
Network Working Group V. Birk
Internet-Draft H. Marques
Intended status: Standards Track Shelburn
Expires: July 13, 2018 pEp Foundation
 S. Koechli
 pEp Security
 January 09, 2018

pretty Easy privacy (pEp): Privacy by Default
draft-birk-pep-01

Abstract

 Building on already available security formats and message transports
 (like PGP/MIME for email), and with the intention to stay
 interoperable to systems widespreadly deployed, pretty Easy privacy
 (pEp) describes protocols to automatize operations (key management,
 key discovery, private key handling including peer-to-peer
 synchronization of private keys and other user data across devices)
 that have been seen to be barriers to deployment of end-to-end secure
 interpersonal messaging. pEp also introduces "Trustwords" (instead of
 fingerprints) to verify communication peers and proposes a trust
 rating system to denote secure types of communications and signal the
 privacy level available on a per-user and per-message level. In this
 document, the general design choices and principles of pEp are
 outlined.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 13, 2018.

Birk, et al. Expires July 13, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terms . 4
3. Protocol's core design principles 4
3.1. Compatibility . 4
3.2. Peer-to-Peer (P2P) 4
3.3. User Experience (UX) 5

4. Identities in pEp . 6
5. Key Management . 8
5.1. Private Keys . 9
5.2. Key Distribution . 10
5.3. Passphrases . 11

6. Privacy Status . 11
7. Options in pEp . 12
7.1. Option "Passive Mode" 12
7.2. Option "Disable Protection" 12
7.2.1. For all communications 12
7.2.2. For some communications 12

7.3. Option "Extra Keys" 12
7.4. Option "Blacklist Keys" 13
7.5. Establishing trust between peers 13

8. Security Considerations 13
9. Implementation Status . 13
9.1. Introduction . 13
9.2. Reference implementation of pEp's core 14
9.3. Abstract Crypto API examples 15
9.3.1. Encrypting a message 15
9.3.2. Decrypting a message 16
9.3.3. Obtaining common Trustwords 17

9.4. Current software implementing pEp 18
10. Notes . 19
11. Acknowledgements . 19

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Birk, et al. Expires July 13, 2018 [Page 2]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

12. References . 19
12.1. Normative References 19
12.2. Informative References 20

 Authors' Addresses . 21

1. Introduction

 [[At this stage it is not year clear to us how many of our
 implementation details should be part of new RFCs and at which places
 we can safely refer to already existing RFCs to make clear on which
 RFCs we are already relying.]]

 The pretty Easy privacy (pEp) protocols are propositions to the
 Internet community to create software for peers to automatically
 encrypt, anonymize (where possible, depending on the message
 transport used) and verify their daily written digital communications
 -- this is done by building upon already existing standards and tools
 and automatizing all steps a user would need to carry out to engage
 in secure end-to-end encrypted communciations without depending on
 centralized infrastructures.

 To mitigiate for Man-In-The-Middle Attacks (MITM) and as the only
 manual step users may carry out, Trustwords as natural language
 representations of two peers' fingerprints are proposed, for peers to
 put trust on their communication channel.

 Particularly, pEp proposes to automatize key management, key
 discovery and also synchronization of secret key material by an in-
 band peer-to-peer approach.

 [[The pEp initiators had to learn from the CryptoParty movement, from
 which the project emerged, that step-by-step guides can be helpful to
 a particiular set of users to engage in secure end-to-end
 communications, but that for a much major fraction of users it would
 be more convenient to have the step-by-step procedures put into
 actual code (as such, following a protocol) and thus automatizing the
 initial configuration and whole usage of cryptographic tools.]]

 The Privacy by Default principles that pretty Easy privacy (pEp)
 introduces, are in accordance with the perspective outlined in
 [RFC7435] to bring Opportunistic Security in the sense of "some
 protection most of the time", with the subtle, but important
 difference that when privacy is weighted against security, the choice
 falls to privacy, which is why in pEp data minimization is a primary
 goal (e.g., omitting unnecessary email headers or encrypting the
 subject line).

https://datatracker.ietf.org/doc/html/rfc7435

Birk, et al. Expires July 13, 2018 [Page 3]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 The pEp propositions are focused on written digital communications,
 but not limited to asynchronous (offline) types of communications
 like email, but can also be implemented for message transports, which
 support synchronous (online) communications (e.g., for peer-to-peer
 networks like GNUnet). pEp's goal is to bridge the different
 standardized and/or widely spread communications channels, such that
 users can reach their peers in the most privacy-enhancing way
 possible using differing IRIs/URIs.

