
Network Working Group H. Marques
Internet-Draft C. Luck
Intended status: Standards Track pEp Foundation
Expires: January 9, 2020 B. Hoeneisen
 Ucom.ch
 July 08, 2019

pretty Easy privacy (pEp): Privacy by Default
draft-birk-pep-04

Abstract

 The pretty Easy privacy (pEp) model and protocols describe a set of
 conventions for the automation of operations traditionally seen as
 barriers to the use and deployment of secure, privacy-preserving end-
 to-end interpersonal messaging. These include, but are not limited
 to, key management, key discovery, and private key handling
 (including peer-to-peer synchronization of private keys and other
 user data across devices). Human Rights-enabling principles like
 Data Minimization, End-to-End and Interoperability are explicit
 design goals. For the goal of usable privacy, pEp introduces means
 to verify communication between peers and proposes a trust-rating
 system to denote secure types of communications and signal the
 privacy level available on a per-user and per-message level.
 Significantly, the pEp protocols build on already available security
 formats and message transports (e.g., PGP/MIME with email), and are
 written with the intent to be interoperable with already widely-
 deployed systems in order to ease adoption and implementation. This
 document outlines the general design choices and principles of pEp.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Marques, et al. Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft pretty Easy privacy (pEp) July 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Relationship to other pEp documents 5
1.2. Requirements Language 5
1.3. Terms . 5

2. Protocol's Core Design Principles 6
2.1. Privacy by Default 6
2.2. Data Minimization . 7
2.3. Interoperability . 7
2.4. Peer-to-Peer . 7
2.5. User Interaction . 8

3. Identity System . 8
3.1. User . 9
3.2. Address . 9
3.3. Identity . 9

4. Key Management . 10
4.1. Key Generation . 10
4.2. Private Keys . 10
4.2.1. Storage . 10
4.2.2. Passphrase . 11

4.3. Key Reset . 11
4.4. Public Key Distribution 11
4.4.1. UX Considerations 12
4.4.2. No addition of unnecessary metadata 12

 4.4.3. No centralized public key storage or retrieval by
 default . 12

4.4.4. Example message flow 12
4.5. Key Reset . 15

5. Trust Management . 15
5.1. Privacy Status . 15
5.2. Handshake . 15
5.3. Trust Rating . 16

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Marques, et al. Expires January 9, 2020 [Page 2]

Internet-Draft pretty Easy privacy (pEp) July 2019

5.4. Trust Revoke . 16
6. Synchronization . 16
6.1. Private Key Synchronization 16
6.2. Trust Synchronization 16

7. Interoperability . 17
8. Options in pEp . 17
8.1. Option "Passive Mode" 17
8.2. Option "Disable Protection" 17
8.3. Option "Extra Keys" 17
8.3.1. Use Case for Organizations 17
8.3.2. Use Case for Key Synchronization 18

8.4. Option "Blacklist Keys" 18
9. Security Considerations 18
10. Privacy Considerations 18
11. IANA Considerations . 18
12. Implementation Status . 19
12.1. Introduction . 19
12.2. Current software implementing pEp 19
12.3. Reference implementation of pEp's core 20
12.4. Abstract Crypto API examples 21

13. Notes . 21
14. Acknowledgments . 21
15. References . 22
15.1. Normative References 22
15.2. Informative References 22

Appendix A. Code Excerpts 24
A.1. pEp Identity . 24
A.1.1. Corresponding SQL 24

A.2. pEp Communication Type 25
A.3. Abstract Crypto API examples 27
A.3.1. Encrypting a Message 27
A.3.2. Decrypting a Message 28
A.3.3. Obtain Common Trustwords 30

Appendix B. Document Changelog 30
Appendix C. Open Issues . 32

 Authors' Addresses . 32

1. Introduction

 Secure and private communications are vital for many different
 reasons, and there are particular properties that privacy-preserving
 protocols need to fulfill in order to best serve users. In
 particular, [RFC8280] has identified and documented important
 principles such as data minimization, the end-to-end principle, and
 interoperability as integral properties which enable access to Human
 Rights. Today's applications widely lack privacy support that
 ordinary users can easily adapt. The pretty Easy privacy (pEp)
 protocols generally conform to the principles outlined in [RFC8280],

https://datatracker.ietf.org/doc/html/rfc8280
https://datatracker.ietf.org/doc/html/rfc8280

Marques, et al. Expires January 9, 2020 [Page 3]

Internet-Draft pretty Easy privacy (pEp) July 2019

 and, as such, can facilitate the adoption and correct usage of secure
 and private communications technology.

 The pretty Easy privacy (pEp) protocols are propositions to the
 Internet community to create software for peers to automatically
 encrypt, anonymize (where possible), and verify their daily written
 digital communications. This is achieved by building upon already
 existing standards and tools and automating each step a user needs to
 carry out in order to engage in secure end-to-end encrypted
 communications. Significantly, the pEp protocols describe how do to
 this without dependence on centralized infrastructures.

 The pEp project emerged from the CryptoParty movement. During that
 time, the initiators learned that while step-by-step guides can help
 some users engage in secure end-to-end communications, it is both
 more effective and convenient for the vast majority of users if these
 step-by-step guides are put into running code (following a protocol),
 which automates the initial configuration and general usage of
 cryptographic tools. To facilitate this goal, pEp proposes the
 automation of key management, key discovery, and key synchronization
 through an in-band approach which follows the end-to-end principle.

 To mitigate man-in-the-middle attacks (MITM) by an active adversary,
 and as the only manual step users carry out in the course of the
 protocols, the proposed Trustwords [I-D.birk-pep-trustwords]
 mechanism uses natural language representations of two peers'
 fingerprints for users to verify their trust in a paired
 communication channel.

 The privacy-by-default principles that pEp introduces are in
 accordance with the perspective outlined in [RFC7435], aiming to
 provide opportunistic security in the sense of "some protection most
 of the time". This is done, however, with the subtle but important
 difference that when privacy is weighed against security, the choice
 defaults to privacy. Therefore, data minimization is a primary goal
 in pEp (e.g., hiding subject lines and headers unnecessary for email
 transport inside the encrypted payload of a message).

 The pEp propositions are focused on (but not limited to) written
 digital communications and cover asynchronous (offline) types of
 communications like email as well as synchronous (online) types such
 as chat.

 pEp's goal is to bridge different standardized and widely-used
 communications channels such that users can reach communications
 partners in the most privacy-enhancing way possible.

https://datatracker.ietf.org/doc/html/rfc7435

Marques, et al. Expires January 9, 2020 [Page 4]

Internet-Draft pretty Easy privacy (pEp) July 2019

1.1. Relationship to other pEp documents

 While this document outlines the general design choices and
 principles of pEp, other related documents specialize in more
 particular aspects of the model, or the application of pEp on a
 specific protocol like as follows:

 1. pEp-enabled applications (e.g., pEp email
 [I-D.marques-pep-email]).

