]

Internet Draft SMI Data Structures May 14, 2002

 one flat 'row' consisting of only accessible base-type MIB objects,
 an ARRAY can consist of an arbitrary mix of any of the four types
 of data object constructs. Only base type data objects can be used
 in an ARRAY INDEX clause (the same ones as in SMIv2), and the rules
 for encoding INDEX clause base types in OIDs are the same as for
 SMIv2.

UNION
 This construct provides a mechanism to conceptually allow a single
 object definition to contain one of potentially several different
 construct definitions. Only one of these constructs is actually
 instantiated at any time by the agent. Unlike a union in the C
 language, the unused union members cannot be accessed at all (no
 'cast' operator in SMI).

STRUCT
 This construct provides a mechanism to group an arbitrary number of
 data constructs (of any type), allowing a theoretically unlimited
 number of data containment layers. It is similar to the ARRAY
 construct, except there is no INDEX clause.

5.4. Relationship to SMIv2

Whenever possible, existing SMIv2 macros or clauses have been used
without modification. Two exceptions are the TEXTUAL-CONVENTION and
OBJECT-TYPE macros. In order to reinforce and support a data model more
aligned with popular programming concepts and practices, these macros
have been replaced by the TYPEDEF and VAR macros (respectively). Strong
emphasis is placed on the separation of potentially reusable type
definitions and variable declarations. The ASN.1 tabular data model is
replaced with a 'hierarchical containment' data model, which is more
similar to the 'native' data representation used by the managed device.

The type of declarations that can be made in an SMI-DS module do not
really change at all, but some constructs have changed. The major
differences between an SMIv2 construct and the equivalent SMI-DS
construct are listed in the table below:

 SMIv2 SMI-DS
 --------------------- ---------------------
 TEXTUAL-CONVENTION TYPEDEF LEAF
 scalar OBJECT-TYPE VAR LEAF
 tabular OBJECT-TYPE VAR ARRAY
 NOTIFICATION-TYPE NOTIFICATION

Expires November 14, 2002 [Page 7]

Internet Draft SMI Data Structures May 14, 2002

Notification semantics have not changed at all, although the syntax has
changed slightly to make them more consistent with the TYPEDEF and VAR
macros. The ASN.1 specific SEQUENCE macro, and the 'FooTable' and
'FooEntry' OBJECT-TYPE definitions that start every SMIv2 table are
removed. The basic SYNTAX clause has not changed at all, except that a
new variant is provided to specify a typed OID pointer (see section
5.8).

Many constructs do not change at all, such as the IMPORTS, MODULE-
IDENTITY, MAX-ACCESS, STATUS, DESCRIPTION, REFERENCE, DEFVAL, OBJECTS,
and MODULE-COMPLIANCE macros.

5.5. Hierarchical Instance Naming

In order to fully utilize the capabilities of arbitrary containment, a
new way of naming object instances is needed, which is designed for
hierarchical data structures instead of tables, without changing the OID
values for any existing SMIv2 objects which are converted to the SMI-DS
object naming format.

Since it is possible for accessible objects to exist in the same
containment structure as non-accessible objects, it is not possible to
name SMI-DS objects with a 'flat' model. SMIv2 assumes all accessible
objects in the same containment structure have the same number of object
identifier components, and the exact same format for all instance
identifier components. This assumption cannot be made for SMI-DS object
naming.

This new naming scheme can help reduce implementation complexity for
agent and application developers for SNMP Set operations. Currently,
associated attributes can be spread across multiple tables, (possibly
sharing major indexes) each with their own RowStatus and set of 'SNMP
callback' functions. This design approach can get relatively
complicated, especially if 'createAndWait' and 'notInService' RowStatus
values are supported. By allowing aggregated containment instead of
unfolding data structures into tables, implementation of high-level Set
operations can be simplified for both agent and application developers.

The basic format of an OID for an SMI-DS data object is not changed from
SMIv2. OIDs are constructed left to right. The left fragment contains
static OID values which indicate the name of a node in the MIB tree.
The right fragment contains potentially dynamic OID values which
represent the instance identifier for the node specified by the left
fragment.

Expires November 14, 2002 [Page 8]

Internet Draft SMI Data Structures May 14, 2002

LEAF Data Object Naming

 A SCALAR variable declaration is named as follows:

 <oidBase>.0

 where:

 <oidBase> is a well-formed OID base fragment.

Aggregate Data Object Naming

 An Aggregated Data Object variable declaration is named
 as follows:

 <oidBase>.<compatNode>.<childNode>
 [.<childNode> ...] [.<indexNode> ...]

 where:

 <oidBase> is a well-formed OID base fragment,
 (also called the left anchor).

 <compatNode> contains the value 1.

 <childNode> is the data object child node identifier, which
 must be an INTEGER between 1 and 4294967295. (Similar
 to a column identifier in an SMIv2 table.)

 <indexNode> is present only if the variable declaration
 resolves to a type that contains any ARRAY constructs,
 and MUST be an INTEGER between 0 and 4294967295.
 (Similar to an instance identifier in an SMIv2 table.)

SMI-DS OID Construction

OIDs are constructed in an iterative manner, using two conceptual
buffers:

base buffer
 used for building the static portion of an OID, left to right.

Expires November 14, 2002 [Page 9]

Internet Draft SMI Data Structures May 14, 2002

 This buffer contains the <oidBase>, <compatNode>, and all
 <childNode> identifiers.

index buffer
 used for building a sequence of ARRAY indexes, (left to right),
 similar to the instance identifier portion of an SMIv2 OID for a
 tabular object. This buffer contains all the <indexNode>
 identifiers.

The expansion algorithm for <childNode> is repeated if it represents an
aggregated data object. If it represents an ARRAY construct, then all
<indexNode> components for this array type are appended to index buffer.

The algorithm terminates when a LEAF data object is encountered. The
index buffer is then appended to the base buffer, to form the complete
instance identifier for a specific variable declaration.

5.6. SMI-DS Data Object Usage Examples

The following sections introduce some examples of simple data structures
that are currently achieved with relatively verbose text in TEXTUAL-
CONVENTION and OBJECT-TYPE DESCRIPTION clauses using SMIv2. Refer to
Appendix B for an example of a (somewhat) complete SMI-DS module.

5.6.1. InetAddress Example

The Internet Address textual conventions defined in the "Textual
Conventions for Internet Network Addresses" MIB module [RFC2851] defines
several variants of an Internet address (InetAddress), and a control
object (InetAddressType) to distinguish which variant is actually
present in an InetAddress object instance. This construct may be more
concisely and properly represented in SMI-DS by a structure containing
the control object and a union of all the address variants.

-- a union of all the InetAddress types

TYPEDEF UNION InetAddressUnion {
 DESCRIPTION
 "Internet address in 4 different representations."

 LEAF ipUnknown {
 SYNTAX OCTET STRING (SIZE (0..65535))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION

https://datatracker.ietf.org/doc/html/rfc2851

Expires November 14, 2002 [Page 10]

Internet Draft SMI Data Structures May 14, 2002

 "Represents an Internet address using an externally
 defined format. The associated InetAddressType
 object value is 'unknown(0)'."
 } ::= 1

 LEAF ipv4Addr {
 SYNTAX InetAddressIPv4
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Represents an IPv4 Internet address. The
 associated InetAddressType object value
 is 'ipv4(1)'."
 } ::= 2

 LEAF ipv6Addr {
 SYNTAX InetAddressIPv6
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Represents an IPv6 Internet address. The
 associated InetAddressType object value
 is 'ipv6(2)'."
 } ::= 3

 LEAF ipDnsAddr {
 SYNTAX InetAddressDNS
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Represents an DNS domain name. The associated
 InetAddressType object value is 'dns(16)'."
 } ::= 4
}

TYPEDEF STRUCT HostInetAddress {
 DESCRIPTION
 "Internet address for an end-station host, adhering
 to the SMIv2 'associated objects' design approach."

 LEAF addrType {
 SYNTAX InetAddressType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION

Expires November 14, 2002 [Page 11]

Internet Draft SMI Data Structures May 14, 2002

 "The type of Internet address."
 } ::= 1

 UNION addr {
 SYNTAX InetAddressUnion
 STATUS current
 DESCRIPTION
 "The Internet address."
 } ::= 2
}

VAR STRUCT myAddress {
 SYNTAX HostInetAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Internet address of this host."
} ::= { someBase 1 }

VAR UNION newAddress {
 SYNTAX InetAddressUnion
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Example of the new way to represent a union variable,
 without the use of an associated InetAddressType object."
} ::= { someBase 2 }

Note 1) The accessible object instances defined within this structure
(addrType, ipUnknown, ipv4Addr, ipv6Addr, etc.) have different lengths:

 myAddress ::= { someBase 1 }
 myAddress.addrType ::= { myAddress 1 1 }
 myAddress.addr ::= { myAddress 1 2 }
 myAddress.addr.ipUnknown ::= { myAddress 1 2 1 }
 myAddress.addr.ipv4Addr ::= { myAddress 1 2 2 }
 myAddress.addr.ipv6Addr ::= { myAddress 1 2 3 }
 myAddress.addr.dnsAddr ::= { myAddress 1 2 4 }

 newAddress ::= { someBase 2 }
 newAddress.ipUnknown ::= { newAddress 1 1 }
 newAddress.ipv4Addr ::= { newAddress 1 2 }
 newAddress.ipv6Addr ::= { newAddress 1 3 }
 newAddress.dnsAddr ::= { newAddress 1 4 }

Expires November 14, 2002 [Page 12]

Internet Draft SMI Data Structures May 14, 2002

Note 2) The mandatory MAX-ACCESS clause within a LEAF construct in a
TYPEDEF macro is used to specify the maximum access level that is
possible via a management protocol. The optional MAX-ACCESS clause
within a VAR macro is used to specify the constrained maximum access
level for that specific variable declaration, and must not specify a
higher access than declared within a TYPEDEF macro. (E.g., myAddress is
a read-only variable even though the LEAF nodes in the HostInetAddress
TYPEDEF are read-create. The same LEAF nodes used within the newAddress
variable declaration are read-write.) If an overall MAX-ACCESS clause
is not present in the VAR macro, then the values specified in the LEAF
nodes are used.

Note 3) The addrType field is not actually needed for simple variable
declarations, because UNION constructs are instantiated with at most one
accessible member. In the example above, a GetNext Request for
'myAddress.addr' or 'newAddress' will return only one type of
InetAddress string from the InetAddressUnion. The associated
InetAddressType variable is needed only when used together with the
InetAddress (generic string form) as INDEX components in an ARRAY.

Note 4) Just like a TEXTUAL-CONVENTION in SMIv2, a TYPEDEF has no
instances associated with it and therefore no MIB root assigned. It is
only when a a variable of a particular type is declared (and therefore
assigned a MIB root) that the full OID for a data object is known.

5.6.2. Generic High Capacity Counter Example

There are many MIBs that contain up to the three OBJECT-TYPE macro
definitions for every high capacity counter, in order to accommodate
SNMPv1 implementations without support for Counter64 and 32-bit
implementations without any high capacity support at all.

A type definition (GenericCounter) for a union that contains an object
for each of the three scenarios would better represent the intended
semantics of this design, and use less text within data structure
definitions than an SMIv2 version. Note that a discriminator object is
not needed for a union, because the agent (or management application)
will instantiate at most one of the variants.

TYPEDEF UNION GenericCounter {
 DESCRIPTION
 "Generic counter for all versions of SNMP."

 LEAF c32 {
 SYNTAX Counter32

Expires November 14, 2002 [Page 13]

Internet Draft SMI Data Structures May 14, 2002

 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The Counter32 representation of the counter."
 } ::= 1

 LEAF c64 {
 SYNTAX Counter64
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The Counter64 representation of the counter."
 } ::= 2

 STRUCT c32pair {
 DESCRIPTION
 "Pair of Counter32 objects to represent a 64-bit
 counter."