2. Terms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Terms like "TOFU" or "MITM" are used as defined in [RFC4949].

 o Handshake: The process when Alice -- e.g. in-person or via phone
 -- contacts Bob to verifiy Trustwords (or by fallback:
 fingerprints) is called handshake.

 o Trustwords: A scalar-to-word representation of 16-bit numbers (0
 to 65535) to natural language words. When doing a handshake,
 peers are shown combined Trustwords of both public keys involved
 to ease the comparison. [pEpTrustwords]

3. Protocol's core design principles

3.1. Compatibility

 o Be conservative (strict) in requirements for pEp implementations
 and how they behave between each other.

 o Be liberal (accepting) in what comes in from non-pEp
 implementations (e.g., do not send, but support to decipher PGP/
 INLINE formats).

 o Where pEp requires diverging from an RFC for privacy reasons
 (e.g., from OpenPGP propositions as defined in [RFC4880]), options
 SHOULD be implemented to empower the user to comply to practices
 already (widespreadly) used, either at contact level or globally.

3.2. Peer-to-Peer (P2P)

 All communications and verifications in pEp implementations for
 pursuing secure and establishing trusted communications between peers
 MUST be Peer-to-Peer (P2P) in nature.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4880

Birk, et al. Expires July 13, 2018 [Page 4]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 This means, there SHALL NOT be any pEp-specific central services
 whatsoever needed for implementers of pEp to rely on, neither for
 verification of peers nor for the actual encryption.

 Still, implementers of pEp MAY provide options to interoperate with
 providers of centralized infrastructures as users MAY NOT be stopped
 from being able to communicate with their peers on platforms with
 vendor lock-in.

 Trust provided by global Certificate Authorities (e.g., commercial
 X.509 CAs) SHALL NOT be signaled (cf. [pEpTrustRating]) as
 trustworthy to users of pEp (e.g., when interoperating with peers
 using S/MIME) by default.

3.3. User Experience (UX)

 [[We are aware of the fact that usually UX requirements are not part
 of RFCs. However, to have massively more people engaged in secure
 end-to-end encryption and at the same time to avoid putting users at
 risk, we believe requiring certain straightforward signaling for the
 users to be a good idea -- in a similar way as this happens to be the
 case for already popular Instant Messaging services.]]

 Implementers of pEp MUST take special care to not confuse users with
 t echnical terms, especially those of cryptography (e.g., "keys",
 "certificates" or "fingerprints") if they do not explicitly ask for
 them. Advanced settings MAY be available, in some cases further
 options MUST be available, but they SHALL NOT be unnecessarily
 exposed to users of pEp implementations at the first sight when using
 clients implementing the pEp propositions.

 The authors believe widespread adoption of end-to-end cryptography is
 much less of an issue if the users are not hassled and visibly forced
 in any way to use cryptography. That is, if they can just rely on
 the principles of Privacy by Default.

 By consequence, this means that users MUST NOT wait for cryptographic
 tasks (e.g., key generation or public key retrieval) to finish before
 being able to have their respective message clients ready to
 communicate. This finally means, pEp implementers MUST make sure
 that the ability to draft, send and receive messages is always
 preserved -- even if that means a message is sent out unencrypted,
 thus being in accordance with the Opportunistic Security approach
 outlined in [RFC7435].

 In turn, pEp implementers MUST make sure a Privacy Status is clearly
 visible to the user on both contact and message level, such that

https://datatracker.ietf.org/doc/html/rfc7435

Birk, et al. Expires July 13, 2018 [Page 5]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 users easily understand with what level of privacy messages are about
 to be sent or were received, respectively.

4. Identities in pEp

 With pEp users MUST have the possibility to have different
 identities, which MUST not correlate to each other by default. On
 the other hand, binding of different identities MUST be supported
 (being for support of aliases).

 [[This is the reason why in current pEp implementations for each
 email account a different key pair is created, which allows a user to
 retain different identities.]]

 In particular, with pEp users MUST NOT be bound to a specific IRI/
 URI, but SHALL be free to choose which identity they want to expose
 to certain peers -- this includes support for pseudonymity and
 anonymity, which the authors consider to be vital for users to
 control their privacy.