 2. Helper functions for peer interaction, which facilitate
 understanding and handling of the cryptographic aspects of pEp
 implementation for users (e.g., pEp Handshake
 [I-D.marques-pep-handshake]).

 3. Helper functions for interactions between a user's own devices,
 which give the user the ability to run pEp applications on
 different devices at the same time, such as a computer, mobile
 phone, or tablets (e.g., pEp KeySync
 [I-D.hoeneisen-pep-keysync]).

 In addition, there are documents that do not directly depend on this
 one, but provide generic functions needed in pEp, e.g., IANA
 Registration of Trustword Lists [I-D.birk-pep-trustwords].

 [[Note: At this stage it is not yet clear to us how many of our
 implementation details should be part of new RFCs and where we can
 safely refer to already existing RFCs to clarify which RFCs we rely
 on.]]

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.3. Terms

 The following terms are defined for the scope of this document:

 o pEp Handshake: The process of one user contacting another over an
 independent channel in order to verify Trustwords (or by fallback:
 fingerprints). This can be done in-person or through established
 verbal communication channels, like a phone call.
 [I-D.marques-pep-handshake]

 o Trustwords: A scalar-to-word representation of 16-bit numbers (0
 to 65535) to natural language words. When doing a Handshake,

https://datatracker.ietf.org/doc/html/rfc2119

Marques, et al. Expires January 9, 2020 [Page 5]

Internet-Draft pretty Easy privacy (pEp) July 2019

 peers are shown combined Trustwords of both public keys involved
 to ease the comparison. [I-D.birk-pep-trustwords]

 o Trust On First Use (TOFU): cf. [RFC7435], which states: "In a
 protocol, TOFU calls for accepting and storing a public key or
 credential associated with an asserted identity, without
 authenticating that assertion. Subsequent communication that is
 authenticated using the cached key or credential is secure against
 an MiTM attack, if such an attack did not succeed during the
 vulnerable initial communication."

 o Man-in-the-middle (MITM) attack: cf. [RFC4949], which states: "A
 form of active wiretapping attack in which the attacker intercepts
 and selectively modifies communicated data to masquerade as one or
 more of the entities involved in a communication association."

2. Protocol's Core Design Principles

2.1. Privacy by Default

 pEp's most important goal is to ensure privacy above all else. To
 clarify, pEp's protocol defaults are designed to maximize both
 security and privacy, but in the few cases where achieving both more
 privacy and more security are in conflict, pEp chooses more privacy.

 In contrast to pEp's prioritization of user privacy, OpenPGP's Web-
 of-Trust (WoT) releases user and trust level relationships to the
 public. In addition, queries to OpenPGP keyservers dynamically
 disclose the social graph, indicating a user's intent to communicate
 with specific peers. Similar issues exist in other security
 protocols that rely upon a centralized trust model, such as the
 certificate revocation protocols used in XPKI (S/MIME).

 [[*TODO*: Fix the wording and reference to XPKI, S/MIME]].

 In pEp messaging (e.g., when using HTML) content and information
 SHALL NOT be obtained from remote locations as this constitutes a
 privacy breach.

 Because of the inherent privacy risks in using remote or centralized
 infrastructures, implementations of pEp messaging, by default, SHALL
 NOT obtain content and information from remote or centralized
 locations, as this constitutes a privacy breach. In email this issue
 exists with HTML mails.

https://datatracker.ietf.org/doc/html/rfc7435
https://datatracker.ietf.org/doc/html/rfc4949

Marques, et al. Expires January 9, 2020 [Page 6]

Internet-Draft pretty Easy privacy (pEp) July 2019

2.2. Data Minimization

 Data minimization keeps data spare and hides all technically
 concealable information whenever possible. It is an important design
 goal of pEp.

2.3. Interoperability

 The proposed pEp protocols seek interoperability with established
 message formats, as well as cryptographic security protocols and
 their widespread implementations.

 To achieve this interoperability, pEp MUST follow Postel's Robustness
 Principle outlined in [RFC1122]: "Be liberal in what you accept, and
 conservative in what you send."

 Particularly, pEp applies Postel's principle as follows:

 o pEp is conservative (strict) in requirements for pEp
 implementations and how they interact with pEp or other compatible
 implementations.

 o pEp liberally accepts input from non-pEp implementations. For
 example, in email, pEp will not produce outgoing messages, but
 will transparently support decryption of incoming PGP/INLINE
 messages.

 o Finally, where pEp requires divergence from established RFCs due
 to privacy concerns (e.g., from OpenPGP propositions as defined in
 [OpenPGP], options SHOULD be implemented which empower the user to
 override pEp's defaults.

2.4. Peer-to-Peer

 Messaging and verification processes in pEp are designed to work in a
 peer-to-peer (P2P) manner, without the involvement of intermediaries.

 This means there MUST NOT be any pEp-specific central services
 whatsoever needed for pEp implementations, both in the case of
 verification of peers and for the actual encryption.

 However, implementers of pEp MAY provide options for interoperation
 with providers of centralized infrastructures (e.g., to enable users
 to communicate with their peers on platforms with vendor lock-in).

 Trust provided by global Certificate Authorities (e.g., commercial
 X.509 CAs) SHALL NOT be signaled as trustworthy (cf.

https://datatracker.ietf.org/doc/html/rfc1122

Marques, et al. Expires January 9, 2020 [Page 7]

Internet-Draft pretty Easy privacy (pEp) July 2019

 [I-D.marques-pep-rating]) to users of pEp (e.g., when interoperating
 with peers using S/MIME) by default.

2.5. User Interaction

 Implementers of pEp MUST take special care not to overburden users
 with technical terms, especially those specific to cryptography, like
 "keys", "certificates", or "fingerprints". Users may explicitly opt
 for exposure to these terms; i.e., advanced settings MAY be
 available, and in some cases, these options may be required.
 However, these options SHALL NOT be exposed to users of pEp
 implementations unless necessary or opted-for."

 The authors believe that widespread adoption of end-to-end
 cryptography is possible if users are not required to understand
 cryptography and key management. This belief forms the central goal
 of pEp, which is that users can simply rely on the principles of
 Privacy by Default.

 On the other hand, to preserve usability, users MUST NOT be required
 to wait for cryptographic tasks such as key generation to complete
 before being able to use their respective message client for its
 default purpose. In short, pEp implementers MUST ensure that the
 ability to draft, send, and receive messages is always preserved,
 even if that means a message is sent unencrypted, in accordance with
 the Opportunistic Security approach outlined in [RFC7435].

 In turn, pEp implementers MUST ensure that an unambiguous privacy
 status is clearly visible to the user, both on a per-contact as well
 as per-message level. This allows users to see at a glance both the
 privacy level for the message and the trust level of its intended
 recipients before choosing to send it.