 LEAF c32low {
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS deprecated
 DESCRIPTION
 "The lower 32 bits of a 64 bit counter."
 } ::= 1

 LEAF c32hi {
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS deprecated
 DESCRIPTION
 "The upper 32 bits of a 64 bit counter."
 } ::= 2
 } ::= 3
}

VAR UNION myCounter {
 SYNTAX GenericCounter
 STATUS current
 DESCRIPTION
 "An example generic counter variable."
} ::= { someBase 3 }

Note 1) Inline vs. external type definition: The 'c32pair' STRUCT could

Expires November 14, 2002 [Page 14]

Internet Draft SMI Data Structures May 14, 2002

have been defined as a separate type and a STRUCT declared with a SYNTAX
clause that referenced that type (e.g., <struct-ref-type-decl> form of
the STRUCT declaration). The instance numbering works out the same
either way.

The following OIDs would be possible for the 'myCounter' variable
declaration:

 myCounter ::= { someBase 3 }
 myCounter.c32 ::= { myCounter 1 1 }
 myCounter.c64 ::= { myCounter 1 2 }
 myCounter.c32pair ::= { myCounter 1 3 }
 myCounter.c32pair.c32low ::= { myCounter 1 3 1 }
 myCounter.c32pair.c32hi ::= { myCounter 1 3 2 }

Note 2) Even though only one node of a UNION can be instantiated at any
given time, a GetNext Request for a UNION which contains other
aggregated data objects can cause multiple instances to be returned from
that sub-tree, as with the 'c32low' and 'c32hi' LEAF objects in the
example above.

Note 3) Only the STATUS clauses for LEAF data object definitions are
relevant for compliance section usage. However, the above example
raises issues regarding an aggregated data object which contains a
mixture of current, deprecated, and obsolete LEAF objects. (Is the
STATUS of the GenericCounter UNION itself current or deprecated?)

5.6.3. Converted SMIv2 TABLE Example

The following example shows how two objects from the ifTable [RFC2863]
would be defined in SMI-DS syntax. Note that in in this example, the
interface table is modeled directly as a variable declaration, without
using a TYPEDEF. This practice is discouraged for new MIB definitions.

-- this is modeled as an ARRAY variable, rather than
-- an ARRAY containing a TYPEDEF'ed structure, to preserve
-- compatibility with SMIv2

VAR ARRAY ifTable {

 DESCRIPTION
 "A list of interface entries. The number of entries
 is given by the value of ifNumber."

 INDEX { ifIndex }

https://datatracker.ietf.org/doc/html/rfc2863

Expires November 14, 2002 [Page 15]

Internet Draft SMI Data Structures May 14, 2002

 LEAF ifIndex {
 SYNTAX InterfaceIndex
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A unique value, greater than zero, for each
 interface. It is recommended that values are assigned
 contiguously starting from 1. The value for each
 interface sub-layer must remain constant at least from
 one re-initialization of the entity's network
 management system to the next re-initialization."
 } ::= 1

 LEAF ifDescr {
 SYNTAX DisplayString (SIZE (0..255))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A textual string containing information about the
 interface. This string should include the name of the
 manufacturer, the product name and the version of the
 interface hardware/software."
 } ::= 2

 LEAF ifType {
 SYNTAX IANAifType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The type of interface. Additional values for ifType
 are assigned by the Internet Assigned Numbers
 Authority (IANA), through updating the syntax of the
 IANAifType textual convention."
 } ::= 3

 -- rest of ifTable LEAF objects would follow
} ::= { interfaces 2 }

-- declare the ifEntry descriptor for use in other AUGMENTS
ifEntry OBJECT IDENTIFIER ::= { ifTable 1 }

Note 1) The object naming and semantics are identical to the SMIv2
version. The OIDs for instance number '17' are shown:

 ifTable ::= { interfaces 2 }

Expires November 14, 2002 [Page 16]

Internet Draft SMI Data Structures May 14, 2002

 ifTable[17] ::= Not Available
 ifTable[17].ifIndex ::= { ifTable 1 1 17 }
 ifTable[17].ifDescr ::= { ifTable 1 2 17 }
 ifTable[17].ifType ::= { ifTable 1 3 17 }

5.7. Data Structure Augmentations

SMIv2 allows for MIB tables to be conceptually extended over time,
without modifying the original MIB table definition, using the AUGMENTS
clause. This is usually done to allow vendor extensions to standard
MIBs, or to avoid editing a 'stable' RFC.

In SMI-DS, the AUGMENTS clause is preserved and adapted for use with
aggregated data objects, in order to maintain backward compatibility
with SMIv2. Only inline variable declarations for ARRAY data objects
can be augmented.

In addition to the AUGMENTS clause, which models 1:1 existence
relationships between two ARRAY variables, a SPARSE-AUGMENTS clause is
provides to model conditional 1:1 existence relationships between the
augmenting ARRAY variable and the augmented ARRAY variable.

The AUGMENTS construct defines one or more nodes which are conceptually
added to the outermost containment layer of the augmented ARRAY
variable. The augmenting ARRAY variable inherits all of the index
components of that ARRAY (exactly as with SMIv2).

A variant of the AUGMENTS construct is provided (called SPARSE-AUGMENTS)
for situations in which a static subset of an existing ARRAY is
augmented. The DESCRIPTION clause for an ARRAY which is a sparse
augmentation MUST explain the relationship between the augmenting and
augmented table.

The AUGMENTS clause in SMIv2 references the internal table node (e.g.,
ifEntry, not ifTable), but SMI-DS ARRAY variables do not need or use
this internal construct. To remain compatible with SMIv2, an OBJECT
IDENTIFIER macro is used to declare an object descriptor which can be
used in AUGMENTS and SPARSE-AUGMENTS clauses.

AUGMENTS Example

The following trivial example shows how some high-capacity counters and
time-related attributes might be added to an existing array of packet

Expires November 14, 2002 [Page 17]

Internet Draft SMI Data Structures May 14, 2002

statistics.

TYPEDEF ARRAY InetHostStats {
 DESCRIPTION
 "Example of a IP host stats table."

 INDEX { ifIndex, inetAddrType, inetAddr }

 LEAF inetAddrType {
 SYNTAX InetAddressType
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The IP address type for the array entry.
 The InetAddressType values 'unknown(1)' and
 'dns(16)' are not allowed."
 } ::= 1

 LEAF inetAddr {
 SYNTAX InetAddress
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The IP address for the array entry."
 } ::= 2

 LEAF inPkts {
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of packets received by the specified host
 on the specified interface."
 } ::= 3

 LEAF outPkts {
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of packets transmitted by the specified
 host on the specified interface."
 } ::= 4

 -- Octet counters removed to make example shorter

Expires November 14, 2002 [Page 18]

Internet Draft SMI Data Structures May 14, 2002

}

-- variable declaration for a InetHostStats data collection

VAR ARRAY ipStats {
 SYNTAX InetHostStats
 STATUS current
 DESCRIPTION
 "The IP host statistics for this network device."
} ::= { someBase 4 }

-- OID declaration to keep AUGMENTS clause consistent
ipStatsEntry OBJECT IDENTIFIER ::= { ipStats 1 }

-- a struct containing additional information for each
-- set of counters

TYPEDEF STRUCT HostStatsTimeData {
 DESCRIPTION
 "Add some times related objects associated with
 each set of counters."

 LEAF createTime {
 SYNTAX TimeStamp
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of sysUpTime at the time this set of
 counters was created."
 } ::= 1

 LEAF updateInterval {
 SYNTAX Unsigned32
 UNITS "milliseconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The average amount of time that elapses between
 internal polling intervals for this counter set.
 A value of zero indicates that the counter set
 values are not polled internally."
 } ::= 2
}

-- Augment the ipStats variable with the ipXStats variable:

Expires November 14, 2002 [Page 19]

Internet Draft SMI Data Structures May 14, 2002

-- - 2 HC packet counters
-- - a HostStatsTimeData STRUCT
-- - an ARRAY of InetPortNumber packet counters

VAR ARRAY ipXStats {
 DESCRIPTION
 "Adds HC counters and additional information to
 the ipStats statistics."

 AUGMENTS { ipStatsEntry }

 LEAF inHCPkts {
 SYNTAX Counter64
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of packets received by the specified
 host on the specified interface."
 } ::= 1

 LEAF outHCPkts {
 SYNTAX Counter64
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of packets transmitted by the specified
 host on the specified interface."
 } ::= 2

 -- Octet counters removed to make example shorter

 STRUCT timeData {
 SYNTAX HostStatsTimeData
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Additional time-related information."
 } ::= 3

 ARRAY portStats {
 DESCRIPTION
 "Extend the ARRAY with InetPort statistics."

 INDEX { inetPort }

Expires November 14, 2002 [Page 20]

Internet Draft SMI Data Structures May 14, 2002

 LEAF inetPort {
 SYNTAX InetPortNumber
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The Internet port number for the array entry."
 } ::= 1

 UNION uInPkts {
 SYNTAX GenericCounter
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of packets received by the specified
 host on the specified port."
 } ::= 2

 UNION uOutPkts {
 SYNTAX GenericCounter
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of packets transmitted by the specified
 host on the specified port."
 } ::= 3

 -- Octet counters removed to make example shorter
 } ::= 4
} ::= { someBase 5 }

ipXStatsEntry OBJECT IDENTIFIER ::= { ipXStats 1 }

Note 1) The following example lists the potential OID values for each of
the fields in the 'ipStats' and 'ipXStats' variables in the example
above.

In this example only the instances for interface 17, InetAddressType
'ipv4(1)', InetAddress '192.168.0.1', and InetPortNumber '80' are shown.

 ipStats ::= { someBase 4 }
 ipStats[17] ::= Not Available
 ipStats[17][1] ::= Not Available
 ipStats[17][1][192.168.0.1] ::= Not Available

 ipStats[17][1][192.168.0.1].inPkts ::=

Expires November 14, 2002 [Page 21]

Internet Draft SMI Data Structures May 14, 2002

 { ipStats 1 3 17 1 4 192 168 0 1 }

 ipStats[17][1][192.168.0.1].outPkts ::=
 { ipStats 1 4 17 1 4 192 168 0 1 }

 ipXStats ::= { someBase 5 }
 ipXStats[17][1][192.168.0.1].inHCPkts ::=
 { ipXStats 1 1 17 1 4 192 168 0 1 }

 ipXStats[17][1][192.168.0.1].outHCPkts ::=
 { ipXStats 1 2 17 1 4 192 168 0 1 }

 ipXStats[17][1][192.168.0.1].timeData ::=
 { ipXStats 1 3 17 1 4 192 168 0 1 } (not-accessible)

 ipXStats[17][1][192.168.0.1].timeData.createTime ::=
 { ipXStats 1 3 1 17 1 4 192 168 0 1 }

 ipXStats[17][1][192.168.0.1].timeData.updateInterval ::=
 { ipXStats 1 3 2 17 1 4 192 168 0 1 }

 ipXStats[17][1][192.168.0.1].portStats ::=
 { ipXStats 1 4 17 1 4 192 168 0 1 } (not-accessible)

 ipXStats[17][1][192.168.0.1].portStats[80] ::= Not Available

 ipXStats[17][1][192.168.0.1].portStats[80].uInPkts ::=
 { ipXStats 1 4 2 17 1 4 192 168 0 1 80 } (not-accessible)

 ipXStats[17][1][192.168.0.1].portStats[80].uInPkts.c32 ::=
 { ipXStats 1 4 2 1 17 1 4 192 168 0 1 80 }

 ipXStats[17][1][192.168.0.1].portStats[80].uInPkts.c64 ::=
 { ipXStats 1 4 2 2 17 1 4 192 168 0 1 80 }

 ipXStats[17][1][192.168.0.1].portStats[80].uInPkts.c32pair ::=
 { ipXStats 1 4 2 3 17 1 4 192 168 0 1 80 } (not-accessible)

 ipXStats[17][1][192.168.0.1].portStats[80].uInPkts.c32pair.c32low ::=
 { ipXStats 1 4 2 3 1 17 1 4 192 168 0 1 80 }

 ipXStats[17][1][192.168.0.1].portStats[80].uInPkts.c32pair.c32hi ::=
 { ipXStats 1 4 2 3 2 17 1 4 192 168 0 1 80 }

 ipXStats[17][1][192.168.0.1].portStats[80].uOutPkts ::=

Expires November 14, 2002 [Page 22]