 [[It might be necessary to introduce further addressing schemes
 through IETF contributions or IANA registrations.]]

 In the reference implementation of the pEp Engine (cf. src/
 pEpEngine.h), a pEp identity is defined like the following (C99):

 typedef struct _pEp_identity {
 char *address; // C string with address UTF-8 encoded
 char *fpr; // C string with fingerprint UTF-8 encoded
 char *user_id; // C string with user ID UTF-8 encoded
 char *username; // C string with user name UTF-8 encoded
 PEP_comm_type comm_type; // type of communication with this ID
 char lang[3]; // language of conversation
 // ISO 639-1 ALPHA-2, last byte is 0
 bool me; // if this is the local user herself/himself
 identity_flags_t flags; // identity_flag1 | identity_flag2 | ...
 } pEp_identity;

 A relational example (in SQL) used in current pEp implementations:

Birk, et al. Expires July 13, 2018 [Page 6]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 CREATE TABLE pgp_keypair (
 fpr text primary key,
 created integer,
 expires integer,
 comment text,
 flags integer default 0
);

 CREATE TABLE person (
 id text primary key,
 username text not null,
 main_key_id text
 references pgp_keypair (fpr)
 on delete set null,
 lang text,
 comment text,
 device_group text
);

 CREATE TABLE identity (
 address text,
 user_id text
 references person (id)
 on delete cascade,
 main_key_id text
 references pgp_keypair (fpr)
 on delete set null,
 comment text,
 flags integer default 0, primary key (address, user_id)
);

 The public key's fingerprint (denoted as fpr) as part of a pEp
 identity MUST always be the full fingerprint.

 Notable differences of how terms and concepts used differ between pEp
 and OpenPGP:

 +--------------------+--------------+-------------------------------+
 | pEp | OpenPGP | Comments |
 +--------------------+--------------+-------------------------------+
user_id	(no concept)	ID for a person, i.e. a
		contact
username + address	uid	comparable only for email
fpr	fingerprint	used as key ID in pEp
(no concept)	Key ID	does not exist in pEp
 +--------------------+--------------+-------------------------------+

Birk, et al. Expires July 13, 2018 [Page 7]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

5. Key Management

 Key management in pEp MUST be automatized in order to achieve the
 goal of widespread adoption of secure communications.

 A pEp implementation MUST make sure cryptographic keys for end-to-end
 cryptography are generated for every identity configured (or
 instantly upon its configuration) if no secure cryptographic setup
 can be found. Users SHALL NOT be stopped from communicating -- this
 also applies for initial situations where cryptographic keys are not
 generated fast enough. This process MUST be carried out in the
 background so the user is not stopped from communicating.

 There is the pEp Trust Rating system in [pEpTrustRating] describing
 which kind of encryption MUST be considered reliable and is thus
 secure enough for usage in pEp implementations. This also applies
 for keys already available for the given identity. If the available
 keys are considered unsecure (e.g, insufficent key length), pEp
 implementers are REQUIRED to generate new keys for use with the
 respective identity.

 As example for the rating of communication types, the definition of
 the data structure by the pEp Engine reference implementation (cf.
 src/pEpEngine.h) is provided:

 typedef enum _PEP_comm_type {
 PEP_ct_unknown = 0,

 // range 0x01 to 0x09: no encryption, 0x0a to 0x0e: nothing reasonable

 PEP_ct_no_encryption = 0x01, // generic
 PEP_ct_no_encrypted_channel = 0x02,
 PEP_ct_key_not_found = 0x03,
 PEP_ct_key_expired = 0x04,
 PEP_ct_key_revoked = 0x05,
 PEP_ct_key_b0rken = 0x06,
 PEP_ct_my_key_not_included = 0x09,

 PEP_ct_security_by_obscurity = 0x0a,
 PEP_ct_b0rken_crypto = 0x0b,
 PEP_ct_key_too_short = 0x0c,

 PEP_ct_compromized = 0x0e, // known compromized connection
 PEP_ct_mistrusted = 0x0f, // known mistrusted key

 // range 0x10 to 0x3f: unconfirmed encryption

 PEP_ct_unconfirmed_encryption = 0x10, // generic

Birk, et al. Expires July 13, 2018 [Page 8]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 PEP_ct_OpenPGP_weak_unconfirmed = 0x11, // RSA 1024 is weak