 [[*NOTE*: We are aware of the fact that usually UX requirements are
 not part of RFCs. However, in order to encourage massive adoption of
 secure end-to-end encryption while at the same time avoiding putting
 users at risk, we believe certain straightforward signaling
 requirements for users to be a good idea, just as it is currently
 done for already-popular instant messaging services.]]

3. Identity System

 Everyone has the right to choose how to reveal themselves to the
 world, both offline and online. This is an important element to
 maintain psychological, physical, and digital privacy. As such, pEp
 users MUST have the option to choose their identity, and they MUST
 have the ability to maintain multiple identities.

https://datatracker.ietf.org/doc/html/rfc7435

Marques, et al. Expires January 9, 2020 [Page 8]

Internet-Draft pretty Easy privacy (pEp) July 2019

 These different identities MUST NOT be externally correlatable with
 each other by default. On the other hand, combining different
 identities when such information is known MUST be supported (alias
 support).

3.1. User

 A user is a real world human being or a group of human beings. If it
 is a single human being, it can be called person.

 A user is identified by a user ID (user_id). The user_id SHOULD be a
 UUID, it MAY be an arbitrary unique string.

 The own user can have a user_id like all other users. If the own
 user does not have a user_id, then it is assigned a "pEp_own_userId"
 instead.

 A user can have a default key. [[TODO: Provide ref explaining this.
]]

3.2. Address

 A pEp address is a network address, e.g., an SMTP address or another
 Universal Resource Identifier (URI).

 [[Note: It might be necessary to introduce further addressing
 schemes through IETF contributions or IANA registrations, e.g.,
 implementing pEp to bridge to popular messaging services with no URIs
 defined.]]

3.3. Identity

 An identity is a representation of a user, encapsulating how this
 user appears within the network of a messaging system. This
 representation may or may not be pseudonymous in nature.

 An identity is defined by mapping a user_id to an address. If no
 user_id is known, it is guessed by mapping a username to an address.

 An identity can have a temporary user_id as a placeholder until a
 real user_id is known.

 For this reason, in pEp a different key pair for each (e.g., email)
 account MUST be created. This allows a user to retain different
 identities, which are not correlated by the usage of the same key for
 all of those. This is beneficial in terms of privacy.

Marques, et al. Expires January 9, 2020 [Page 9]

Internet-Draft pretty Easy privacy (pEp) July 2019

 A user MAY have a default key; each identity a user has MAY have a
 default key (of its own).

 [[TODO: Provide ref explaining this.]]

 In Appendix A.1, the definition of a pEp identity can be found
 according to the reference implementation by the pEp engine.

4. Key Management

 In order to achieve the goal of widespread adoption of secure
 communications, key management in pEp MUST be automated.

4.1. Key Generation

 A pEp implementation MUST ensure that cryptographic keys for every
 configured identity are available. If a corresponding key pair for
 the identity of a user is found and said identity fulfills the
 requirements (e.g., for email, as set out in
 [I-D.marques-pep-email]), said key pair MUST be reused. Otherwise a
 new key pair MUST be generated. This may be carried out instantly
 upon its configuration.

 On devices with limited processing power (e.g., mobile devices) the
 key generation may take more time than a user is willing to wait. If
 this is the case, users SHOULD NOT be stopped from communicating,
 i.e., the key generation process SHOULD be carried out in the
 background.

4.2. Private Keys

4.2.1. Storage

 Private keys in pEp implementations MUST always be held on the end
 user's device(s): pEp implementers MUST NOT rely on private keys
 stored in centralized remote locations. This applies even for key
 storages where the private keys are protected with sufficiently long
 passphrases. It is considered a violation of pEp's P2P design
 principle to rely on centralized infrastructures (cf. Section 2.4).
 This also applies for pEp implementations created for applications
 not residing on a user's device (e.g., web-based MUAs). In such
 cases, pEp implementations MUST be done in a way such that the
 locally-held private key can neither be directly accessed nor leaked
 to the outside world.

 [[Note: It is particularly important that browser add-ons
 implementing pEp functionality do not obtain their cryptographic code
 from a centralized (cloud) service, as this must be considered a

Marques, et al. Expires January 9, 2020 [Page 10]

Internet-Draft pretty Easy privacy (pEp) July 2019

 centralized attack vector allowing for backdoors, negatively
 impacting privacy.]]

 Cf. Section 6.1 for a means to synchronize private keys among
 different devices of the same network address in a secure manner.

4.2.2. Passphrase

 Passphrases to protect a user's private key MUST be supported by pEp
 implementations, but MUST NOT be enforced by default. That is, if a
 pEp implementation finds a suitable (i.e., secure enough)
 cryptographic setup, which uses passphrases, pEp implementations MUST
 provide a way to unlock the key. However, if a new key pair is
 generated for a given identity, no passphrase MUST be put in place.
 The authors assume that the enforcement of secure (i.e., unique and
 long enough) passphrases would massively reduce the number of pEp
 users (by hassling them), while providing little to no additional
 privacy for the common cases of passive monitoring being carried out
 by corporations or state-level actors.

4.3. Key Reset

4.4. Public Key Distribution

 As the key is available (cf. Section 4.1) implementers of pEp are
 REQUIRED to ensure that the identity's public key is attached to
 every outgoing message. However, this MAY be omitted if the peer has
 previously received a message encrypted with the public key of the
 sender.

 The sender's public key SHOULD be sent encrypted whenever possible,
 i.e., when a public key of the receiving peer is available. If no
 encryption key of the recipient is available, the sender's public key
 MAY be sent unencrypted. In either case, this approach ensures that
 messaging clients (e.g., MUAs that at least implement OpenPGP) do not
 need to have pEp implemented to see a user's public key. Such peers
 thus have the chance to (automatically) import the sender's public
 key.

 If there is already a known public key from the sender of a message
 and it is still valid and not expired, new keys MUST NOT be used for
 future communication unless they are signed by the previous key (to
 avoid a MITM attack). Messages MUST always be encrypted with the
 receiving peer's oldest public key, as long as it is valid and not
 expired.

Marques, et al. Expires January 9, 2020 [Page 11]

Internet-Draft pretty Easy privacy (pEp) July 2019

4.4.1. UX Considerations

 Implementers of pEp SHALL prevent the display of public keys attached
 to messages (e.g, in email) to the user in order to prevent user
 confusion by files they are potentially unaware of how to handle.

4.4.2. No addition of unnecessary metadata

 Metadata, such as email headers, MUST NOT be added in order to
 announce a user's public key. This is considered unnecessary
 information leakage, may affect user privacy, and may be subject to a
 country's data retention laws (cf. Section 2.2). Furthermore, this
 may affect interoperability to existing users that have no knowledge
 of such header fields, such as users of OpenPGP in email, and lose
 the ability to import any keys distributed in this way as a result.
 The ability to extract and receive public keys from such metadata
 SHOULD be supported, however, in the event these approaches become
 widespread.