Internet Draft SMI Data Structures May 14, 2002

 { ipXStats 1 4 3 17 1 4 192 168 0 1 80 } (not-accessible)

 ipXStats[17][1][192.168.0.1].portStats[80].uOutPkts.c32 ::=
 { ipXStats 1 4 3 1 17 1 4 192 168 0 1 80 }

 ipXStats[17][1][192.168.0.1].portStats[80].uOutPkts.c64 ::=
 { ipXStats 1 4 3 2 17 1 4 192 168 0 1 80 }

 ipXStats[17][1][192.168.0.1].portStats[80].uOutPkts.c32pair ::=
 { ipXStats 1 4 3 3 17 1 4 192 168 0 1 80 } (not-accessible)

 ipXStats[17][1][192.168.0.1].portStats[80].uOutPkts.c32pair.c32low ::=
 { ipXStats 1 4 3 3 1 17 1 4 192 168 0 1 80 }

 ipXStats[17][1][192.168.0.1].portStats[80].uOutPkts.c32pair.c32hi ::=
 { ipXStats 1 4 3 3 2 17 1 4 192 168 0 1 80 }

Note 2) Although arbitrary levels of nested containment are
theoretically possible, SNMP varbind size limitations and common sense
design practices set practical limits on the complexity of data object
definitions.

Note 3) The SPPI provides an EXTENDS mechanism, which allows new LEAF
objects to be defined in a table which conceptually adds INDEX
components to an existing table. This mechanism is accomplished by
defining an additional ARRAY (with the new INDEX components and objects)
in an AUGMENTS clause, like the 'portStats' example above.

SPARSE-AUGMENTS Example

The following example shows how information about physical sensors may
sparsely augment the entPhysicalTable [RFC2737].

VAR ARRAY entSensorData {
 DESCRIPTION
 "Adds the ability to read physical sensor values
 to the Entity MIB. An entSensorData object exists
 for each entPhysicalEntry for which the entPhysicalClass
 object value is 'sensor(8)'."
 REFERENCE
 "RFC 2737, section 3."

 SPARSE-AUGMENTS { entPhysicalEntry }

https://datatracker.ietf.org/doc/html/rfc2737
https://datatracker.ietf.org/doc/html/rfc2737#section-3

Expires November 14, 2002 [Page 23]

Internet Draft SMI Data Structures May 14, 2002

 LEAF entSensorType {
 SYNTAX EntitySensorDataType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The type of data returned by the associated
 entSensorValue object. ..."
 } ::= 1

 LEAF entSensorScale {
 SYNTAX EntitySensorDataScale
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The exponent to apply to values returned by the
 associated entSensorValue object. ..."
 } ::= 2

 -- rest of entSensorEntry objects would follow ...

} ::= { someBase 6 }

Note 1) SMI-DS objects can augment SMIv2 tables, since the SMIv2 <-->
SMI-DS conversion algorithms are transparent. The augmented variable
object descriptor may be any value that would be accepted in an SMIv2
AUGMENTS clause.

Note 2) The following OIDs would be possible for the 'entSensorEntry'
augmentation. The instances for entPhysicalIndex == 17 are shown in this
example:

 entSensorData ::= { someBase 6 }
 entSensorData[17] ::= Not Available
 entSensorData[17].entSensorType ::= { entSensorData 1 1 17 }
 entSensorData[17].entSensorScale ::= { entSensorData 1 2 17 }

5.8. SYNTAX POINTER Clause

The 'VariablePointer' and 'RowPointer' TEXTUAL-CONVENTIONs [RFC2579]
provide semantic constraints on the generic OBJECT IDENTIFIER, but they
can only be used to point to a variable or row of any type, not a
specific type.

SMI-DS provides a modified SYNTAX clause for object declarations, in

https://datatracker.ietf.org/doc/html/rfc2579

Expires November 14, 2002 [Page 24]

Internet Draft SMI Data Structures May 14, 2002

order to specify an OID that must reference a MIB object (LEAF or
aggregated data object) of a particular type. The value { 0 0 } is also
allowed and is reserved to indicate a NULL pointer.

The form "SYNTAX POINTER <type-name>" specifies an OID which should
contain only those values that de-reference to the same type as defined
by <type-name>, or contain the NULL pointer value { 0 0 }.

For example, if the RMON DataSource TC [RFC2021] was written in SMI-DS,
the POINTER construct might be used as follows:

TYPEDEF LEAF DataSource {
 SYNTAX POINTER InterfaceIndex
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Identifies the source of the data that the associated
 function is configured to analyze. This source can be any
 interface on this device. ...
 For example, if an entry were to receive data from
 interface #1, this object would be set to ifIndex.1."
}

Refer to section 6.2 for details on the 'SYNTAX POINTER' clause.

https://datatracker.ietf.org/doc/html/rfc2021

Expires November 14, 2002 [Page 25]

Internet Draft SMI Data Structures May 14, 2002

6. Definitions

The follow sections specify the SMI Data Structures syntax and
semantics.

[ed. -- this section is intentionally incomplete, because this revision
is meant to introduce the SMI Data Structures concepts, syntax, and
examples. Complete specification to the level of SMIv2 is TBD.]

6.1. Namespaces

The type names and variable names used in SMI Data Structures are
contained is the same namespace, identical to the SMIv2 namespace for
OBJECT-TYPE descriptors, and shared with SMIv2. Reserved keywords in
SMI-DS or SMIv2 MUST NOT be used as type names or object descriptors.

Ideally, every data object containment level would define its own
namespace, in a truly hierarchical fashion. However, this would not be
compatible with existing SMIv2 practices, and would require changes to
the IMPORTS, MODULE-COMPLIANCE and OBJECT-GROUP macros to support.

[ed. - further definition of namespaces TBD]

6.2. Syntax

[ed. - the following ad-hoc syntax definition is a first-pass attempt,
and obviously needs ABNF definition, and a detailed mappings and rules
section for each construct. At this time, any construct which is
equivalent to the SMIv2 version is not fully specified.]

-- top level construction

<module> ::=

 "MODULE" <module-name> "DEFINITIONS" "::=" "BEGIN"
 <imports-decl>
 <module-identity-decl>
 [<module-decl ...]
 [<compliance-section>]
 "END"

<module-name> ::= (same as SMIv2)

<imports-decl> ::= (same as SMIv2)

Expires November 14, 2002 [Page 26]

Internet Draft SMI Data Structures May 14, 2002

<module-identity-decl> ::= (same as SMIv2)

<module-decl> ::=

 (<object-identifier> | <object-identity> |
 <typedef-decl> | <var-decl> | notification-decl>)

<object-identifier> ::= (SMIv2 OBJECT IDENTIFIER clause)

<object-identity> ::= (SMIv2 OBJECT-IDENTITY clause)

<typedef-decl> ::=

 "TYPEDEF" (<leaf-typedef> | <array-typedef> |
 <union-typedef> | <struct-typedef>)

<var-decl> ::=

 "VAR" (<leaf-var-decl> | <array-var-decl> |
 <union-var-decl> | <struct-var-decl>)

<leaf-typedef> ::=

 "LEAF" <type-name> <leaf-core-decl>

<type-name> ::=

 (same rules as for SMIv2 TEXTUAL-CONVENTION descriptors)

<leaf-core-decl> ::=

 "{"
 [<display-part>]
 <syntax-clause>
 [<units-clause>]
 <max-access-clause>
 <status-clause>
 <description-clause>
 [<reference-clause>]
 [<defval-clause>]
 "}"

<display-part> ::= (same as SMIv2 DIPLAY-HINT)

<syntax-clause> ::=

Expires November 14, 2002 [Page 27]

Internet Draft SMI Data Structures May 14, 2002

 (<plain-syntax-clause> | <pointer-syntax-clause>)

<plain-syntax-clause> ::=

 (same as SMIv2, plus 64-bit numbers and float data types)

<pointer-syntax-clause> ::=

 "SYNTAX" "POINTER" <type-name>

<units-clause> ::= (same as SMIv2)

<max-access-clause> ::= (same as SMIv2)

<status-clause> ::= (same as SMIv2)

<description-clause> ::= (same as SMIv2)

<reference-clause> ::= (same as SMIv2)

<defval-clause> ::= (same as SMIv2)

<leaf-type-decl> ::=

 "LEAF" <object-descriptor> <leaf-core-decl>
 "::=" <N>

<object-descriptor> ::=

 (same rules as for SMIv2 OBJECT-TYPE descriptors)

<N> ::= an INTEGER in the range (1..4294967295)

<leaf-var-decl> ::=

 "LEAF" <object-descriptor> <leaf-core-decl>
 "::=" <oid-assignment>

<oid-assignment> ::= (same as SMIv2)

<array-typedef> ::=

 "ARRAY" <type-name> "{"
 <description-clause>
 [<reference-clause>]

Expires November 14, 2002 [Page 28]

Internet Draft SMI Data Structures May 14, 2002

 <index-decl>
 <object-decl> [<object-decl> ...]
 "}"

<index-clause> ::=

 (<index-decl> | <augments-decl> |
 <sparse-augments-decl>)

<index-decl> ::=

 "INDEX" "{" <object-descriptor>
 ["," <object-descriptor> ...] "}"

<augments-decl> ::=

 "AUGMENTS" "{" <object-descriptor> "}"

<sparse-augments-decl> ::=

 "SPARSE-AUGMENTS" "{" <object-descriptor> "}"

<object-decl> ::=

 (<leaf-type-decl> | <array-type-decl> |
 <union-type-decl> | <struct-type-decl>)

<array-type-decl> ::=

 (<array-inline-type-decl> | <array-ref-type-decl>)

<array-inline-type-decl> ::=

 <array-inline-core-decl> <N>

<array-inline-core-decl> ::=

 "ARRAY" <object-descriptor> "{"
 <description-clause>
 [<reference-clause>]
 <index-decl>
 <object-decl> [<object-decl> ...]
 "}" "::="

<array-ref-type-decl> ::=

Expires November 14, 2002 [Page 29]

Internet Draft SMI Data Structures May 14, 2002

 <array-ref-core-decl> <N>

<array-ref-core-decl> ::=

 "ARRAY" <object-descriptor> "{"
 <syntax-clause>
 [<max-access-clause>]
 <status-clause>
 <description-clause>
 [<reference-clause>]
 "}" "::="

<array-var-decl> ::=

 (<array-inline-var-decl> | <array-ref-var-decl>)

<array-inline-var-decl> ::=

 <array-inline-core-decl> <oid-assignment>

<array-ref-var-decl> ::=

 <array-ref-core-decl> <oid-assignment>

<union-typedef> ::=

 "UNION" <type-name> "{"
 <description-clause>
 [<reference-clause>]
 <object-decl> [<object-decl> ...]
 "}"

<union-type-decl> ::=

 (<union-inline-type-decl> | <union-ref-type-decl>)

<union-inline-type-decl> ::=

 <union-inline-core-decl> <N>

<union-inline-core-decl> ::=

 "UNION" <object-descriptor> "{"
 <description-clause>
 [<reference-clause>]

Expires November 14, 2002 [Page 30]

Internet Draft SMI Data Structures May 14, 2002

 <object-decl> [<object-decl> ...]
 "}" "::="