 PEP_ct_to_be_checked = 0x20, // generic
 PEP_ct_SMIME_unconfirmed = 0x21,
 PEP_ct_CMS_unconfirmed = 0x22,

 PEP_ct_strong_but_unconfirmed = 0x30, // generic
 PEP_ct_OpenPGP_unconfirmed = 0x38, // key at least 2048 bit RSA or EC
 PEP_ct_OTR_unconfirmed = 0x3a,

 // range 0x40 to 0x7f: unconfirmed encryption and anonymization

 PEP_ct_unconfirmed_enc_anon = 0x40, // generic
 PEP_ct_pEp_unconfirmed = 0x7f,

 PEP_ct_confirmed = 0x80, // this bit decides if trust is confirmed

 // range 0x81 to 0x8f: reserved
 // range 0x90 to 0xbf: confirmed encryption

 PEP_ct_confirmed_encryption = 0x90, // generic
 PEP_ct_OpenPGP_weak = 0x91, // RSA 1024 is weak (unused)

 PEP_ct_to_be_checked_confirmed = 0xa0, //generic
 PEP_ct_SMIME = 0xa1,
 PEP_ct_CMS = 0xa2,

 PEP_ct_strong_encryption = 0xb0, // generic
 PEP_ct_OpenPGP = 0xb8, // key at least 2048 bit RSA or EC
 PEP_ct_OTR = 0xba,

 // range 0xc0 to 0xff: confirmed encryption and anonymization

 PEP_ct_confirmed_enc_anon = 0xc0, // generic
 PEP_ct_pEp = 0xff
 } PEP_comm_type;

5.1. Private Keys

 Private keys in pEp implementations MUST always be held on the end
 user's device(s): pEp implementers SHALL NOT rely on private keys
 stored in centralized remote locations. This also applies for key
 storages where the private keys are protected with sufficiently long
 passphrases. It MUST be considered a violation of pEp's P2P design
 principle to rely on centralized infrastructures. This also applies
 for pEp implementations created for applications not residing on a
 user's device (e.g., web-based MUAs). In such cases, pEp

Birk, et al. Expires July 13, 2018 [Page 9]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 implementations MUST be done in a way the locally-held private key
 can neither be directly accessed nor leaked to the outside world.

 [[It is particularly important that browser add-ons implementing pEp
 functionality do not obtain their cryptographic code from a
 centralized (cloud) service, as this must be considered a centralized
 attack vector allowing for backdoors, negatively impacting privacy.]]

 As a decentralized proposition, there is a pEp Key Synchronization
 protocol. [pEpKeySync] It outlines how pEp implementers can
 distribute their private keys in a secure and trusted manner: this
 allows Internet users to read their messages across their different
 devices, when sharing a common address (e.g., the same email
 account).

5.2. Key Distribution

 Implementers of pEp are REQUIRED to attach the identity's public key
 to any outgoing message. However, this MAY be ommitted if you
 previously received a message encrypted with the public key of the
 receiver.

 The sender's public key MUST be sent encrypted whenever possible,
 i.e. when a public key of the receiving peer is available.

 If no encryption key is available for the recipient, the sender's
 public key MUST be sent unencrypted. In either case, this approach
 ensures that message clients (e.g., MUAs which at least implement
 OpenPGP) do not need to have pEp implemented to see a user's public
 key. Such peers thus have the chance to (automatically) import the
 sender's public key.

 If there is already a known public key from the sender of a message
 and it is still valid and not expired, new keys SHALL not be used for
 future communication to avoid a MITM attack unless they are signed by
 the previous key. Messages SHALL always be encrypted with the
 receiving peer's oldest public key, as long as it is valid and not
 expired.

 Implementers of pEp SHALL make sure that public keys attached to
 messages (e.g, in email) are not displayed to the user. This
 ensures, they do not get confused by a file they cannot potentially
 deal with.

 Metadata (e.g., email headers) SHALL NOT be made to announce a user's
 public key by the Privacy by Default principles. This must be
 considered unnecessary information leakage, potentially affecting
 privacy -- also depending on a country's data retention laws.

