
Workgroup: RATS Working Group

Internet-Draft: draft-birkholz-rats-corim-01

Published: 26 July 2021

Intended Status: Standards Track

Expires: 27 January 2022

Authors: H. Birkholz

Fraunhofer SIT

T. Fossati

Arm Limited

Y. Deshpande

Arm Limited

N. Smith

Intel

W. Pan

Huawei Technologies

Concise Reference Integrity Manifest

Abstract

Remote Attestation Procedures (RATS) enable Relying Parties to put

trust in the trustworthiness of a remote Attester and therefore to

decide if to engage in secure interactions with it - or not.

Evidence about trustworthiness can be rather complex, voluminous or

Attester-specific. As it is deemed unrealistic that every Relying

Party is capable of the appraisal of Evidence, that burden is taken

on by a Verifier. In order to conduct Evidence appraisal procedures,

a Verifier requires not only fresh Evidence from an Attester, but

also trusted Endorsements and Reference Values from Endorsers, such

as manufacturers, distributors, or owners. This document specifies

Concise Reference Integrity Manifests (CoRIM) that represent

Endorsements and Reference Values in CBOR format. Composite devices

or systems are represented by a collection of Concise Module

Identifiers (CoMID) and Concise Software Identifiers (CoSWID)

bundled in a CoRIM document.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the RATS Working Group

mailing list (rats@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/rats/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-rats/draft-birkholz-rats-corim.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/rats/
https://mailarchive.ietf.org/arch/browse/rats/
https://github.com/ietf-rats/draft-birkholz-rats-corim
https://github.com/ietf-rats/draft-birkholz-rats-corim
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Notation

2. Concise Reference Integrity Manifests

2.1. Typographical Conventions

2.2. Prefixes and Namespaces

2.3. Extensibility

2.4. Concise RIM Extension Points

2.5. CDDL Generic Types

2.5.1. Non-Empty

2.5.2. One-Or-More

3. Concise RIM Data Definition

3.1. The signed-corim Container

3.1.1. The corim-meta-map Container

3.1.2. The corim-entity-map Container

3.1.3. The validity-map Container

3.2. The unsigned-corim-map Container

3.2.1. The corim-locator-map Container

3.3. The concise-mid-tag Container

3.4. The tag-identity-map Container

3.5. The entity-map Container

3.6. The linked-tag-map Container

3.7. The triples-map Container

3.8. The environment-map Container

3.9. The class-map Container

¶

¶

¶

¶

https://trustee.ietf.org/license-info

3.10. The measurement-map and measurement-values-map Containers

3.10.1. The version-map Container

3.10.2. The svn-type-choice Enumeration

3.10.3. The raw-value-group Container

3.10.4. The ip-addr-type-choice Enumeration

3.10.5. The mac-addr-type-choice Enumeration

3.11. The verification-key-map Container

4. Full CDDL Definition

5. Privacy Considerations

6. Security Considerations

7. IANA Considerations

7.1. COSE Header Parameters Registry

7.2. CoRIM Map Items Registry

7.3. CoRIM Entity-Map Items Registry

7.4. CoRIM Entity-Types Registry

7.5. CoMID Map Items Registry

7.6. CoMID Entity-Map Items Registry

7.7. CoMID Triples-Map Items Registry

7.8. CoMID Measurement-Values-Map Items Registry

7.9. CoMID Tag-Relationship-Types Registry

7.10. CoMID Role-Types Registry

7.11. rim+cbor Media Type Registration

7.12. CoAP Content-Format Registration

7.13. CoRIM CBOR Tag Registration

7.14. CoMID CBOR Tag Registration

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

The Remote Attestation Procedures (RATS) architecture [I-D.ietf-

rats-architecture] describes appraisal procedures for attestation

Evidence and Attestation Results. Appraisal procedures for Evidence

are conducted by Verifiers and are intended to assess the

trustworthiness of a remote peer. Appraisal procedures for

Attestation Results are conducted by Relying Parties and are

intended to operationalize the assessment about a remote peer and to

act appropriately based on the assessment. In order to enable their

intent, appraisal procedures consume Appraisal Policies, Reference

Values, and Endorsements.

This documents specifies a binary encoding for Reference Values

using the Concise Binary Object Representation (CBOR). The encoding

is based on three parts that are defined using the Concise Data

Definition Language (CDDL):

Concise Reference Integrity Manifests (CoRIM),

¶

¶

* ¶

Concise Module Identifiers (CoMID), and

Concise Software Identifier (CoSWID).

CoRIM and CoMID tags are defined in this document, CoSWID tags are

defined in [I-D.ietf-sacm-coswid]. CoRIM provide a wrapper

structure, in which CoMID tags, CoSWID tags, as well as

corresponding metadata can be bundled and signed as a whole. CoMID

tags represent hardware components and provide a counterpart to

CoSWID tags, which represent software components.