4.4.3. No centralized public key storage or retrieval by default

 Keyservers or generally intermediate approaches to obtain a peer's
 public key SHALL NOT be used by default. On the other hand, the user
 MAY be provided with the option to opt-in for remote locations to
 obtain keys, considering the widespread adoption of such approaches
 for key distribution.

 Keys generated or obtained by pEp clients MUST NOT be uploaded to any
 (intermediate) keystore locations without the user's explicit
 consent.

4.4.4. Example message flow

 The following example roughly describes a pEp scenario with a typical
 initial message flow to demonstrate key exchange and basic trust
 management:

 The following example describes a pEp scenario between two users -
 Alice and Bob - in order to demonstrate the message flow that occurs
 when exchanging keys and determining basic trust management for the
 first time:

 1. Alice - knowing nothing of Bob - sends a message to Bob. As Alice
 has no public key from Bob, this message is sent out unencrypted.
 However, Alice's public key is automatically attached.

 2. Bob receives Alice's message and her public key. He is able to
 reply to her and encrypt the message. His public key is

Marques, et al. Expires January 9, 2020 [Page 12]

Internet-Draft pretty Easy privacy (pEp) July 2019

 automatically attached to the message. Because he has her public
 key now, Alice's rating in his message client changes to
 'encrypted'. From a UX perspective, this status is displayed in
 yellow (cf. Section 5.3).

 3. Alice receives Bob's key. As of now Alice is also able to send
 secure messages to Bob. The rating for Bob changes to "encrypted"
 (with yellow color) in Alice's messaging client (cf.

Section 5.3).

 4. Alice receives Bob's reply with his public key attached. Now,
 Alice can send secure messages to Bob as well. The rating for
 Bob changes to yellow, or 'encrypted', in Alice's messaging
 client Section 5.3.

 5. If Alice and Bob want to prevent man-in-the-middle (MITM)
 attacks, they can engage in a pEp Handshake comparing their so-
 called Trustwords (cf. Section 5.2) and confirm this process if
 those match. After doing so, their identity rating changes to
 "encrypted and authenticated" (cf. Section 5.3), which (UX-wise)
 can be displayed using a green color. See also Section 5.

 6. Alice and Bob can encrypt now, but they are not yet
 authenticated, leaving them vulnerable to man-in-the-middle
 (MitM) attacks. To prevent this from occurring, Alice and Bob
 can engage in a pEp Handshake to compare their Trustwords (cf.

Section 5.2) and confirm if they match. After this step is
 performed, their respective identity ratings change to "encrypted
 and authenticated", which is represented by a green color (cf.

Section 5.

Marques, et al. Expires January 9, 2020 [Page 13]

Internet-Draft pretty Easy privacy (pEp) July 2019

 ----- -----
 | A | | B |
 ----- -----
 | |
 +------------------------+ +------------------------+
 | auto-generate key pair | | auto-generate key pair |
 | (if no key yet) | | (if no key yet) |
 +------------------------+ +------------------------+
 | |
 +-----------------------+ +-----------------------+
 | Privacy Status for B: | | Privacy Status for A: |
 | *Unencrypted* | | *Unencrypted* |
 +-----------------------+ +-----------------------+
 | |
 | A sends message to B (Public Key |
 | attached) / optionally signed, but |
 | NOT ENCRYPTED |
 +-->|
 | |
 | +-----------------------+
 | | Privacy Status for A: |
 | | *Encrypted* |
 | +-----------------------+
 | |
 | B sends message to A (Public Key |
 | attached) / signed and ENCRYPTED |
 |<--+
 | |
 +-----------------------+ |
 | Privacy Status for B: | |
 | *Encrypted* | |
 +-----------------------+ |
 | |
 | A and B successfully compare their |
 | Trustwords over an alternative channel |
 | (e.g., phone line) |
 |<-- -- -- -- -- -- -- -- -- -- -- -- -- -->|
 | |
 +-----------------------+ +-----------------------+
 | Privacy Status for B: | | Privacy Status for A: |
 | *Trusted* | | *Trusted* |
 +-----------------------+ +-----------------------+
 | |

Marques, et al. Expires January 9, 2020 [Page 14]

Internet-Draft pretty Easy privacy (pEp) July 2019

4.5. Key Reset

 [[TODO: This section will explain how to deal with invalid keys,
 e.g., if expired or (potentially) leaked.]]

5. Trust Management

 [[TODO: Intro]]

5.1. Privacy Status

 The trust status for an identity can change due to a number of
 factors. These shifts will cause the color code assigned to this
 identity to change accordingly, and is applied to future
 communications with this identity.

 For end-users, the most important component of pEp, which MUST be
 made visible on a per-recipient and per-message level, is the Privacy
 Status.

 By colors, symbols and texts a user SHALL immediately understand how
 private

 o a communication channel with a given peer was or ought to be and

 o a given message was or ought to be.

5.2. Handshake

 To establishing trust between peers and to upgrade Privacy Status,
 pEp defines a handshake, which is specified in
 [I-D.marques-pep-handshake].

 In pEp, Trustwords [I-D.birk-pep-trustwords] are used for users to
 compare the authenticity of peers in order to mitigate MITM attacks.

 By default, Trustwords MUST be used to represent two peers'
 fingerprints of their public keys in pEp implementations.

 In order to retain compatibility with peers not using pEp
 implementations (e.g., Mail User Agents (MUAs) with OpenPGP
 implementations without Trustwords), it is REQUIRED that pEp
 implementers give the user the choice to show both peers'
 fingerprints instead of just their common Trustwords.

Marques, et al. Expires January 9, 2020 [Page 15]

Internet-Draft pretty Easy privacy (pEp) July 2019

5.3. Trust Rating

 pEp includes a Trust Rating system defining Rating and Color Codes to
 express the Privacy Status of a peer or message
 [I-D.marques-pep-rating]. The ratings are labeled, e.g., as
 "Unencrypted", "Encrypted", "Trusted", "Under Attack", etc. The
 Privacy Status in its most general form is expressed with traffic
 lights semantics (and respective symbols and texts), whereas the
 three colors yellow, green and red can be applied for any peer or
 message - like this immediately indicating how secure and trustworthy
 (and thus private) a communication was or ought to be considered.

 The pEp Trust Rating system with all its states and respective
 representations to be followed is outlined in
 [I-D.marques-pep-rating].

 Note: An example for the rating of communication types, the
 definition of the data structure by the pEp Engine reference
 implementation is provided in Appendix A.2.

5.4. Trust Revoke

 [[TODO: This section will explain how to deal with the situation
 when a peer can no longer be trusted, e.g., if a peer's device is
 compromised.]]

6. Synchronization

 An important feature of pEp is to assist the user to run pEp
 applications on different devices, such as personal computers, mobile
 phones and tablets, at the same time. Therefore, state needs to be
 synchronized among the different devices.