<union-ref-type-decl> ::=

 <union-ref-core-decl> <N>

<union-ref-core-decl> ::=

 "UNION" <object-descriptor> "{"
 <syntax-clause>
 [<max-access-clause>]
 <status-clause>
 <description-clause>
 [<reference-clause>]
 "}" "::="

<union-var-decl> ::=

 (<union-inline-var-decl> | <union-ref-var-decl>)

<union-inline-var-decl> ::=

 <union-inline-core-decl> <oid-assignment>

<union-ref-var-decl> ::=

 <union-ref-core-decl> <oid-assignment>

<struct-typedef> ::=

 "STRUCT" <type-name> "{"
 <description-clause>
 [<reference-clause>]
 <object-decl> [<object-decl> ...]
 "}"

<struct-type-decl> ::=

 (<struct-inline-type-decl> | <struct-ref-type-decl>)

<struct-inline-type-decl> ::=

 <struct-inline-core-decl> <N>

Expires November 14, 2002 [Page 31]

Internet Draft SMI Data Structures May 14, 2002

<struct-inline-core-decl> ::=

 "STRUCT" <object-descriptor> "{"
 <description-clause>
 [<reference-clause>]
 <object-decl> [<object-decl> ...]
 "}" "::="

<struct-ref-type-decl> ::=

 <struct-ref-core-decl> <N>

<struct-ref-core-decl> ::=

 "STRUCT" <object-descriptor> "{"
 <syntax-clause>
 [<max-access-clause>]
 <status-clause>
 <description-clause>
 [<reference-clause>]
 "}" "::="

<struct-var-decl> ::=

 (<struct-inline-var-decl> | <struct-ref-var-decl>)

<struct-inline-var-decl> ::=

 <struct-inline-core-decl> <oid-assignment>

<struct-ref-var-decl> ::=

 <struct-ref-core-decl> <oid-assignment>

<notification-decl> ::=

 "NOTIFICATION" <object-descriptor> "{"
 [<objects-part>]
 <status-clause>
 <description-clause>
 [<reference-clause>]
 "}" "::=" <oid-assignment>

<objects-part> ::=

Expires November 14, 2002 [Page 32]

Internet Draft SMI Data Structures May 14, 2002

 "OBJECTS" "{" <object-descriptor>
 ["," <object-descriptor> ...] "}"

<compliance-section> ::=

 (same as SMIv2, except VAR node descriptors need to
 be fully qualified)

-- END

7. Information Modules

TBD - This section (and 7 more) need to be completed by adapting
sections 3 - 10 of SMIv2 [RFC2578].

Expires November 14, 2002 [Page 33]

https://datatracker.ietf.org/doc/html/rfc2578

Internet Draft SMI Data Structures May 14, 2002

8. Appendix A: SMIv2 Compatibility

It is important to advance SMI features in a way that maximizes the
reusability of existing SMIv2-based development work and training.
Several SMI-DS features are intended to provide mechanisms for automatic
(or semi-automatic) translations between SMIv2 and SMI-DS definitions.

8.1. Common Constructs

The following macros, clauses, and keywords are identical in SMIv2 and
SMI-DS, and therefore no translation is required. Clauses listed here
are not mentioned in the sections describing macro conversions that
utilize these clauses.

 - BEGIN
 - DEFVAL
 - DEFINITIONS
 - DESCRIPTION
 - DISPLAY-HINT
 - END
 - IMPORTS
 - INDEX
 - MAX-ACCESS
 - MODULE-COMPLIANCE (all clauses)
 - MODULE-IDENTITY (all clauses)
 - OBJECT-IDENTITY
 - OBJECT-IDENTIFIER
 - OBJECTS
 - REFERENCE
 - STATUS
 - UNITS

8.2. SMIv2 to SMI-DS Module Conversion

The following SMIv2 macros, clauses and keywords require some
conversion:

 - NOTIFICATION-TYPE
 - OBJECT-TYPE
 - SEQUENCE
 - TEXTUAL-CONVENTION

TEXTUAL-CONVENTIONs

Expires November 14, 2002 [Page 34]

Internet Draft SMI Data Structures May 14, 2002

The TEXTUAL-CONVENTION macro is replaced by the TYPEDEF macro, which can
be used to define aggregated data types, in addition to the refinement
of base types. The TEXTUAL-CONVENTION macro is replaced with the
TYPEDEF macro as follows:

 a) prefix type name with 'TYPEDEF LEAF ' and append it with ' {'

 b) remove '::= TEXTUAL-CONVENTION'

 c) The SYNTAX clause can be modified to refine another LEAF
 TYPEDEF, or an OBJECT IDENTIFIER type can be changed to
 a typed OID pointer (e.g., 'SYNTAX POINTER FooType')

 d) add a MAX-ACCESS clause specifying the maximum access level
 for the data type, as used in any possible situation

 e) a UNITS clause may be added if appropriate

 f) a DEFVAL clause may be added if appropriate

 g) end TYPEDEF macro with a '}' token

 e.g:

 FooString ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "This data type is used to model an administratively
 controlled textual string."
 SYNTAX OCTET STRING (SIZE (0..127))

 is changed to:

 TYPEDEF LEAF FooString {
 SYNTAX OCTET STRING (SIZE (0..127))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This data type is used to model an administratively
 controlled textual string."
 }

OBJECT-TYPE Macro

Expires November 14, 2002 [Page 35]

Internet Draft SMI Data Structures May 14, 2002

The generic OBJECT-TYPE macro is replaced with the VAR macro.

Scalar Objects

The scalar OBJECT-TYPE macro is replaced with the 'VAR LEAF' macro as
follows:

 a) prefix scalar name with 'VAR LEAF ' and append it with ' {'

 b) remove '::= OBJECT-TYPE'

 c) The SYNTAX clause of OBJECT IDENTIFIER can be changed to a
 typed OID pointer (e.g., 'SYNTAX POINTER FooType')

 d) prefix '::= <oid-assignment>' with a '}' token

 e.g.,

 sysUpTime OBJECT-TYPE
 SYNTAX TimeTicks
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The time (in hundredths of a second) since the network
 management portion of the system was last re-initialized."
 ::= { system 3 }

 is replaced with:

 VAR LEAF sysUpTime {
 SYNTAX TimeTicks
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The time (in hundredths of a second) since the network
 management portion of the system was last re-initialized."
 } ::= { system 3 }

Tabular Objects

The tabular OBJECT-TYPE macro is replaced with the 'VAR ARRAY' macro as
follows:

Expires November 14, 2002 [Page 36]

Internet Draft SMI Data Structures May 14, 2002

 a) The contents of the SEQUENCE can be converted in three ways:
 1) placed directly in a VAR ARRAY macro
 2) placed in a STRUCT TYPEDEF and a data node of that type
 declared in the VAR ARRAY macro
 3) placed an ARRAY TYPEDEF, including the INDEX, and a
 variable of this type declared with the VAR ARRAY macro.
 This method must be used to convert tables using the
 AUGMENTS clause.

 The direct method (1) is shown here.

 b) The OBJECT-TYPE macro for the table itself (e.g., fooTable)
 is transformed into a VAR ARRAY declaration by extracting
 the object descriptor, prefixing it with 'VAR ARRAY ' and
 appending it with ' {'. The DESCRIPTION clause should be
 transferred and modified as needed.

 c) The OBJECT-TYPE macro for the table entry (e.g., fooEntry) is
 discarded except for the INDEX clause, and any information
 from the DESCRIPTION clause is transferred and modified as
 needed. An OBJECT IDENTIFIER macro may be created to
 declare the descriptor for the table entry, allowing it
 to be used in an AUGMENTS or SPARSE-AUGMENTS clause in
 another ARRAY variable declaration. E.g.,

 fooEntry OBJECT IDENTIFIER ::= { fooTable 1 }

 d) For each OBJECT-TYPE macro, an <object-decl>
 for a 'LEAF' is created.
 - prefix object descriptor with 'VAR LEAF ' and append it
 with ' {'
 - remove '::= OBJECT-TYPE'
 - The SYNTAX clause of OBJECT IDENTIFIER may be changed to a
 typed OID pointer (e.g., 'SYNTAX POINTER FooType')
 - replace '::= { fooEntry <N> }' with '} ::= <N>'

 e) prefix a '}' token to the node assignment for the table itself
 (e.g., 'fooTable'), which becomes the node assignment for the
 ARRAY variable declaration.

 E.g., (Note: IF-MIB [RFC2863] example DESCRIPTION clauses truncated),

 ifStackTable OBJECT-TYPE
 SYNTAX SEQUENCE OF IfStackEntry
 MAX-ACCESS not-accessible

https://datatracker.ietf.org/doc/html/rfc2863

Expires November 14, 2002 [Page 37]

Internet Draft SMI Data Structures May 14, 2002

 STATUS current
 DESCRIPTION
 "The table containing information on the relationships
 between the multiple sub-layers of network interfaces..."
 ::= { ifMIBObjects 2 }

 ifStackEntry OBJECT-TYPE
 SYNTAX IfStackEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information on a particular relationship between two
 sub-layers, specifying that one sub-layer runs on
 'top' of the other sub-layer. Each sub-layer
 corresponds to a conceptual row in the ifTable."
 INDEX { ifStackHigherLayer, ifStackLowerLayer }
 ::= { ifStackTable 1 }

 IfStackEntry ::=
 SEQUENCE {
 ifStackHigherLayer Integer32,
 ifStackLowerLayer Integer32,
 ifStackStatus RowStatus
 }

 ifStackHigherLayer OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The value of ifIndex corresponding to the higher
 sub-layer of the relationship, i.e., the sub-layer..."
 ::= { ifStackEntry 1 }

 ifStackLowerLayer OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The value of ifIndex corresponding to the lower sub-
 layer of the relationship, i.e., the sub-layer which ..."
 ::= { ifStackEntry 2 }

 ifStackStatus OBJECT-TYPE
 SYNTAX RowStatus

Expires November 14, 2002 [Page 38]

Internet Draft SMI Data Structures May 14, 2002

 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of the relationship between two sub-
 layers. ..."
 ::= { ifStackEntry 3 }

 is replaced with:

 VAR ARRAY ifStackTable {
 DESCRIPTION
 "The table containing information on the relationships
 between the multiple sub-layers of network interfaces...

 Information on a particular relationship between two
 sub-layers, specifying that one sub-layer runs on
 'top' of the other sub-layer. Each sub-layer
 corresponds to a conceptual row in the ifTable."

 INDEX { ifStackHigherLayer, ifStackLowerLayer }

 LEAF ifStackHigherLayer {
 SYNTAX Integer32
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The value of ifIndex corresponding to the
 higher sub-layer of the relationship, i.e.,
 the sub-layer..."
 } ::= 1

 LEAF ifStackLowerLayer {
 SYNTAX Integer32
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The value of ifIndex corresponding to the
 lower sub-layer of the relationship, i.e.,
 the sub-layer which ..."
 } ::= 2

 LEAF ifStackStatus {
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current

Expires November 14, 2002 [Page 39]

Internet Draft SMI Data Structures May 14, 2002

 DESCRIPTION
 "The status of the relationship between two sub-
 layers. ..."
 } ::= 3
 ::= { ifMIBObjects 2 }

 OBJECT IDENTIFIER ifStackEntry ::= { ifStackTable 1 }

Notifications

The SMIv2 NOTIFICATION-TYPE macro is replaced with the NOTIFICATION
macro as follows:

 a) prefix notification name with 'NOTIFICATION ' and append
 it with ' {'

 b) remove '::= NOTIFICATION-TYPE'

 c) prefix '::= <oid-assignment>' with a '}' token

 e.g.,

 linkUp NOTIFICATION-TYPE
 OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }
 STATUS current
 DESCRIPTION
 "A linkDown trap signifies that the SNMPv2 entity,
 acting in an agent role, has detected that the
 ifOperStatus object for one of its communication links
 left the down state and transitioned into some other
 state (but not into the notPresent state). This other
 state is indicated by the included value of
 ifOperStatus."
 ::= { snmpTraps 4 }

 is replaced with:

 NOTIFICATION linkUp {
 OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }
 STATUS current
 DESCRIPTION
 "A linkDown trap signifies that the SNMPv2 entity,
 acting in an agent role, has detected that the
 ifOperStatus object for one of its communication links

Expires November 14, 2002 [Page 40]

Internet Draft SMI Data Structures May 14, 2002

 left the down state and transitioned into some other
 state (but not into the notPresent state). This other
 state is indicated by the included value of
 ifOperStatus."
 } ::= { snmpTraps 4 }

8.3. SMI-DS to SMIv2 Module Conversion

Just as with the transition from SMIv1 to SMIv2, not all new constructs
can be efficiently mapped backward (from SMI-DS to SMIv2). Since some
new clauses are designed to extract information buried in DESCRIPTION
clauses or comments, it is to be expected that backward conversion
consists of putting this information back where it came from.