Birk, et al. Expires July 13, 2018 [Page 10]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 Furtherly, this affects interoperability to existing users (e.g., in
 the OpenPGP field) which have no notion of such header fields and
 thus lose the ability to import any such keys distributed this way.
 It SHOULD, though, be supported to obtain other users' public keys by
 extracting them from respective header fields, in case such
 approaches get widespread.

 Keyservers or generally intermediate approaches to obtain a peer's
 public key SHALL NOT be used by default. On the other hand, the user
 MAY be given the option to opt-in for remote locations to obtain
 keys, considering the widespread adoption of such approaches for key
 distribution.

 Keys generated or obtained by implementations SHALL NOT be uploaded
 to any (intermediate) keystore locations without the user's explicit
 will.

5.3. Passphrases

 Passphrases to protect an user's private key MUST be supported by pEp
 implementations, but SHALL NOT be enforced by default. That is, if a
 pEp implementation finds a suitable (i.e., secure enough)
 crytographic setup, which uses passphrases, pEp implementations MUST
 provide a way to unlock the key. However, if a new key pair is
 generated for a given identity no passphrase SHALL be put in place.
 The authors assume that the enforcement of secure (i.e., unique and
 long enough) passphrases would massively reduce the users of pEp (by
 hassling them) -- and in turn provide little to no additional privacy
 for the common cases of passive monitoring being carried out by
 corporations and state-level actors.

6. Privacy Status

 For end-users, the most important component of pEp, which MUST be
 made visible on a per-recipient and per-message level, is the Privacy
 Status.

 By colors, symbols and texts a user SHALL immediately understand how
 private

 o a communication channel with a given peer was or ought to be and

 o a given message was or ought to be.

 The Privacy Status in its most general form MUST be expressed with
 traffic lights semantics (and respective symbols and texts), whereas
 the three colors yellow, green and red can be applied for any peer or
 message -- like this immediately indicating how secure and

Birk, et al. Expires July 13, 2018 [Page 11]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 trustworthy (and thus private) a communication was or ought to be
 considered. In cases no (special) Privacy Status can be inferred for
 peers or messages, no color (or the gray color) MUST be shown and
 respective texts -- being "unknown" or "unreliable" -- MUST be shown.

 The detailed Privacy Status as an end-user element of the pEp Trust
 Rating system with all its states and respective represenations to be
 followed is outlined in [pEpTrustRating].

7. Options in pEp

 [[Just a selection; not yet complete.]]

7.1. Option "Passive Mode"

 For situations where it might not be desirable to attach the sender's
 public key for outgoing messages (which is the default), a "Passive
 Mode" option MUST be made availble to avoid this.

7.2. Option "Disable Protection"

7.2.1. For all communications

 Implementers of pEp MUST provide an option "Disable Protection" for
 the user's will to disable any outgoing encryption and signing. This
 option SHALL not affect the user's ability to decipher already
 received or sent messages.

7.2.2. For some communications

 For users to disable protection for some situations, i.e. at contact
 or message level, pEp implementers MUST provide an option. This
 allows users to disable outgoing encryption and signing for peers or
 individual messages.

7.3. Option "Extra Keys"

 For environments where there is the need to send messages to further
 locations, pEp implementers MAY provide an "Extra Keys" option where
 further recipients (by public key) can be specified. With the user's
 will, each outgoing message MUST then be sent encrypted to any of
 those extra (implicit) recipients. Message clients SHOULD save and
 show only one message as sent to the explicit recipient(s), so as to
 not confuse users.

Birk, et al. Expires July 13, 2018 [Page 12]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

7.4. Option "Blacklist Keys"

 An option "Blacklist Keys" MUST be provided for an advanced user to
 be able to disable keys which the user does not want to be used
 anymore for any new communications. However, the keys SHALL NOT be
 deleted. It MUST still be possible to verify and decipher past
 communications.

7.5. Establishing trust between peers

 In pEp, Trustwords [pEpTrustwords] are used for users to compare the
 authenticity of peers in order to mitigate for MITM attacks.

 By default, Trustwords MUST be used to represent two peers'
 fingerprints of their public keys in pEp implementations.

 In order to retain compatibility with peers not using pEp
 implementations (e.g., Mail User Agents (MUAs) with OpenPGP
 implementations without Trustwords), it is REQUIRED that pEp
 implementers give the user the choice to show both peers'
 fingerprints instead of just their common Trustwords.