6.1. Private Key Synchronization

 The pEp KeySync protocol (cf. [I-D.hoeneisen-pep-keysync]) is a
 decentralized proposition which defines how pEp users can distribute
 their private keys among their different devices in a user-
 authenticated manner. This allows users to read their messages
 across their various devices, as long as they share a common address,
 such as an email account.

6.2. Trust Synchronization

 [[TODO: This section will explain how trust and other related state
 is synchronized among different devices in a user-authenticated
 manner.]]

Marques, et al. Expires January 9, 2020 [Page 16]

Internet-Draft pretty Easy privacy (pEp) July 2019

7. Interoperability

 pEp aims to be interoperable with existing applications designed to
 enable privacy, e.g., OpenPGP and S/MIME in email.

8. Options in pEp

 In this section a non-exhaustive selection of options is provided.

8.1. Option "Passive Mode"

 By default, the sender attaches its public key to any outgoing
 message (cf. Section 4.4). For situations where a sender wants to
 ensure that it only attaches a public key to an Internet user which
 has a pEp implementation, a Passive Mode MUST be made available.

8.2. Option "Disable Protection"

 Using this option, protection can be disabled generally or
 selectively. Implementers of pEp MUST provide an option "Disable
 Protection" to allow a user to disable encryption and signing for:

 1. all communication

 2. specific contacts

 3. specific messages

 The public key still attached, unless the option "Passive Mode" (cf.
Section 8.1) is activated at the same time.

8.3. Option "Extra Keys"

8.3.1. Use Case for Organizations

 For internal or enterprise environments, authorized personnel may
 need to centrally decrypt user messages for archival or other legal
 purposes. Therefore, pEp implementers MAY provide an "Extra Keys"
 option in which a message is encrypted with at least one additional
 public key. The corresponding secret key(s) are intended to be
 secured by CISO staff or other authorized personnel for the
 organization.

 However, it is crucial that the "Extra Keys" feature MUST NOT be
 activated by default for any network address, and is intended to be
 an option used only for organization-specific identities, as well as
 their corresponding network addresses and accounts. The "Extra Keys"

Marques, et al. Expires January 9, 2020 [Page 17]

Internet-Draft pretty Easy privacy (pEp) July 2019

 feature SHOULD NOT be applied to the private identities, addresses,
 or accounts a user might possess once it is activated.

8.3.2. Use Case for Key Synchronization

 The "Extra Keys" feature also plays a role during pEp's KeySync
 protocols, where the additional keys are used to decipher message
 transactions by both parties involved during the negotiation process
 for private key synchronization. During the encrypted (but
 untrusted) transactions, KeySync messages are not just encrypted with
 the sending device's default key, but also with the default keys of
 both parties involved in the synchronization process.

8.4. Option "Blacklist Keys"

 A "Blacklist Keys" option MAY be provided for an advanced user,
 allowing them to disable keys of peers that they no longer want to
 use in new communications. However, the keys SHALL NOT be deleted.
 It MUST still be possible to verify and decipher past communications
 that used these keys.

9. Security Considerations

 By attaching the sender's public key to outgoing messages, Trust on
 First Use (TOFU) is established. However, this is prone to MITM
 attacks. Cryptographic key subversion is considered Pervasive
 Monitoring (PM) according to [RFC7258]. Those attacks can be
 mitigated, if the involved users compare their common Trustwords.
 This possibility MUST be made easily accessible to pEp users in the
 user interface implementation. If for compatibility reasons (e.g.,
 with OpenPGP users) no Trustwords can be used, then a comparatively
 easy way to verify the respective public key fingerprints MUST be
 implemented.

 As the use of passphrases for private keys is not advised, devices
 themselves SHOULD use encryption.

10. Privacy Considerations

 [[TODO]]

11. IANA Considerations

 This document has no actions for IANA.

https://datatracker.ietf.org/doc/html/rfc7258

Marques, et al. Expires January 9, 2020 [Page 18]

Internet-Draft pretty Easy privacy (pEp) July 2019

12. Implementation Status

12.1. Introduction

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC7942], "[...] this will allow reviewers and working
 groups to assign due consideration to documents that have the benefit
 of running code, which may serve as evidence of valuable
 experimentation and feedback that have made the implemented protocols
 more mature. It is up to the individual working groups to use this
 information as they see fit."

12.2. Current software implementing pEp

 The following software implementing the pEp protocols (to varying
 degrees) already exists:

 o pEp for Outlook as add-on for Microsoft Outlook, release
 [SRC.pepforoutlook]

 o pEp for Android (based on a fork of the K9 MUA), release
 [SRC.pepforandroid]

 o Enigmail/pEp as add-on for Mozilla Thunderbird, release
 [SRC.enigmailpep]

 o pEp for iOS (implemented in a new MUA), beta [SRC.pepforios]

 pEp for Android, iOS and Outlook are provided by pEp Security, a
 commercial entity specializing in end-user software implementing pEp
 while Enigmail/pEp is pursued as community project, supported by the
 pEp Foundation.

 All software is available as Free Software and published also in
 source form.

https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942

Marques, et al. Expires January 9, 2020 [Page 19]

Internet-Draft pretty Easy privacy (pEp) July 2019

12.3. Reference implementation of pEp's core

 The pEp Foundation provides a reference implementation of pEp's core
 principles and functionalities, which go beyond the documentation
 status of this Internet-Draft. [SRC.pepcore]

 pEp's reference implementation is composed of pEp Engine and pEp
 Adapters (or bindings), alongside with some libraries which pEp
 Engine relies on to function on certain platforms (like a NetPGP fork
 we maintain for the iOS platform).

 The pEp engine is a Free Software library encapsulating
 implementations of:

 o Key Management

 Key Management in pEp engine is based on GnuPG key chains (NetPGP
 on iOS). Keys are stored in an OpenPGP compatible format and can
 be used for different crypto implementations.

 o Trust Rating

 pEp engine is sporting a two phase trust rating system. In phase
 one there is a rating based on channel, crypto and key security
 named "comm_types". In phase 2 these are mapped to user
 representable values which have attached colors to present them in
 traffic light semantics.

 o Abstract Crypto API

 The Abstract Crypto API is providing functions to encrypt and
 decrypt data or full messages without requiring an application
 programmer to understand the different formats and standards.

 o Message Transports

 pEp engine will support a growing list of Message Transports to
 support any widespread text messaging system including email, SMS,
 XMPP and many more.

 pEp engine is written in C99 programming language. It is not meant
 to be used in application code directly. Instead, pEp engine is
 coming together with a list of software adapters for a variety of
 programming languages and development environments, which are:

 o pEp COM Server Adapter

 o pEp JNI Adapter

Marques, et al. Expires January 9, 2020 [Page 20]

Internet-Draft pretty Easy privacy (pEp) July 2019

 o pEp JSON Adapter

 o pEp ObjC (and Swift) Adapter

 o pEp Python Adapter

 o pEp Qt Adapter

12.4. Abstract Crypto API examples

 A selection of code excerpts from the pEp Engine reference
 implementation (encrypt message, decrypt message, and obtain
 trustwords) can be found in Appendix A.3.