[Guidelines for unfolding tables TBD]

8.4. Compatibility Guidelines

The following guidelines are provided to assist MIB writers create SMI-
DS modules that can be properly mapped backward into SMIv2 syntax and
semantics.

ARRAYs

The IMPLIED keyword SHOULD NOT be used, except to convert an SMIv2 table
which has an IMPLIED INDEX component to SMI-DS. Only one IMPLIED
keyword can be used, and it MUST be in the innermost ARRAY construct, if
nested ARRAYs are defined. The IMPLIED keyword severely limits the
ability to reuse a TYPEDEF containing it, and SHOULD NOT be used in type
definitions.

Expires November 14, 2002 [Page 41]

Internet Draft SMI Data Structures May 14, 2002

9. Appendix B: Complete MODULE Example

The following example shows a somewhat complete MIB module, adapted from
the Remote Monitoring Extensions for Differentiated Services document
[DSMON-MIB]. Refer to that document to compare the SMIv2 and SMI-DS
definitions.

This is not a transparent conversion of the SMIv2 version, but rather an
'upgraded' version, in which the containment features (such as STRUCTs
and nested ARRAYs) are utilized. The intent is to demonstrate how a
read-create data structure spread over three tables with SMIv2 can be
defined as a single structure with SMI-DS.

MODULE DSMON-MIB DEFINITIONS ::= BEGIN

-- partial IMPORTS, only for the aggregation control objects

IMPORTS
 MODULE-IDENTITY, Integer32, Counter32
 FROM SNMPv2-SMI
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 RowStatus, TimeStamp, TruthValue
 FROM SNMPv2-TC
 OwnerString, rmon
 FROM RMON-MIB
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB
 Dscp
 FROM DIFFSERV-DSCP-TC;

-- the MODULE-IDENTITY macro is not changed at all

dsmonMIB MODULE-IDENTITY
 LAST-UPDATED "200111050000Z"
 ORGANIZATION "IETF RMONMIB Working Group"
 CONTACT-INFO
 "Same as SMIv2"
 DESCRIPTION
 "Same as SMIv2"
 REVISION "200111050000Z"
 DESCRIPTION
 "Same as SMIv2"
 ::= { rmon 26 }

Expires November 14, 2002 [Page 42]

Internet Draft SMI Data Structures May 14, 2002

dsmonObjects OBJECT IDENTIFIER ::= { dsmonMIB 1 }
dsmonNotifications OBJECT IDENTIFIER ::= { dsmonMIB 2 }
dsmonConformance OBJECT IDENTIFIER ::= { dsmonMIB 3 }

dsmonAggObjects OBJECT IDENTIFIER ::= { dsmonObjects 1 }

-- the following objects removed from the example
dsmonStatsObjects OBJECT IDENTIFIER ::= { dsmonObjects 2 }
dsmonPdistObjects OBJECT IDENTIFIER ::= { dsmonObjects 3 }
dsmonHostObjects OBJECT IDENTIFIER ::= { dsmonObjects 4 }
dsmonCapsObjects OBJECT IDENTIFIER ::= { dsmonObjects 5 }
dsmonMatrixObjects OBJECT IDENTIFIER ::= { dsmonObjects 6 }

-- converted DsmonCounterAggGroupIndex TC to a TYPEDEF

TYPEDEF LEAF DsmonCounterAggGroupIndex {
 SYNTAX Integer32 (0..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This TC describes a data type which identifies a DSMON
 counter aggregation group, ..."
}

-- converted DsmonCounterAggProfileIndex TC to a TYPEDEF

TYPEDEF LEAF DsmonCounterAggProfileIndex {
 SYNTAX Integer32 (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This TC describes a data type which identifies a DSMON
 counter aggregation profile, ..."
}

-- converted dsmonAggProfileTable

TYPEDEF ARRAY DsmonCounterAggProfile {
 DESCRIPTION
 "Controls the setup of a single aggregation profile,
 for which every DSCP value MUST be configured
 into exactly one aggregation group. ..."

 INDEX { dsmonAggProfileDSCP }

Expires November 14, 2002 [Page 43]

Internet Draft SMI Data Structures May 14, 2002

 LEAF dsmonAggProfileDSCP {
 SYNTAX Dscp
 MAX-ACCESS not-accessible
 STATUS curent
 DESCRIPTION
 "The specific DSCP value which is configured in an
 aggregation group by this entry."
 } ::= 1

 LEAF dsmonAggGroupIndex {
 SYNTAX DsmonCounterAggGroupIndex
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The aggregation group which contains this DSCP
 value. ..."
 DEFVAL { 0 }
 } ::= 2
}

-- converted dsmonAggGroupTable

TYPEDEF ARRAY DsmonCounterAggGroup {
 DESCRIPTION
 "Controls the setup of a single aggregation profile,
 for which every DSCP value MUST be configured
 into exactly one aggregation group. ..."

 INDEX { dsmonAggGroupIndex }

 LEAF dsmonAggGroupIndex {
 SYNTAX DsmonCounterAggGroupIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The specific Aggregation Group which is represented
 group by each entry."
 } ::= 1

 LEAF dsmonAggGroupDescr {
 SYNTAX SnmpAdminString (SIZE(0..64))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "An administratively assigned description of the

Expires November 14, 2002 [Page 44]

Internet Draft SMI Data Structures May 14, 2002

 aggregation group identified by this entry. ..."
 } ::= 2
}

-- converted dsmonAggControlTable

TYPEDEF STRUCT DsmonCounterAggControl {
 DESCRIPTION
 "Provides an overall description and control
 point for a single aggregation control configuration. ..."

 LEAF dsmonAggControlDescr {
 SYNTAX SnmpAdminString (SIZE(0..64))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "An administratively assigned description of the aggregation
 profile identified by this entry. ..."
 } ::= 1

 ARRAY aggProfile {
 SYNTAX DsmonCounterAggProfile
 STATUS current
 DESCRIPTION
 "A set of DSCP to Aggregation Group mappings."
 } ::= 2

 ARRAY aggGroup {
 SYNTAX DsmonCounterAggGroup
 STATUS current
 DESCRIPTION
 "A set of Aggregation Group descriptions."
 } ::= 3

 LEAF dsmonAggControlOwner {
 SYNTAX OwnerString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The entity that configured this object and is
 therefore using the resources assigned to it."
 } ::= 4

 LEAF dsmonAggControlStatus {
 SYNTAX RowStatus

Expires November 14, 2002 [Page 45]

Internet Draft SMI Data Structures May 14, 2002

 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this entire aggregation control
 object. ..."
 } ::= 5
}

--
-- variable declarations for the 4 scalars in this group
--

VAR LEAF dsmonMaxAggGroups {
 SYNTAX Integer32 (2..64)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The maximum number of aggregation groups that this agent
 can support. ..."
} ::= { dsmonAggObjects 1 }

VAR LEAF dsmonAggControlLocked {
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Controls the setup of aggregation groups for this agent. ..."
} ::= { dsmonAggObjects 2 }

VAR LEAF dsmonAggControlChanges {
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object counts the number of times the value of the
 dsmonAggControlLocked object has changed. ..."
} ::= { dsmonAggObjects 3 }

VAR LEAF dsmonAggControlLastChangeTime {
 SYNTAX TimeStamp
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object identifies the value of sysUpTime at the moment
 the dsmonAggControlLocked object was last modified. ..."

Expires November 14, 2002 [Page 46]

Internet Draft SMI Data Structures May 14, 2002

} ::= { dsmonAggObjects 4 }

-- finishing the dsmonAggControlTable by allowing multiple
-- instances of an aggregation control block

VAR ARRAY dsmonAggProfiles {
 STATUS current
 DESCRIPTION
 "A collection of DSMON aggregation control profiles. ..."

 INDEX { dsmonAggControlIndex }

 LEAF dsmonAggControlIndex {
 SYNTAX DsmonCounterAggProfileIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The specific Counter Aggregation Profile which is
 represented by each entry."
 } ::= 1

 STRUCT aggControl {
 SYNTAX DsmonCounterAggControl
 STATUS current
 DESCRIPTION
 "The DSMON Counter Aggregation Control entry for
 each profile."
 } ::= 2
} ::= { dsmonAggObjects 5 }

-- No NOTIFICATION-TYPE macros defined in this module

-- Compliance section (currently unchanged from SMIv2)

dsmonCounterAggControlCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "Example compliance for the aggregation control
 portion of the DSMON-MIB module."
 MODULE -- this module
 MANDATORY-GROUPS { dsmonCounterAggControlGroup }

 ::= { dsmonCompliances 1 }

dsmonCounterAggControlGroup OBJECT-GROUP

Expires November 14, 2002 [Page 47]

Internet Draft SMI Data Structures May 14, 2002

 OBJECTS {
 dsmonMaxAggGroups,
 dsmonAggControlLocked,
 dsmonAggControlChanges,
 dsmonAggControlLastChangeTime,
 dsmonAggProfiles.aggControl.dsmonAggControlDescr,
 dsmonAggProfiles.aggControl.dsmonAggControlOwner,
 dsmonAggProfiles.aggControl.dsmonAggControlStatus,
 dsmonAggProfiles.aggControl.appProfile.dsmonAggGroupIndex,
 dsmonAggProfiles.aggControl.appGroup.dsmonAggGroupDescr
 }
 STATUS current
 DESCRIPTION
 "A collection of objects used to configure and manage
 aggregation groups for DSMON collection purposes."
 ::= { dsmonGroups 1 }

END

Note 1) The following example shows the difference between SMIv2 naming
and SMI-DS naming, for the OBJECT IDENTIFIERS in the DSMON-MIB module
example above.

 Object Instance Examples

 O=Old (SMIv2), N=New (SMI-DS)

dsmonAggGroup scalars:
 dsmonMaxAggGroups
 O: dsmonAggObjects.1.0
 N: dsmonAggObjects.1.0
 dsmonAggControlLocked
 O: dsmonAggObjects.2.0
 N: dsmonAggObjects.2.0
 dsmonAggControlChanges
 O: dsmonAggObjects.3.0
 N: dsmonAggObjects.3.0
 dsmonAggControlLastChangeTime
 O: dsmonAggObjects.4.0
 N: dsmonAggObjects.4.0

dsmonAggControlTable example for row 77:
 dsmonAggControlDescr
 O: dsmonAggObjects.5.1.2.77
 N: dsmonAggObjects.5.1.2.1.77

Expires November 14, 2002 [Page 48]

Internet Draft SMI Data Structures May 14, 2002

 dsmonAggControlOwner
 O: dsmonAggObjects.5.1.3.77
 N: dsmonAggObjects.5.1.2.4.77
 dsmonAggControlStatus
 O: dsmonAggObjects.5.1.3.77
 N: dsmonAggObjects.5.1.2.5.77

dsmonAggProfileTable example for row 77.22:
 dsmonAggGroupIndex
 O: dsmonAggObjects.6.1.2.77.22
 N: dsmonAggObjects.5.1.2.2.2.77.22

dsmonAggGroupTable example for row 77.44:
 dsmonAggGroupDescr
 O: dsmonAggObjects.7.1.1.77.44
 N: dsmonAggObjects.5.1.2.3.2.77.44
 dsmonAggGroupStatus
 O: dsmonAggObjects.7.1.2.77.44
 N: not needed because dsmonAggControlStatus
 controls an entire dsmonAggControl data object

Note 2) Scalar object naming does not change at all

Note 3) DSMON Counter Aggregation control requires three tables in SMIv2
(dsmonAggObjects.5 - 7) and one in SMI-DS (dsmonAggObjects.5). This
allows the subordinate RowStatus object (dsmonAggGroupStatus) to be
removed. It also allows the agent to identify the complete hierarchical
position of any object instance by inspection. These implementation
benefits (and others) can help significantly to reduce the software
development costs for complex MIBs.