8. Security Considerations

 By attaching the sender's public key to outgoing messages, Trust on
 First Use (TOFU) is established, which can lead for MITM attacks to
 succeed. Cryptographic key subversion is considered Pervasive
 Monitoring (PM) according to [RFC7258]. Those attacks can be
 mitigated by having the involved users comparing their common
 Trustwords. This possibility MUST be made easily accessible to pEp
 users in the user interface implementation. If for compatibility
 reasons (e.g., with OpenPGP users) no Trustwords can be used, then an
 comparibly easy way to verify the respective public key fingerprints
 MUST be implemented.

 Devices themselves SHOULD be made encrypted, as the use of
 passphrases for private keys is not advised.

9. Implementation Status

9.1. Introduction

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation

https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/doc/html/rfc7942

Birk, et al. Expires July 13, 2018 [Page 13]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC7942], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

9.2. Reference implementation of pEp's core

 The pEp Foundation provides a reference implementation of pEp's core
 principles and functionalities, which go beyond the documentation
 status of this Internet-Draft. [pEpCore]

 pEp's reference implementation is composed of pEp Engine and pEp
 Adapters (or bindings), alongside with some libraries which pEp
 Engine relies on to function on certain platforms (like a NetPGP fork
 we maintain for the iOS platform).

 The pEp engine is a Free Software library encapsulating
 implementations of:

 o Key Management

 * Key Management in pEp engine is based on GnuPG key chains
 (NetPGP on iOS). Keys are stored in an OpenPGP compatbile
 format and can be used for different crypto implementations.

 o Trust Rating

 * pEp engine is sporting a two phase trust rating system. In
 phase one there is a rating based on channel, crypto and key
 security named "comm_types". In phase 2 these are mapped to
 user representable values which have attached colors to present
 them in traffic light semantics.

 o Abstract Crypto API

 * The Abstract Crypto API is providing functions to encrypt and
 decrypt data or full messages without requiring an application
 programmer to understand the different formats and standards.

https://datatracker.ietf.org/doc/html/rfc7942

Birk, et al. Expires July 13, 2018 [Page 14]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 o Message Transports

 * pEp engine will support a growing list of Message Transports to
 support any widespread text messaging system including email,
 SMS, XMPP and many more.

 pEp engine is written in C99. It is not meant to be used in
 application code directly. Instead, pEp engine is coming together
 with a list of software adapters for a variety of programming
 languages and development environments, which are:

 o pEp COM Server Adapter

 o pEp JNI Adapter

 o pEp JSON Adapter

 o pEp ObjC (and Swift) Adapter

 o pEp Python Adapter

 o pEp Qt Adapter

9.3. Abstract Crypto API examples

 [[Just a selection; more functionality available.]]

 The following code excerpts are from the pEp Engine reference
 implementation, to be found in src/message_api.h.

9.3.1. Encrypting a message

Birk, et al. Expires July 13, 2018 [Page 15]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 // encrypt_message() - encrypt message in memory
 //
 // parameters:
 // session (in) session handle
 // src (in) message to encrypt
 // extra (in) extra keys for encryption
 // dst (out) pointer to new encrypted message or NULL on failure
 // enc_format (in) encrypted format
 // flags (in) flags to set special encryption features
 //
 // return value:
 // PEP_STATUS_OK on success
 // PEP_KEY_NOT_FOUND at least one of the receipient keys
 // could not be found
 // PEP_KEY_HAS_AMBIG_NAME at least one of the receipient keys has
 // an ambiguous name
 // PEP_GET_KEY_FAILED cannot retrieve key
 // PEP_UNENCRYPTED no recipients with usable key,
 // message is left unencrypted,
 // and key is attached to it
 //
 // caveat:
 // the ownershop of src remains with the caller
 // the ownership of dst goes to the caller
 DYNAMIC_API PEP_STATUS encrypt_message(
 PEP_SESSION session,
 message *src,
 stringlist_t *extra,
 message **dst,
 PEP_enc_format enc_format,
 PEP_encrypt_flags_t flags
);