13. Notes

 The pEp logo and "pretty Easy privacy" are registered trademarks
 owned by the non-profit pEp Foundation based in Switzerland.

 Primarily, we want to ensure the following:

 o Software using the trademarks MUST be backdoor-free.

 o Software using the trademarks MUST be accompanied by a serious
 (detailed) code audit carried out by a reputable third-party, for
 any proper release.

 The pEp Foundation will help to support any community-run (non-
 commercial) project with the latter, be it organizationally or
 financially.

 Through this, the foundation wants to make sure that software using
 the pEp trademarks is as safe as possible from a security and privacy
 point of view.

14. Acknowledgments

 The authors would like to thank the following people who have
 provided significant contributions to the development of this
 document: Volker Birk, Krista Bennett, and S. Shelburn.

 Furthermore, the authors would like to thank the following people who
 who provided helpful comments and suggestions for this document:

 Alexey Melnikov, Athena Schumacher, Ben Campbell, Brian Trammell,
 Bron Gondwana, Daniel Kahn Gillmor, Enrico Tomae, Eric Rescorla,
 Gabriele Lenzini, Hans-Peter Dittler, Iraklis Symeonidis, Kelly

Marques, et al. Expires January 9, 2020 [Page 21]

Internet-Draft pretty Easy privacy (pEp) July 2019

 Bristol, Mirja Kuehlewind, Nana Kerlstetter, Neal Walfield, Pete
 Resnick, Russ Housley, and Stephen Farrel.

 This work was initially created by pEp Foundation, and then reviewed
 and extended with funding by the Internet Society's Beyond the Net
 Programme on standardizing pEp. [ISOC.bnet]

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/info/rfc7435>.

15.2. Informative References

 [I-D.birk-pep-trustwords]
 Hoeneisen, B. and H. Marques, "IANA Registration of
 Trustword Lists: Guide, Template and IANA Considerations",

draft-birk-pep-trustwords-04 (work in progress), July
 2019.

 [I-D.hoeneisen-pep-keysync]
 Hoeneisen, B. and H. Marques, "pretty Easy privacy (pEp):
 Key Synchronization Protocol", draft-hoeneisen-pep-

keysync-00 (work in progress), July 2019.

 [I-D.marques-pep-email]
 Marques, H., "pretty Easy privacy (pEp): Email Formats and
 Protocols", draft-marques-pep-email-02 (work in progress),
 October 2018.

 [I-D.marques-pep-handshake]
 Marques, H. and B. Hoeneisen, "pretty Easy privacy (pEp):
 Contact and Channel Authentication through Handshake",

draft-marques-pep-handshake-03 (work in progress), July
 2019.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/rfc7435
https://www.rfc-editor.org/info/rfc7435
https://datatracker.ietf.org/doc/html/draft-birk-pep-trustwords-04
https://datatracker.ietf.org/doc/html/draft-hoeneisen-pep-keysync-00
https://datatracker.ietf.org/doc/html/draft-hoeneisen-pep-keysync-00
https://datatracker.ietf.org/doc/html/draft-marques-pep-email-02
https://datatracker.ietf.org/doc/html/draft-marques-pep-handshake-03

Marques, et al. Expires January 9, 2020 [Page 22]

Internet-Draft pretty Easy privacy (pEp) July 2019

 [I-D.marques-pep-rating]
 Marques, H. and B. Hoeneisen, "pretty Easy privacy (pEp):
 Mapping of Privacy Rating", draft-marques-pep-rating-02
 (work in progress), July 2019.

 [ISOC.bnet]
 Simao, I., "Beyond the Net. 12 Innovative Projects
 Selected for Beyond the Net Funding. Implementing Privacy
 via Mass Encryption: Standardizing pretty Easy privacy's
 protocols", June 2017, <https://www.internetsociety.org/

blog/2017/06/12-innovative-projects-selected-for-beyond-
the-net-funding/>.

 [OpenPGP] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880,
 DOI 10.17487/RFC4880, November 2007,
 <https://www.rfc-editor.org/info/rfc4880>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,

RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [RFC8280] ten Oever, N. and C. Cath, "Research into Human Rights
 Protocol Considerations", RFC 8280, DOI 10.17487/RFC8280,
 October 2017, <https://www.rfc-editor.org/info/rfc8280>.

 [SRC.enigmailpep]
 "Source code for Enigmail/pEp", July 2019,
 <https://enigmail.net/index.php/en/download/source-code>.

 [SRC.pepcore]
 "Core source code and reference implementation of pEp
 (engine and adapters)", July 2018,
 <https://pep.foundation/dev/>.

 [SRC.pepforandroid]
 "Source code for pEp for Android", July 2019,
 <https://pep-security.lu/gitlab/android/pep>.

https://datatracker.ietf.org/doc/html/draft-marques-pep-rating-02
https://www.internetsociety.org/blog/2017/06/12-innovative-projects-selected-for-beyond-the-net-funding/
https://www.internetsociety.org/blog/2017/06/12-innovative-projects-selected-for-beyond-the-net-funding/
https://www.internetsociety.org/blog/2017/06/12-innovative-projects-selected-for-beyond-the-net-funding/
https://datatracker.ietf.org/doc/html/rfc4880
https://www.rfc-editor.org/info/rfc4880
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://www.rfc-editor.org/info/rfc7258
https://datatracker.ietf.org/doc/html/bcp205
https://datatracker.ietf.org/doc/html/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://datatracker.ietf.org/doc/html/rfc8280
https://www.rfc-editor.org/info/rfc8280
https://enigmail.net/index.php/en/download/source-code
https://pep.foundation/dev/
https://pep-security.lu/gitlab/android/pep

Marques, et al. Expires January 9, 2020 [Page 23]

Internet-Draft pretty Easy privacy (pEp) July 2019

 [SRC.pepforios]
 "Source code for pEp for iOS", July 2019,
 <https://pep-security.ch/dev/repos/pEp_for_iOS/>.

 [SRC.pepforoutlook]
 "Source code for pEp for Outlook", July 2019,
 <https://pep-security.lu/dev/repos/pEp_for_Outlook/>.

Appendix A. Code Excerpts

 This section provides excerpts of the running code from the pEp
 reference implementation pEp engine (C99 programming language).