Note 4) Aggregate object descriptors have to be fully qualified, for
each VAR declaration. Need to consider a shorthand notation in next
version of SMI-DS.

10. Appendix C: Open Issues

The following open issues (in no particular order) need to be addressed.

1) SPPI Merge

The biggest issue is SPPI OID naming. Experts in COPS-PR and SPPI
should determine how SPPI naming, tabular data model, and various SPPI
clauses should be integrated into SMI-DS. This should be done in a way

Expires November 14, 2002 [Page 49]

Internet Draft SMI Data Structures May 14, 2002

that does not impact the overall complexity or ease of use as an SMIv2
replacement, possibly contained in a separate document.

2) Conformance Granularity

The concept of MIB conformance may need to change to better handle the
complexity created by the type definition and containment features of
SMI-DS. MODULE-COMPLIANCE macros for complex data objects may need to
allow for automatic conformance update mechanisms. The 'copy-by-
reference' property of nested data structures needs to somehow translate
to the conformance section. E.g., if 'fooObject1' is deprecated and
updated with 'fooObject2' in the 'FooStruct', then the update occurs
everywhere a 'FooStruct' is nested. The MODULE-COMPLIANCE needs to be
updated somehow for every VAR declaration that is, or has an embedded
'FooStruct'.

3) Conformance Instance Overlap

Since descriptors can occur in TYPEDEFs, they are not unique for
conformance purposes (as raised by Randy Presuhn in SLC). An efficient
MODULE-COMPLIANCE mechanism is needed to provide conformance info for
each VAR and NOTIFICATION declaration, not for each accessible object
descriptor. This way, object descriptors can have different conformance
requirements at the granularity of the VAR macro.

4) SMIv2 Merge Issues

Sections 3 - 10 of RFC 2578 need to be adapted and added into this
document. The extensive set of implementation rules and guidelines needs
to be updated and clarified. Complete 'ASN.1 free' syntax needs to be
finished, along with the SMIv2 compatibility and transformation
guidelines.

5) Base Data Type Extensions

The data types defined in the 'SMIng Core Modules' document should be
used by this document somehow.

6) SMI Syntax

Although it is tempting to completely change the syntax for the data
definition language to benefit potential 'new users', this would
increase overall complexity for new and old users of the SMI. There are
many more MIB modules now then April 1993, when SMIv2 was first
published as RFC 1442. It took years to convert all the standards track

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc1442

Expires November 14, 2002 [Page 50]

Internet Draft SMI Data Structures May 14, 2002

modules from SMIv1 to SMIv2, and it will probably take years to convert
them all from SMIv2 to SMIv3. During the transition, operators and
developers need to know both syntax variants, and it will help a great
deal if they are similar to each other.

7) STATUS clause for aggregate data objects

It may be useful to have a STATUS clause for an entire aggregate TYPEDEF
or VAR construct, which overrides the status of any of the individual
nodes within that aggregate. This would allow a simpler way to
deprecate the entire object when needed.

11. Appendix D: Discussion of SMIng Objectives

This section lists each accepted design objective described in the SMIng
Objectives document [SMING_OBJ], and explains how SMI-DS addresses the
objective.

4.1.1 The Set of Specification Documents [Yes]

Description
 SMIv2 is defined in three documents, based on an obsolete ITU ASN.1
 specification. SPPI is defined in one document, based on SMIv2.
 The core of SMIng must be defined in one document and must be
 independent of external specifications.

Fulfillment
 SMI-DS can meet this objective by simply placing as much text as
 desired in a single document.

4.1.2 Textual Representation [Yes]

Description
 SMIng definitions must be represented in a textual format.

Fulfillment
 SMI-DS meets this objective because it is specified using only
 textual characters.

4.1.3 Human Readability [Yes]

Description
 The syntax must make it easy for humans to directly read and write
 SMIng modules. It must be possible for SMIng module authors to
 produce SMIng modules with text editing tools.

Expires November 14, 2002 [Page 51]

Internet Draft SMI Data Structures May 14, 2002

Fulfillment
 The SMI-DS syntax is very close (or identical) to SMIv2 in all
 respects, so it will be easy for MIB authors and readers to use.

4.1.4 Rigorously Defined Syntax [Yes - TBD]

Description
 There must be a rigorously defined syntax for the SMIng language.

Fulfillment
 Once the features (and the syntax for those features) are
 finalized, all SMI-DS constructs will be rigorously defined,
 including the constructs which do not change from SMIv2.

4.1.5 Accessibility [Yes]

Description
 Attribute definitions must indicate whether attributes can be read,
 written, created, deleted, and whether they are accessible for
 notifications, or are not accessible. Align PIB-ACCESS and MAX-
 ACCESS, and PIB-MIN-ACCESS and MIN-ACCESS.

Fulfillment
 The MAX-ACCESS clause is retained from SMIv2. PIB versions of these
 constructs do not really differ in semantics, just in name. PIBs
 and MIBs use the same MAX-ACCESS clause.

4.1.6 Language Extensibility [Maybe]

Description
 The language must have characteristics, so that future modules can
 contain information of future syntax without breaking original
 SMIng parsers.

Fulfillment
 Although this objective benefits very few people, it can be
 achieved by rigorously defining the SMI-DS syntax so that a parser
 can always determine where a construct begins and ends.

4.1.7 Special Characters in Text [No]

Description
 Allow an escaping mechanism to encode special characters, e.g.,
 double quotes and new-line characters, in text such as DESCRIPTIONs
 or REFERENCEs.

Expires November 14, 2002 [Page 52]

Internet Draft SMI Data Structures May 14, 2002

Fulfillment
 Currently there are no mechanisms added to these SMIv2 constructs
 used without modification in SMI-DS. It is not clear why forcing
 the author to use single quotes is unreasonable. Not sure why this
 is a problem. Adding cryptic character sequences conflicts with
 objective 4.1.3.

4.1.8 Naming [Yes]

Description
 SMIng must provide mechanisms to uniquely identify attributes,
 groups of attributes, and events. It is necessary to specify how
 name collisions are handled.

Fulfillment
 SMI-DS meets all these requirements. Namespaces are handled the
 same as in SMIv2.

4.1.9 Namespace Control [Yes]

Description
 There must be a hierarchical, centrally-controlled namespace for
 standard named items, and a distributed namespace must be supported
 to allow vendor-specific naming and to assure unique module names
 across vendors and organizations.

Fulfillment
 SMI-DS meets this requirement by providing true hierarchical
 naming, which is compatible with SMIv2 objects. Enterprise-specific
 definitions and augmentations are supported.

4.1.10 Modules [Yes]

Description
 SMIng must provide a mechanism for uniquely identifying a module,
 and specifying the status, contact person, revision information,
 and the purpose of a module. SMIng must provide mechanisms to
 group definitions into modules and it must provide rules for
 referencing definitions from other modules.

Fulfillment
 SMI-DS information modules are conceptually identical to SMIv2
 information modules, including the IMPORTS clause.

Expires November 14, 2002 [Page 53]

Internet Draft SMI Data Structures May 14, 2002

4.1.11 Module Conformance [Yes]

Description
 SMIng must provide mechanisms to detail the minimum requirements
 implementers must meet to claim conformance to a standard based on
 the module.

Fulfillment
 SMI-DS conformance constructs (such as MAX-ACCESS, MODULE-
 COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP) are mostly unchanged
 from SMIv2.

4.1.12 Arbitrary Unambiguous Identities [Yes]

Description
 SMI allows the use of OBJECT-IDENTITIES to define unambiguous
 identities without the need of a central registry. SMI uses OIDs
 to represent values that represent references to such identities.
 SMIng needs a similar mechanism (a statement to register
 identities, and a base type to represent values).

Fulfillment
 Base type semantics (including OBJECT IDENTIFIER) are unchanged
 from SMIv2.

4.1.13 Protocol Independence [Yes - TBD]

Description
 SMIng must define data definitions in support of the SNMP and COPS-
 PR protocols. SMIng may define data definitions in support of
 other protocols.

Fulfillment
 SMI-DS is fully compatible with SMIv2 and the SNMP protocol.
 Specific mapping algorithms for COPS-PR object naming are TBD.

4.1.14 Protocol Mapping [Yes]

Description
 The SMIng working group, in accordance with the working group
 charter, will define mappings of protocol independent data
 definitions to protocols based upon installed implementations. The
 SMIng working group can define mappings to other protocols as long
 as this does not impede the progress on other objectives.

Expires November 14, 2002 [Page 54]

Internet Draft SMI Data Structures May 14, 2002

Fulfillment
 As long as the protocol is actually independent of the data
 definition language and its naming scheme (as advertised with
 SNMP), accessible data objects (i.e., LEAF objects) can be
 manipulated in the same manner as accessible SMIv2 objects.

4.1.15 Translation to Other Data Definition Languages [Yes - TBD]

Description
 SMIng language constructs must, wherever possible, be translatable
 to SMIv2 and SPPI. At the time of standardization of a SMIng
 language, existing SMIv2 MIBs and SPPI PIBs on the standards track
 will not be required to be translated to the SMIng language. New
 MIBs/PIBs will be defined using the SMIng language.

Fulfillment
 Algorithms can be specified to convey each SMI-DS construct to one
 or more SMIv2 constructs. Complex nesting must be unfolded into a
 set of associated SMIv2 tables, each table corresponding to the
 accessible objects at a given nest level of the SMI-DS object.
 Existing SMIv2 tables can easily be converted to SMI-DS using the
 ARRAY construct.

4.1.16 Base Data Types [Yes]

Description
 SMIng must support the base data types Integer32, Unsigned32,
 Integer64, Unsigned64, Enumeration, Bits, OctetString, and OID.

Fulfillment
 The SMIv2 base data types are unchanged in SMI-DS. The Integer64
 and Unsigned64 base data types will also be added.

4.1.17 Enumerations [Yes]

Description
 SMIng must provide support for enumerations. Enumerated values
 must be a part of the enumeration definition.

Fulfillment
 SMI-DS provides enumerated INTEGERs, unchanged from SMIv2.

4.1.18 Discriminated Unions [Yes]

Expires November 14, 2002 [Page 55]

Internet Draft SMI Data Structures May 14, 2002

Description
 SMIng must support discriminated unions.

Fulfillment
 SMI-DS provides the UNION construct to explicitly define (in a
 manner that can be machine-parsed) a group of objects with the
 characteristics of a discriminated union. A STRUCT can be defined
 which includes the discriminator LEAF object and the UNION object,
 to further express these semantics. (See HostInetAddress example in

section 5.6.1).

4.1.19 Instance Pointers [Yes]

Description
 SMIng must allow specifying pointers to instances (i.e., a pointer
 to a particular attribute in a row).

Fulfillment
 The concept of a 'row' does not apply to SMI-DS, only to SMIv2,
 however OBJECT IDENTIFIER data objects can point to accessible
 SMIv2 tabular objects, and object names for SMIv2 tables do not
 change when translated to SMI-DS format.