9.3.2. Decrypting a message

Birk, et al. Expires July 13, 2018 [Page 16]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 // decrypt_message() - decrypt message in memory
 //
 // parameters:
 // session (in) session handle
 // src (in) message to decrypt
 // dst (out) pointer to new decrypted message or NULL on failure
 // keylist (out) stringlist with keyids
 // rating (out) rating for the message
 // flags (out) flags to signal special decryption features
 //
 // return value:
 // error status
 // or PEP_DECRYPTED if message decrypted but not verified
 // or PEP_STATUS_OK on success
 //
 // caveat:
 // the ownership of src remains with the caller
 // the ownership of dst goes to the caller
 // the ownership of keylist goes to the caller
 // if src is unencrypted this function returns PEP_UNENCRYPTED and sets
 // dst to NULL
 DYNAMIC_API PEP_STATUS decrypt_message(
 PEP_SESSION session,
 message *src,
 message **dst,
 stringlist_t **keylist,
 PEP_rating *rating,
 PEP_decrypt_flags_t *flags
);

9.3.3. Obtaining common Trustwords

Birk, et al. Expires July 13, 2018 [Page 17]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 // get_trustwords() - get full trustwords string for a *pair* of identities
 //
 // parameters:
 // session (in) session handle
 // id1 (in) identity of first party in communication - fpr can't
be NULL
 // id2 (in) identity of second party in communication - fpr can't
be NULL
 // lang (in) C string with ISO 639-1 language code
 // words (out) pointer to C string with all trustwords UTF-8
encoded,
 // separated by a blank each
 // NULL if language is not supported or trustword
 // wordlist is damaged or unavailable
 // wsize (out) length of full trustwords string
 // full (in) if true, generate ALL trustwords for these
identities.
 // else, generate a fixed-size subset. (TODO: fixed-
minimum-entropy
 // subset in next version)
 //
 // return value:
 // PEP_STATUS_OK trustwords retrieved
 // PEP_OUT_OF_MEMORY out of memory
 // PEP_TRUSTWORD_NOT_FOUND at least one trustword not found
 //
 // caveat:
 // the word pointer goes to the ownership of the caller
 // the caller is responsible to free() it (on Windoze use pEp_free())
 //
 DYNAMIC_API PEP_STATUS get_trustwords(
 PEP_SESSION session, const pEp_identity* id1, const pEp_identity* id2,
 const char* lang, char **words, size_t *wsize, bool full
);

9.4. Current software implementing pEp

 The following software implementing the pEp protocols (to varying
 degrees) already exists; it does not yet go beyond implementing pEp
 for email, which is to be described nearer in [pEpEmail]:

 o pEp for Outlook as addon for Microsoft Outlook, production
 [pEpForOutlookSrc]

 o pEp for Android (based on a fork of the K9 MUA), beta
 [pEpForAndroidSrc]

 o Enigmail/pEp as addon for Mozilla Thunderbird, early beta

 [EnigmailpEpSrc]

 o pEp for iOS (implemented in a new MUA), alpha [pEpForiOSSrc]

Birk, et al. Expires July 13, 2018 [Page 18]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 pEp for Android, iOS and Outlook are provided by pEp Security, a
 commercial entity specializing in end-user software implementing pEp
 while Enigmail/pEp is pursued as community project, supported by the
 pEp Foundation.

10. Notes

 The pEp logo and "pretty Easy privacy" are registered trademarks
 owned by pEp Foundation in Switzerland, a tax-free, non-commercial
 entity.

 Primarily, we want to ensure the following:

 o Software using the trademarks MUST be backdoor-free.

 o Software using the trademarks MUST be accompanied by a serious
 (detailed) code audit carried out by a reputable third-party, for
 any proper release.

 The pEp Foundation will help to support any community-run (non-
 commercial) project with the latter, be it organizationally or
 financially.

 Through this, the foundation wants to make sure that software using
 the pEp trademarks is as safe as possible from a security and privacy
 point of view.

11. Acknowledgements

 Special thanks to Bernie Hoeneisen, Enrico Tomae, Stephen Farrel,
 Brian Trammell and Neal Walfield for roughly reviewing first versions
 of this Internet-Draft and providing valuable feedback and patches.

 [[Much more general acknowledgements to follow.]]

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880,
 DOI 10.17487/RFC4880, November 2007,
 <https://www.rfc-editor.org/info/rfc4880>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4880
https://www.rfc-editor.org/info/rfc4880

Birk, et al. Expires July 13, 2018 [Page 19]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/info/rfc7435>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,

RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

12.2. Informative References

 [EnigmailpEpSrc]
 Enigmail project, "Source code for Enigmail/pEp", June
 2017,
 <https://enigmail.net/index.php/en/download/source-code>.