In accordance to [RFC4949], software components that are stored in

hardware modules are referred to as firmware. While firmware can be

represented as a software component, it is also very hardware-

specific and often resides directly on block devices instead of a

file system. In this specification, firmware and their Reference

Values are represented via CoMID tags. Reference Values for any

other software components stored on a file system are represented

via CoSWID tags.

In addition to CoRIM - and respective CoMID tags - this

specification defines a Concise Manifest Revocation that represents

a list of reference to CoRIM that are actively marked as invalid

before their expiration time.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Concise Reference Integrity Manifests

This section specifies the Concise RIM (CoRIM) format, the Concise

MID format (CoMID), and the extension to the CoSWID specification

that augments CoSWID tags to express specific relationships to CoMID

tags.

While each specification defines its own start rule, only CoMID and

CoSWID are stand-alone specifications. The CoRIM specification - as

the bundling format - has a dependency on CoMID and CoSWID and is

not a stand-alone specification.

While stand-alone CoSWID tags may be signed [I-D.ietf-sacm-coswid],

CoMID tags are not intended to be stand-alone and are always part of

a CoRIM that must be signed. [I-D.ietf-sacm-coswid] specifies the

use of COSE [RFC7231] for signing. This specification defines how to

* ¶

* ¶

¶

¶

¶

¶

¶

¶

generate singed CoRIM tags with COSE to enable proof of authenticity

and temper-evidence.

This document uses the Concise Data Definition Language (CDDL

[RFC8610]) to define the data structure of CoRIM and CoMID tags, as

well as the extensions to CoSWID. The CDDL definitions provided

define nested containers. Typically, the CDDL types used for nested

containers are maps. Every key used in the maps is a named type that

is associated with an corresponding uint via a block of rules

appended at the end of the CDDL definition.

Every set of uint keys that is used in the context of the "collision

domain" of map is intended to be collision-free (each key is

intended to be unique in the scope of a map, not a multimap). To

accomplish that, for each map there is an IANA registry for the map

members of maps.

2.1. Typographical Conventions

Type names in the following CDDL definitions follow the naming

convention illustrated in table Table 1.

type trait example typo convention

extensible type

choice
int / text / ... $NAME-type-choice

closed type choice int / text NAME-type-choice

group choice
(1 => int // 2 => text

)

$$NAME-group-

choice

group (1 => int, 2 => text) NAME-group

type int NAME-type

tagged type #6.123(int) tagged-NAME-type

map { 1 => int, 2 => text } NAME-map

flags &(a: 1, b: 2) NAME-flags

Table 1: Type Traits & Typographical Convention

2.2. Prefixes and Namespaces

The semantics of the information elements (attributes) defined for

CoRIM, CoMID tags, and CoSWID tags are sometimes very similar, but

often do not share the same scope or are actually quite different.

In order to not overload the already existing semantics of the

software-centric IANA registries of CoSWID tags with, for example,

hardware-centric semantics of CoMID tags, new type names are

introduced. For example: both CoSWID tags and CoMID tags define a

tag-id. As CoSWID already specifies tag-id, the tag-id in CoMID tags

is prefixed with comid. to disambiguate the context, resulting in

comid.tag-id. This prefixing provides a well-defined scope for the

use of the types defined in this document and guarantees

¶

¶

¶

¶

Custom Keys:

Registered Keys:

interoperability (no type name collisions) with the CoSWID CDDL

definition. Effectively, the prefixes used in this specification

enable simple hierarchical namespaces. The prefixing introduced is

also based on the anticipated namespace features for CDDL.

2.3. Extensibility

Both the CoRIM and the CoMID tag specification include extension

points using CDDL sockets (see [RFC8610] Section 3.9). The use of

CDDL sockets allows for well-formed extensions to be defined in

supplementary CDDL definitions that support additional uses of CoRIM

and CoMID tags.

There are two types of extensibility supported via the extension

points defined in this document. Both types allow for the addition

of keys in the scope of a map.

The CDDL definition allows for the use of negative

integers as keys. These keys cannot take on a well-defined global

semantic. They can take on custom-defined semantics in a limited

or local scope, e.g. vendor-defined scope.

Additional keys can be registered at IANA via

separate specifications.

Both types of extensibility also allow for the definition of new

nested maps that again can include additional defined keys.

2.4. Concise RIM Extension Points

The following CDDL sockets (extension points) are defined in the

CoRIM specification, which allow the addition of new information

structures to their respective CDDL groups.