4.1.20 Row Pointers [Yes]

Description
 SMIng must allow specifying pointers to rows.

Fulfillment
 The concept of a 'row' does not apply to SMI-DS, only to SMIv2,
 however OBJECT IDENTIFIER data objects can point to SMIv2 rows, and
 object names for SMIv2 tables do not change when translated to SMI-
 DS format.

4.1.21 Constraints on Pointers [Yes]

Description
 SMIng must allow specifying the types of objects to which a pointer
 may point.

Fulfillment
 A new variant of the SYNTAX clause is defined which restricts a
 particular data type that the OID pointer. E.g., "SYNTAX POINTER
 FooObject" or "SYNTAX POINTER InetAddress", would actually define
 an OBJECT IDENTIFIER.

Expires November 14, 2002 [Page 56]

Internet Draft SMI Data Structures May 14, 2002

4.1.22 Base Type Set [Yes]

Description
 SMIng must support a fixed set of base types of fixed size and
 precision. The list of base types must not be extensible unless
 the SMI itself changes.

Fulfillment
 SMI-DS uses a fixed set of base data types.

4.1.23 Extended Data Types [Yes]

Description
 SMIng must support a mechanism to derive new types, which provide
 additional semantics (e.g., Counters, Gauges, Strings, etc.), from
 base types. It may be desirable to also allow the derivation of
 new types from derived types. New types must be as restrictive or
 more restrictive than the types that they are specializing.

Fulfillment
 SMI-DS provides the TYPEDEF construct to specify complex or derived
 data types. LEAF definitions can derive attributes from a base type
 or another derived type.

4.1.24 Units, Formats, and Default Values of Defined Types and
Attributes [Yes]

Description
 In SMIv2 OBJECT-TYPE definitions may contain UNITS and DEFVAL
 clauses and TEXTUAL-CONVENTIONs may contain DISPLAY-HINTs. In a
 similar fashion units and default values must be applicable to
 defined types and format information must be applicable to
 attributes.

Fulfillment
 SMI-DS retains the UNITS, DEFVAL, and DISPLAY-HINT clauses for all
 LEAF data type definitions and variable declarations.

4.1.25 Table Existence Relationships [Yes]

Description
 SMIng must support INDEX, AUGMENTS, and EXTENDS in the SNMP/COPS-PR
 protocol mappings.

Expires November 14, 2002 [Page 57]

Internet Draft SMI Data Structures May 14, 2002

Fulfillment
 These concepts have been included in SMI-DS, and AUGMENTS has been
 extended to any non-LEAF TYPEDEF. The EXTENDS construct is
 achieved by simply augmenting an existing ARRAY with a another
 (nested) ARRAY.

4.1.26 Table Existence Relationships [Yes]

Description
 SMIng must support EXPANDS and REORDERS relationships in the
 SNMP/COPS-PR protocol mappings.

Fulfillment
 SMI-DS is not a table-oriented data definition language like SMIv2
 or SPPI. Aggregated data objects are defined in a nested manner to
 convey a hierarchical relationship. The EXPANDS and REORDERS
 clauses are only meaningful in this table-oriented framework.
 However, the DESCRIPTION clause is provided to express semantics
 such as EXPANDS and REORDERS.

4.1.27 Attribute Groups [Yes]

Description
 An attribute group is a named, reusable set of attributes that are
 meaningful together. It can be reused as the type of attributes in
 other attribute groups (see also Section 4.1.28). This is similar
 to `structs' in C.

Fulfillment
 SMI-DS provides the STRUCT macro for this purpose.

4.1.28 Containment [Yes]

Description
 SMIng must provide support for the creation of new attribute groups
 from attributes of more basic types and potentially other attribute
 groups.

Fulfillment
 SMI-DS allows arbitrary nesting of STRUCT, ARRAY, and UNION type
 definitions.

4.1.29 Single Inheritance [Yes]

Expires November 14, 2002 [Page 58]

Internet Draft SMI Data Structures May 14, 2002

Description
 SMIng must provide support for mechanisms to extend attribute
 groups through single inheritance.

Fulfillment
 SMI-DS allows new aggregate types to contain other aggregated
 types, by reference, i.e., the contained data object inherits all
 attributes from the type as defined in another TYPEDEF (and
 AUGMENTS, if any).

4.1.30 Reusable vs. Final Attribute Groups [Yes]

Description
 SMIng must differentiate between "final" and reusable attribute
 groups, where the reuse of attribute groups covers inheritance and
 containment.

Fulfillment
 SMI-DS provides the TYPEDEF macro to create reusable definitions,
 and variable declarations to identify 'final' attribute groups.

4.1.31 Events [Yes]

Description
 SMIng must provide mechanisms to define events which identify
 significant state changes.

Fulfillment
 The NOTIFICATION macro is used (slightly modified NOTIFICATION-TYPE
 macro.

4.1.32 Creation/Deletion [Maybe]

Description
 SMIng must support a mechanism to define creation/deletion
 operations for instances. Specific creation/deletion errors, such
 as INSTALL-ERRORS, must be supported.

Fulfillment
 A new data objected RowStatus could be defined, or the existing
 RowStatus simply used 'as-is' with data objects. This objective is
 very 'table-oriented' and protocol-specific. SMI-DS is intended to
 be protocol-independent.

Expires November 14, 2002 [Page 59]

Internet Draft SMI Data Structures May 14, 2002

4.1.33 Range and Size Constraints [Yes]

Description
 SMIng must allow specifying range and size constraints where
 applicable.

Fulfillment
 The SYNTAX clause is unchanged from SMIv2, which includes a range
 construct.

4.1.34 Uniqueness [Maybe]

Description
 SMIng must allow the specification of uniqueness constraints on
 attributes. SMIng must allow the specification of multiple
 independent uniqueness constraints.

Fulfillment
 Instance identifiers are of course unique. The DESCRIPTION clause
 is available to specify uniqueness characteristics for any LEAF
 data type or INDEX component.

4.1.35 Extension Rules [No]

Description
 SMIng must provide clear rules how one can extend SMIng modules
 without causing interoperability problems "over the wire".

Fulfillment
 The final version of SMI-DS will include a rigorous syntax, but
 there are no plans for an explicit EXTENSION construct, to allow
 SMI-DS to be extended in an distributed and uncontrolled manner.
 The SMI should only be changed in very careful and controlled
 manner, by an IETF WG (e.g., SMIng).

4.1.36 Deprecate Use of IMPLIED Keyword [Yes]

Description
 The SMIng SNMP mapping must deprecate the use of the IMPLIED
 indexing schema.

Fulfillment
 The IMPLIED keyword is deprecated in the SMI-DS INDEX construct.

Expires November 14, 2002 [Page 60]

Internet Draft SMI Data Structures May 14, 2002

4.1.37 No Redundancy [Yes]

Description
 The SMIng language must avoid redundancy.

Fulfillment
 SMI-DS remove any clause that is always the same value in all
 situations (e.g., MAX-ACCESS clause for the fooTable and fooEntry
 OBJECT-TYPE macros is always not-accessible, so only LEAF data
 objects have a MAX-ACCESS clause). The 'fooEntry' definition is
 removed entirely, and since SMI-DS is data object, not table
 oriented, there is no need for the ASN.1 'FooEntry SEQUENCE'
 construct. Basic containment relationships are implied by the
 aggregated data types themselves (nested ARRAY, UNION, STRUCT)
 rather than by using lots of verbose OBJECT-TYPE DESCRIPTION
 clauses to declare the containment relationships between various
 OBJECT-TYPE macros.

4.1.38 Compliance and Conformance [Yes]

Description
 SMIng must provide a mechanism for compliance and conformance
 specifications for protocol-independent definitions as well as for
 protocol mappings.

Fulfillment
 The SMI-DS module compliance section is unchanged from SMIv2. Just
 like SMIv2, only accessible (LEAF) objects are listed in this
 section.

4.1.39 Allow Refinement of All Definitions in Conformance Statements
[Yes - TBD]

Description
 SMIv2, RFC 2580, Section 3.1 says: <para removed> The last sentence
 forbids to put a not-accessible INDEX object into an OBJECT-GROUP.
 Hence, you can not refine its syntax in a compliance definition.
 For more details, see http://www.ibr.cs.tu-bs.de/ietf/smi-errata/.

Fulfillment
 The arbitrary rules for SMIv2 can be changed, as they are adapted
 to SMI-DS. It is understood that every SMIv2 construct used in SMI-
 DS is subject to bugfixes.

https://datatracker.ietf.org/doc/html/rfc2580#section-3.1
http://www.ibr.cs.tu-bs.de/ietf/smi-errata/

Expires November 14, 2002 [Page 61]

Internet Draft SMI Data Structures May 14, 2002

4.1.40 Categories [No]

Description
 SMIng must provide a mechanism to group definitions into subject
 categories. Concrete instances may only exist in the scope of a
 given subject category or context.

Fulfillment
 SMI-DS currently has no such construct. This would require
 management and coordination of the set of categories, and therefore
 further thought. Such a construct could be added if required.

4.1.41 Core Language Keywords vs. Defined Identifiers [No - TBD]

Description
 In SMI and SPPI modules some language keywords (macros and a number
 of basetypes) have to be imported from different SMI language
 defining modules, e.g., OBJECT-TYPE, MODULE-IDENTITY, Integer32
 must to be imported from SNMPv2-SMI and TEXTUAL- CONVENTION must be
 imported from SNMPv2-TC, if used. MIB authors are continuously
 confused about these import rules. In SMIng only defined
 identifiers must be imported. All SMIng language keywords must be
 implicitly known and there must not be a need to import them from
 any module.

Fulfillment
 Currently, the SMI-DS IMPORTS clause is unchanged from SMIv2. It
 would be a mistake to forbid IMPORTS of base data types, since this
 is just one more thing for authors to get wrong. The burden of
 listing all external definitions, including base types, in the
 IMPORTS clause is not a problem worth solving. The SMI-DS rules
 could be changed to make IMPORTS of base types forbidden, optional,
 or mandatory, whatever is required.

4.1.42 Instance Naming [Maybe - TBD]

Description
 Instance naming in SMIv2 and SPPI is different. SMIng must align
 the instance naming (either in the protocol neutral model or the
 protocol mappings).

Fulfillment
 SMI-DS instance naming is compatible with SMIv2. It is not clear
 what additions are needed to support SPPI naming as well.

Expires November 14, 2002 [Page 62]

Internet Draft SMI Data Structures May 14, 2002

4.1.43 Length of Identifiers [Yes - TBD]

Description
 The allowed length of the various kinds of identifiers must be
 extended from the current `should not exceed 32' (maybe even from
 the `must not exceed 64') rule.

Fulfillment
 All the arbitrary SMIv2 rules are subject to removal or repair as
 they are transferred to SMI-DS. The maximum descriptor length an
 agent must accept will be extended to 64.

4.1.44 Assign OIDs in the Protocol Mappings [No]

Description
 SMIng must not assign OIDs to reusable definition of attributes,
 attribute groups, events, etc. Instead, SNMP and COPS-PR mappings
 must assign OIDs to the mapped items.

Fulfillment
 Although TYPEDEF definitions actually meet this requirement because
 only variable declarations can have complete OID assignments, it
 would be a critical mistake to separate data object naming from the
 data definition itself. There is no justification whatsoever for
 the management transport protocol to dictate the naming
 characteristics of the data definition language.

4.2.1 Methods [No]

Description
 SMIng should support a mechanism to define method signatures
 (parameters, return values, exception) that are implemented on
 agents.

Fulfillment
 SMI-DS defines a data definition language with sufficient power to
 be used as a platform for object-oriented network management
 definitions in the future (ala C --> C++ transition).