 [pEpCore] pEp Foundation, "Core source code and reference
 implementation of pEp (engine and adapters)", June 2017,
 <https://letsencrypt.pep.foundation/dev/>.

 [pEpEmail]
 pEp Foundation, "pEp email [Early Internet-Draft]", June
 2017, <https://letsencrypt.pep.foundation/trac/browser/

internet-drafts/pep-email/draft-birk-pep-email-NN.txt>.

 [pEpForAndroidSrc]
 pEp Security, "Source code for pEp for Android", June
 2017, <https://cacert.pep-security.lu/gitlab/android/pep>.

 [pEpForiOSSrc]
 pEp Security, "Source code for pEp for iOS", June 2017,
 <https://cacert.pep-security.ch/dev/repos/pEp_for_iOS/>.

 [pEpForOutlookSrc]
 pEp Security, "Source code for pEp for Outlook", June
 2017, <https://cacert.pep-security.lu/dev/repos/

pEp_for_Outlook/>.

https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://www.rfc-editor.org/info/rfc7258
https://datatracker.ietf.org/doc/html/rfc7435
https://www.rfc-editor.org/info/rfc7435
https://datatracker.ietf.org/doc/html/bcp205
https://datatracker.ietf.org/doc/html/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://enigmail.net/index.php/en/download/source-code
https://letsencrypt.pep.foundation/dev/
https://letsencrypt.pep.foundation/trac/browser/internet-drafts/pep-email/draft-birk-pep-email-NN.txt
https://letsencrypt.pep.foundation/trac/browser/internet-drafts/pep-email/draft-birk-pep-email-NN.txt
https://cacert.pep-security.lu/gitlab/android/pep
https://cacert.pep-security.ch/dev/repos/pEp_for_iOS/
https://cacert.pep-security.lu/dev/repos/pEp_for_Outlook/
https://cacert.pep-security.lu/dev/repos/pEp_for_Outlook/

Birk, et al. Expires July 13, 2018 [Page 20]

Internet-Draftpretty Easy privacy (pEp): Privacy by Default January 2018

 [pEpKeySync]
 pEp Foundation, "pEp Key Synchronization Protocol [Early
 Internet-Draft]", June 2017,
 <https://letsencrypt.pep.foundation/trac/browser/internet-

drafts/pep-keysync/draft-birk-pep-keysync-NN.txt>.

 [pEpTrustRating]
 pEp Foundation, "pretty Easy privacy (pEp): Trust Rating
 System [Early Internet-Draft]", June 2017,
 <https://letsencrypt.pep.foundation/trac/browser/internet-

drafts/pep-rating/draft-birk-pep-rating-NN.txt>.

 [pEpTrustwords]
 pEp Foundation, "pretty Easy privacy (pEp): Trustwords
 concept [Early Internet-Draft]", June 2017,
 <https://letsencrypt.pep.foundation/trac/browser/internet-

drafts/pep-trustwords/draft-birk-pep-trustwords-NN.txt>.

Authors' Addresses

 Volker Birk
 pEp Foundation

 Email: vb@pep-project.org

 Hernani Marques
 pEp Foundation

 Email: hernani.marques@pep.foundation

 Shelburn
 pEp Foundation

 Email: shelburn@pep.foundation

 Sandro Koechli
 pEp Security

 Email: sandro@pep-security.net

https://letsencrypt.pep.foundation/trac/browser/internet-drafts/pep-keysync/draft-birk-pep-keysync-NN.txt
https://letsencrypt.pep.foundation/trac/browser/internet-drafts/pep-keysync/draft-birk-pep-keysync-NN.txt
https://letsencrypt.pep.foundation/trac/browser/internet-drafts/pep-rating/draft-birk-pep-rating-NN.txt
https://letsencrypt.pep.foundation/trac/browser/internet-drafts/pep-rating/draft-birk-pep-rating-NN.txt
https://letsencrypt.pep.foundation/trac/browser/internet-drafts/pep-trustwords/draft-birk-pep-trustwords-NN.txt
https://letsencrypt.pep.foundation/trac/browser/internet-drafts/pep-trustwords/draft-birk-pep-trustwords-NN.txt

Birk, et al. Expires July 13, 2018 [Page 21]