A.1. pEp Identity

 How the pEp identity is defined in the data structure (cf. src/
 pEpEngine.h):

 typedef struct _pEp_identity {
 char *address; // C string with address UTF-8 encoded
 char *fpr; // C string with fingerprint UTF-8
 // encoded
 char *user_id; // C string with user ID UTF-8 encoded
 char *username; // C string with user name UTF-8
 // encoded
 PEP_comm_type comm_type; // type of communication with this ID
 char lang[3]; // language of conversation
 // ISO 639-1 ALPHA-2, last byte is 0
 bool me; // if this is the local user
 // herself/himself
 identity_flags_t flags; // identity_flag1 | identity_flag2
 // | ...
 } pEp_identity;

A.1.1. Corresponding SQL

 Relational table scheme excerpts (in SQL) used in current pEp
 implementations, held locally for every pEp installation in a SQLite
 database:

https://pep-security.ch/dev/repos/pEp_for_iOS/
https://pep-security.lu/dev/repos/pEp_for_Outlook/

Marques, et al. Expires January 9, 2020 [Page 24]

Internet-Draft pretty Easy privacy (pEp) July 2019

 CREATE TABLE person (
 id text primary key,
 username text not null,
 main_key_id text
 references pgp_keypair (fpr)
 on delete set null,
 lang text,
 comment text,
 device_group text,
 is_pep_user integer default 0
);

 CREATE TABLE identity (
 address text,
 user_id text
 references person (id)
 on delete cascade on update cascade,
 main_key_id text
 references pgp_keypair (fpr)
 on delete set null,
 comment text,
 flags integer default 0,
 is_own integer default 0,
 timestamp integer default (datetime('now')),
 primary key (address, user_id)
);

 CREATE TABLE pgp_keypair (
 fpr text primary key,
 created integer,
 expires integer,
 comment text,
 flags integer default 0
);
 CREATE INDEX pgp_keypair_expires on pgp_keypair (
 expires
);

A.2. pEp Communication Type

 In the following, is an example for the rating of communication types
 as defined by a data structure (cf. src/pEpEngine.h [SRC.pepcore]):

 typedef enum _PEP_comm_type {
 PEP_ct_unknown = 0,

 // range 0x01 to 0x09: no encryption, 0x0a to 0x0e:
 // nothing reasonable

Marques, et al. Expires January 9, 2020 [Page 25]

Internet-Draft pretty Easy privacy (pEp) July 2019

 PEP_ct_no_encryption = 0x01, // generic
 PEP_ct_no_encrypted_channel = 0x02,
 PEP_ct_key_not_found = 0x03,
 PEP_ct_key_expired = 0x04,
 PEP_ct_key_revoked = 0x05,
 PEP_ct_key_b0rken = 0x06,
 PEP_ct_my_key_not_included = 0x09,

 PEP_ct_security_by_obscurity = 0x0a,
 PEP_ct_b0rken_crypto = 0x0b,
 PEP_ct_key_too_short = 0x0c,

 PEP_ct_compromized = 0x0e, // known compromized connection
 PEP_ct_mistrusted = 0x0f, // known mistrusted key

 // range 0x10 to 0x3f: unconfirmed encryption

 PEP_ct_unconfirmed_encryption = 0x10, // generic
 PEP_ct_OpenPGP_weak_unconfirmed = 0x11, // RSA 1024 is weak

 PEP_ct_to_be_checked = 0x20, // generic
 PEP_ct_SMIME_unconfirmed = 0x21,
 PEP_ct_CMS_unconfirmed = 0x22,

 PEP_ct_strong_but_unconfirmed = 0x30, // generic
 PEP_ct_OpenPGP_unconfirmed = 0x38, // key at least 2048 bit
 // RSA or EC
 PEP_ct_OTR_unconfirmed = 0x3a,

 // range 0x40 to 0x7f: unconfirmed encryption and anonymization

 PEP_ct_unconfirmed_enc_anon = 0x40, // generic
 PEP_ct_pEp_unconfirmed = 0x7f,

 PEP_ct_confirmed = 0x80, // this bit decides if trust
 // is confirmed

 // range 0x81 to 0x8f: reserved
 // range 0x90 to 0xbf: confirmed encryption

 PEP_ct_confirmed_encryption = 0x90, // generic
 PEP_ct_OpenPGP_weak = 0x91, // RSA 1024 is weak (unused)

 PEP_ct_to_be_checked_confirmed = 0xa0, //generic
 PEP_ct_SMIME = 0xa1,
 PEP_ct_CMS = 0xa2,

 PEP_ct_strong_encryption = 0xb0, // generic

Marques, et al. Expires January 9, 2020 [Page 26]

Internet-Draft pretty Easy privacy (pEp) July 2019

 PEP_ct_OpenPGP = 0xb8, // key at least 2048 bit RSA or EC
 PEP_ct_OTR = 0xba,

 // range 0xc0 to 0xff: confirmed encryption and anonymization

 PEP_ct_confirmed_enc_anon = 0xc0, // generic
 PEP_ct_pEp = 0xff
 } PEP_comm_type;

A.3. Abstract Crypto API examples

 The following code excerpts are from the pEp Engine reference
 implementation, to be found in src/message_api.h.

 [[Note: Just a selection; more functionality is available.]]

A.3.1. Encrypting a Message

 Cf. src/message_api.h [SRC.pepcore]:

Marques, et al. Expires January 9, 2020 [Page 27]

Internet-Draft pretty Easy privacy (pEp) July 2019

 // encrypt_message() - encrypt message in memory
 //
 // parameters:
 // session (in) session handle
 // src (in) message to encrypt
 // extra (in) extra keys for encryption
 // dst (out) pointer to new encrypted message or NULL if
 // no encryption could take place
 // enc_format (in) encrypted format
 // flags (in) flags to set special encryption features
 //
 // return value:
 // PEP_STATUS_OK on success
 // PEP_KEY_HAS_AMBIG_NAME at least one of the recipient
 // keys has an ambiguous name
 // PEP_UNENCRYPTED no recipients with usable key,
 // message is left unencrypted,
 // and key is attached to it
 //
 // caveat:
 // the ownership of src remains with the caller
 // the ownership of dst goes to the caller
 DYNAMIC_API PEP_STATUS encrypt_message(
 PEP_SESSION session,
 message *src,
 stringlist_t *extra,
 message **dst,
 PEP_enc_format enc_format,
 PEP_encrypt_flags_t flags
);

 Cf. src/message_api.h [SRC.pepcore]:

A.3.2. Decrypting a Message

 Cf. src/message_api.h [SRC.pepcore]:

 // decrypt_message() - decrypt message in memory
 //
 // parameters:
 // session (in) session handle
 // src (in) message to decrypt
 // dst (out) pointer to new decrypted message
 // or NULL on failure
 // keylist (out) stringlist with keyids
 // rating (out) rating for the message
 // flags (out) flags to signal special decryption features
 //

Marques, et al. Expires January 9, 2020 [Page 28]