4.2.2 Unions [Yes]

Description
 Allows an attribute to contain one of many types of values. The
 lack of unions has also lead to relatively complex sparse table
 work-around in some DISMAN mid-level managers. Despite from

Expires November 14, 2002 [Page 63]

Internet Draft SMI Data Structures May 14, 2002

 discriminated unions (see Section 4.1.18), this kind of union has
 no accompanied explicit discriminator attribute that selects the
 union's type of value.

Fulfillment
 SMI-DS provides the UNION macro for this purpose.

4.2.3 Float Data Types [Yes]

Description
 SMIng should support the base data types Float32, Float64,
 Float128.

Fulfillment
 SMI-DS will support a Float data type. Is is not clear that 3
 variants are needed though.

4.2.4 Comments [Yes]

Description
 The syntax of comments should be well defined, unambiguous and
 intuitive to most people, e.g., the C++/Java `//' syntax.

Fulfillment
 The ASN.1 comment meets these requirements and is used unchanged
 from SMIv2. There is no community requirement to use Java style
 comments. The use of 2 dashes for a 'start of comment' token is not
 any better or worse than 2 slashes. Not a change worth making.

4.2.5 Referencing Tagged Rows [No]

Description
 PIB and MIB row attributes reference a group of entries in another
 table. SPPI formalizes this by introducing PIB-TAG and PIB-
 REFERENCES clauses. This functionality should be retained in
 SMIng.

Fulfillment
 SMI-DS does not use a table-oriented data model, so these
 constructs do not apply.

4.2.6 Arrays [Yes]

Description
 SMIng should allow the definition of a SEQUENCE OF attributes or

Expires November 14, 2002 [Page 64]

Internet Draft SMI Data Structures May 14, 2002

 attribute groups (Section 4.1.27).

Fulfillment
 SMI-DS provides the ARRAY macro for this purpose.

4.2.7 Internationalization [No - TBD]

Description
 Informational text (DESCRIPTION, REFERENCE, ...) should allow
 i18nized encoding, probably UTF-8.

Fulfillment
 SMI-DS used the DESCRIPTION and REFERENCE clauses unchanged from
 SMIv2. Changes to these clauses could be made if required, but
 unless standard (IETF) information modules are written in a
 language other than English, this only applies to vendor MIBs.

4.2.8 Separate Data Modelling from Management Protocol Mapping [Yes]

Description
 It should be possible to separate the domain specific data
 modelling work from the network management protocol specific work.

Fulfillment
 The SMI-DS data definitions are protocol independent. Mappings
 (where applicable) will be defined for SNMP, because SMIv2 is
 intended to function with SNMP, and SMI-DS is intended to replace
 SMIv2. Mapping rules for other protocols are certainly possible,
 but are not included in this document.

Expires November 14, 2002 [Page 65]

Internet Draft SMI Data Structures May 14, 2002

12. Security Considerations

This document defines a structure for management data and therefore does
not expose any management information from a particular device. However,
accessible data objects defined with the mechanisms defined in this
document should be given the same security consideration as objects
specified with SMIv2, when being transferred with SNMP.

SNMPv1 by itself is not a secure environment. Even if the network
itself is secure (for example by using IPSec), even then, there is no
control as to who on the secure network is allowed to access and GET/SET
(read/change/create/delete) the objects in this MIB.

It is recommended that the implementors consider the security features
as provided by the SNMPv3 framework. Specifically, the use of the User-
based Security Model RFC 2574 [RFC2574] and the View-based Access
Control Model RFC 2575 [RFC2575] is recommended.

It is then a customer/user responsibility to ensure that the SNMP entity
giving access to an instance of this MIB, is properly configured to give
access to the objects only to those principals (users) that have
legitimate rights to indeed GET or SET (change/create/delete) them.

Expires November 14, 2002 [Page 66]

https://datatracker.ietf.org/doc/html/rfc2574
https://datatracker.ietf.org/doc/html/rfc2574
https://datatracker.ietf.org/doc/html/rfc2575
https://datatracker.ietf.org/doc/html/rfc2575

Internet Draft SMI Data Structures May 14, 2002

13. Intellectual Property

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to pertain
to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any
effort to identify any such rights. Information on the IETF's
procedures with respect to rights in standards-track and standards-
related documentation can be found in BCP-11. Copies of claims of
rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by
implementors or users of this specification can be obtained from the
IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
which may cover technology that may be required to practice this
standard. Please address the information to the IETF Executive
Director.

14. Acknowledgements

Portions of the existing SMI RFCs, SMIng drafts, and the ANSI C
Programming Language inspired many of the concepts discussed in this
memo.

https://datatracker.ietf.org/doc/html/bcp11

Expires November 14, 2002 [Page 67]

Internet Draft SMI Data Structures May 14, 2002

15. Normative References

[RFC1905]
 SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S.
 Waldbusser, "Protocol Operations for Version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1905, SNMP Research,
 Inc., Cisco Systems, Inc., Dover Beach Consulting, Inc.,
 International Network Services, January 1996.

[RFC1906]
 SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S.
 Waldbusser, "Transport Mappings for Version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1906, SNMP Research, Inc., Cisco
 Systems, Inc., Dover Beach Consulting, Inc., International Network
 Services, January 1996.

[RFC2026]
 Bradner, S., "The Internet Standards Process -- Revision 3", RFC

2026, Harvard University, October, 1996.

[RFC2119]
 S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels" RFC 2119, Harvard University, March 1997.

[RFC2571]
 Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for
 Describing SNMP Management Frameworks", RFC 2571, Cabletron
 Systems, Inc., BMC Software, Inc., IBM T. J. Watson Research, April
 1999.

[RFC2572]
 Case, J., Harrington D., Presuhn R., and B. Wijnen, "Message
 Processing and Dispatching for the Simple Network Management
 Protocol (SNMP)", RFC 2572, SNMP Research, Inc., Cabletron Systems,
 Inc., BMC Software, Inc., IBM T. J. Watson Research, April 1999.

[RFC2573]
 Levi, D., Meyer, P., and B. Stewart, "SNMPv3 Applications", RFC

2573, SNMP Research, Inc., Secure Computing Corporation, Cisco
 Systems, April 1999.

[RFC2574]
 Blumenthal, U., and B. Wijnen, "User-based Security Model (USM) for
 version 3 of the Simple Network Management Protocol (SNMPv3)", RFC

2574, IBM T. J. Watson Research, April 1999.

https://datatracker.ietf.org/doc/html/rfc1905
https://datatracker.ietf.org/doc/html/rfc1906
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2571
https://datatracker.ietf.org/doc/html/rfc2572
https://datatracker.ietf.org/doc/html/rfc2573
https://datatracker.ietf.org/doc/html/rfc2573
https://datatracker.ietf.org/doc/html/rfc2574
https://datatracker.ietf.org/doc/html/rfc2574

Expires November 14, 2002 [Page 68]

Internet Draft SMI Data Structures May 14, 2002

[RFC2575]
 Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based Access
 Control Model (VACM) for the Simple Network Management Protocol
 (SNMP)", RFC 2575, IBM T. J. Watson Research, BMC Software, Inc.,
 Cisco Systems, Inc., April 1999.

[RFC2578]
 McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.,
 and S. Waldbusser, "Structure of Management Information Version 2
 (SMIv2)", RFC 2578, STD 58, Cisco Systems, SNMPinfo, TU
 Braunschweig, SNMP Research, First Virtual Holdings, International
 Network Services, April 1999.

[RFC2579]
 McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.,
 and S. Waldbusser, "Textual Conventions for SMIv2", RFC 2579, STD
 58, Cisco Systems, SNMPinfo, TU Braunschweig, SNMP Research, First
 Virtual Holdings, International Network Services, April 1999.

[RFC2580]
 McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.,
 and S. Waldbusser, "Conformance Statements for SMIv2", RFC 2580,
 STD 58, Cisco Systems, SNMPinfo, TU Braunschweig, SNMP Research,
 First Virtual Holdings, International Network Services, April 1999.

16. Informative References

[DSMON-MIB]
 Bierman, A., "Remote Monitoring MIB Extensions for Differentiated
 Services", Work in progress (draft-ietf-rmonmib-dsmon-mib-09.txt),
 Cisco Systems, Inc., November 2001.

[RFC1155]
 Rose, M., and K. McCloghrie, "Structure and Identification of
 Management Information for TCP/IP-based Internets", RFC 1155,
 Performance Systems International, Hughes LAN Systems, May 1990.

[RFC1157]
 Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network
 Management Protocol", RFC 1157, SNMP Research, Performance Systems
 International, Performance Systems International, MIT Laboratory
 for Computer Science, May 1990.

[RFC1212]
 Rose, M., and K. McCloghrie, "Concise MIB Definitions", RFC 1212,

https://datatracker.ietf.org/doc/html/rfc2575
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/draft-ietf-rmonmib-dsmon-mib-09.txt
https://datatracker.ietf.org/doc/html/rfc1155
https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc1212

Expires November 14, 2002 [Page 69]

Internet Draft SMI Data Structures May 14, 2002

 Performance Systems International, Hughes LAN Systems, March 1991.

[RFC1215]
 M. Rose, "A Convention for Defining Traps for use with the SNMP",

RFC 1215, Performance Systems International, March 1991.

[RFC1901]
 SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S.
 Waldbusser, "Introduction to Community-based SNMPv2", RFC 1901,
 SNMP Research, Inc., Cisco Systems, Inc., Dover Beach Consulting,
 Inc., International Network Services, January 1996.

[RFC2021]
 S. Waldbusser, "Remote Network Monitoring Management Information
 Base Version 2 using SMIv2", RFC 2021, INS, January 1997.

[RFC2570]
 Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction to
 Version 3 of the Internet-standard Network Management Framework",

RFC 2570, SNMP Research, Inc., TIS Labs at Network Associates,
 Inc., Ericsson, Cisco Systems, April 1999.

[RFC2737]
 McCloghrie, K., and A. Bierman, "Entity MIB (Version 2)", RFC 2737,
 Cisco Systems, Inc., December 1999.

[RFC2851]
 Daniele, M., Haberman, B., Routhier, S., and J. Schoenwaelder,
 "Textual Conventions for Internet Network Addresses", RFC 2851,
 Compaq Computer Corporation, Nortel Networks, Wind River Systems,
 Inc., TU Braunschweig, June 2000.

[RFC2863]
 McCloghrie, K., and F. Kastenholz, "The Interfaces Group MIB", RFC

2863, Cisco Systems, Argon Networks, June, 2000.

[RFC3216]
 Elliot, C., Harrington, D., Jason, J., Schoenwaelder, J., Strauss,
 F., and W. Weiss, "SMIng Objectives", RFC 3216, Cisco Systems,
 Enterasys Networks, Intel Corporation, TU Braunschweig, Ellacoya
 Networks, December 2001.

https://datatracker.ietf.org/doc/html/rfc1215
https://datatracker.ietf.org/doc/html/rfc1901
https://datatracker.ietf.org/doc/html/rfc2021
https://datatracker.ietf.org/doc/html/rfc2570
https://datatracker.ietf.org/doc/html/rfc2737
https://datatracker.ietf.org/doc/html/rfc2851
https://datatracker.ietf.org/doc/html/rfc2863
https://datatracker.ietf.org/doc/html/rfc2863
https://datatracker.ietf.org/doc/html/rfc3216

Expires November 14, 2002 [Page 70]

Internet Draft SMI Data Structures May 14, 2002

17. Author's Address

 Andy Bierman
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA USA 95134
 Phone: +1 408-527-3711
 Email: abierman@cisco.com

Expires November 14, 2002 [Page 71]

Internet Draft SMI Data Structures May 14, 2002

18. Full Copyright Statement

Copyright (C) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations,
except as needed for the purpose of developing Internet standards in
which case the procedures for copyrights defined in the Internet
Standards process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Expires November 14, 2002 [Page 72]