Internet-Draft pretty Easy privacy (pEp) July 2019

 // return value:
 // error status
 // or PEP_DECRYPTED if message decrypted but not verified
 // or PEP_CANNOT_REENCRYPT if message was decrypted (and
 // possibly verified) but a reencryption operation is
 // expected by the caller and failed
 // or PEP_STATUS_OK on success
 //
 // flag values:
 // in:
 // PEP_decrypt_flag_untrusted_server
 // used to signal that decrypt function should engage in
 // behaviour specified for when the server storing the
 // source is untrusted
 // out:
 // PEP_decrypt_flag_own_private_key
 // private key was imported for one of our addresses
 // (NOT trusted or set to be used - handshake/trust is
 // required for that)
 // PEP_decrypt_flag_src_modified
 // indicates that the src object has been modified. At
 // the moment, this is always as a direct result of the
 // behaviour driven by the input flags. This flag is the
 // ONLY value that should be relied upon to see if such
 // changes have taken place.
 // PEP_decrypt_flag_consume
 // used by sync
 // PEP_decrypt_flag_ignore
 // used by sync
 //
 //
 // caveat:
 // the ownership of src remains with the caller - however, the
 // contents might be modified (strings freed and allocated anew
 // or set to NULL, etc) intentionally; when this happens,
 // PEP_decrypt_flag_src_modified is set.
 // the ownership of dst goes to the caller
 // the ownership of keylist goes to the caller
 // if src is unencrypted this function returns PEP_UNENCRYPTED
 // and sets
 // dst to NULL
 DYNAMIC_API PEP_STATUS decrypt_message(
 PEP_SESSION session,
 message *src,
 message **dst,
 stringlist_t **keylist,
 PEP_rating *rating,
 PEP_decrypt_flags_t *flags

Marques, et al. Expires January 9, 2020 [Page 29]

Internet-Draft pretty Easy privacy (pEp) July 2019

);

A.3.3. Obtain Common Trustwords

 Cf. src/message_api.h [SRC.pepcore]:

 // get_trustwords() - get full trustwords string
 // for a *pair* of identities
 //
 // parameters:
 // session (in) session handle
 // id1 (in) identity of first party in communication
 // - fpr can't be NULL
 // id2 (in) identity of second party in communication
 // - fpr can't be NULL
 // lang (in) C string with ISO 639-1 language code
 // words (out) pointer to C string with all trustwords
 // UTF-8 encoded, separated by a blank each
 // NULL if language is not supported or
 // trustword wordlist is damaged or unavailable
 // wsize (out) length of full trustwords string
 // full (in) if true, generate ALL trustwords for these
 // identities.
 // else, generate a fixed-size subset.
 // (TODO: fixed-minimum-entropy subset
 // in next version)
 //
 // return value:
 // PEP_STATUS_OK trustwords retrieved
 // PEP_OUT_OF_MEMORY out of memory
 // PEP_TRUSTWORD_NOT_FOUND at least one trustword not found
 //
 // caveat:
 // the word pointer goes to the ownership of the caller
 // the caller is responsible to free() it
 // (on Windoze use pEp_free())
 //
 DYNAMIC_API PEP_STATUS get_trustwords(
 PEP_SESSION session, const pEp_identity* id1,
 const pEp_identity* id2, const char* lang,
 char **words, size_t *wsize, bool full
);

Appendix B. Document Changelog

 [[RFC Editor: This section is to be removed before publication]]

 o draft-birk-pep-04:

https://datatracker.ietf.org/doc/html/draft-birk-pep-04

Marques, et al. Expires January 9, 2020 [Page 30]

Internet-Draft pretty Easy privacy (pEp) July 2019

 * Fix internal reference

 * Add IANA Considerations section

 * Add other use case of Extra Keys

 * Add Claudio Luck as author

 * Incorporate review changes by Kelly Bristol and Nana
 Karlstetter

 o draft-birk-pep-03:

 * Major restructure of the document

 * Adapt authors to the actual authors and extend Acknowledgments
 section

 * Added several new sections, e.g., Key Reset, Trust Revoke,
 Trust Synchronization, Private Key Export / Import, Privacy
 Considerations (content yet mostly TODO)

 * Added reference to HRPC work / RFC8280

 + Added text and figure to better explain pEp's automated Key
 Exchange and Trust management (basic message flow)

 * Lots of improvement in text and editorial changes

 o draft-birk-pep-02:

 * Move (updated) code to Appendix

 * Add Changelog to Appendix

 * Add Open Issue section to Appendix

 * Fix description of what Extra Keys are

 * Fix Passive Mode description

 * Better explain pEp's identity system

 o draft-birk-pep-01:

 * Mostly editorial

 o draft-birk-pep-00:

https://datatracker.ietf.org/doc/html/draft-birk-pep-03
https://datatracker.ietf.org/doc/html/rfc8280
https://datatracker.ietf.org/doc/html/draft-birk-pep-02
https://datatracker.ietf.org/doc/html/draft-birk-pep-01
https://datatracker.ietf.org/doc/html/draft-birk-pep-00

Marques, et al. Expires January 9, 2020 [Page 31]

Internet-Draft pretty Easy privacy (pEp) July 2019

 * Initial version

Appendix C. Open Issues

 [[RFC Editor: This section should be empty and is to be removed
 before publication]]

 o Shorten Introduction and Abstract

 o References to RFC6973 (Privacy Considerations)

 o Add references to prior work, and what differs here - PEM (cf.
RFC1421-1424)

 o Better explain Passive Mode

 o Better explain / illustrate pEp's identity system

 o Explain Concept of Key Mapping (e.g. to S/MIME, which is to be
 refined in pEp application docs auch as pEp email
 [I-D.marques-pep-email])

 o Add more information to deal with organizational requirements

 o Add text to Key Reset (Section 4.3) as well as reference as soon
 as available

 o Add text to Trust Revoke (Section 5.4) as well as reference as
 soon as available

 o Add text to Trust Synchronization (Section 6.2) as well as
 reference as soon as available

 o Add text to Privacy Considerations (Section 10)

 o Scan for leftovers of email-specific stuff and move it to pEp
 email I-D [I-D.marques-pep-email], while replacing it herein with
 generic descriptions.

Authors' Addresses

https://datatracker.ietf.org/doc/html/rfc6973
https://datatracker.ietf.org/doc/html/rfc1421

Marques, et al. Expires January 9, 2020 [Page 32]

Internet-Draft pretty Easy privacy (pEp) July 2019

 Hernani Marques
 pEp Foundation
 Oberer Graben 4
 CH-8400 Winterthur
 Switzerland

 Email: hernani.marques@pep.foundation
 URI: https://pep.foundation/

 Claudio Luck
 pEp Foundation
 Oberer Graben 4
 CH-8400 Winterthur
 Switzerland

 Email: claudio.luck@pep.foundation
 URI: https://pep.foundation/

 Bernie Hoeneisen
 Ucom Standards Track Solutions GmbH
 CH-8046 Zuerich
 Switzerland

 Phone: +41 44 500 52 40
 Email: bernie@ietf.hoeneisen.ch (bernhard.hoeneisen AT ucom.ch)
 URI: https://ucom.ch/

https://pep.foundation/
https://pep.foundation/
https://ucom.ch/

Marques, et al. Expires January 9, 2020 [Page 33]