Map Name CDDL Socket Defined in

corim-entity-map $$corim-entity-map-extension
Section

3.1.2

unsigned-corim-map $$unsigned-corim-map-extension Section 3.2

concise-mid-tag $$comid-extension Section 3.3

tag-identity-map $$tag-identity-map-extension Section 3.4

entity-map $$entity-map-extension Section 3.5

triples-map $$triples-map-extension Section 3.7

measurement-values-

map

$$measurement-values-map-

extension
Section 3.10

Table 2: CoMID CDDL Group Extension Points

¶

¶

¶

¶

¶

¶

¶

2.5. CDDL Generic Types

The CDDL definitions for CoRIM and CoMID tags use the two following

generic types.

2.5.1. Non-Empty

The non-empty generic type is used to express that a map with only

optional members MUST at least include one of the optional members.

non-empty<M> = (M) .within ({ + any => any })

2.5.2. One-Or-More

The one-or-more generic type allows to omit an encapsulating array,

if only one member would be present.

one-or-more<T> = T / [2* T] ; 2*

3. Concise RIM Data Definition

A CoRIM is a bundle of CoMID tags and/or CoSWID tags that can

reference each other and that includes additional metadata about

that bundle.

The root of the CDDL specification provided for CoRIM is the rule

corim :

start = corim

3.1. The signed-corim Container

A CoRIM is signed using [RFC7231]. The additional CoRIM-specific

COSE header member label corim-meta is defined as well as the

corresponding type corim-meta-map as its value. This rule and its

constraints MUST be followed when generating or validating a signed

CoMID tag.

¶

¶

¶

¶

¶

¶

¶

¶

¶

corim.signer:

corim.validity:

signed-corim = #6.18(COSE-Sign1-corim)

protected-signed-corim-header-map = {

 corim.alg-id => int

 corim.content-type => "application/rim+cbor"

 corim.issuer-key-id => bstr

 corim.meta => corim-meta-map

 * cose-label => cose-values

}

unprotected-signed-corim-header-map = {

 * cose-label => cose-values

}

COSE-Sign1-corim = [

 protected: bstr .cbor protected-signed-corim-header-map

 unprotected: unprotected-signed-corim-header-map

 payload: bstr .cbor unsigned-corim-map

 signature: bstr

]

3.1.1. The corim-meta-map Container

This map contains the two additionally defined attributes corim-

entity-map and validity-map that are used to annotate a CoRIM with

metadata.

corim-meta-map = {

 corim.signer => one-or-more<corim-entity-map>

 ? corim.validity => validity-map

}

One or more entities that created and/or signed the

issued CoRIM.

A time period defining the validity span of a

CoRIM.

3.1.2. The corim-entity-map Container

This map is used to identify the signer of a CoRIM via a dedicated

entity name, a corresponding role and an optional identifying URI.

¶

¶

¶

¶

¶

¶

corim.entity-name:

corim.reg-id:

corim.role:

$$corim-entity-map-extension:

corim.not-before:

corim.not-after:

corim-entity-map = {

 corim.entity-name => $entity-name-type-choice

 ? corim.reg-id => uri

 corim.role => $corim-role-type-choice

 * $$corim-entity-map-extension

}

$corim-role-type-choice /= corim.manifest-creator

$corim-role-type-choice /= corim.manifest-signer

The name of the organization that takes on the

role expressed in corim.role

The registration identifier of the organization that

has authority over the namespace for corim.entity-name.

The role type that is associated with the entity, e.g.

the creator of the CoRIM or the signer of the CoRIM.

This CDDL socket is used to add new

information elements to the corim-entity-map container. See

FIXME.

3.1.3. The validity-map Container

The members of this map indicate the life-span or period of validity

of a CoRIM that is baked into the protected header at the time of

signing.

validity-map = {

 ? corim.not-before => time

 corim.not-after => time

}

The timestamp indicating the CoRIM's begin of its

validity period.

The timestamp indicating the CoRIM's end of its

validity period.

3.2. The unsigned-corim-map Container

This map contains the payload of the COSE envelope that is used to

sign the CoRIM. This rule and its constraints MUST be followed when

generating or validating an unsigned Concise RIM.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

corim.id:

corim.tags:

corim.dependent-rims:

$$unsigned-corim-map-extension:

corim.href:

corim.thumbprint:

unsigned-corim-map = {

 corim.id => $corim-id-type-choice

 corim.tags => one-or-more<$concise-tag-type-choice>

 ? corim.dependent-rims => one-or-more<corim-locator-map>

 * $$unsigned-corim-map-extension

}

$corim-id-type-choice /= tstr

$corim-id-type-choice /= uuid-type

$concise-tag-type-choice /= #6.TBD-SWID(bytes .cbor concise-swid-tag)

$concise-tag-type-choice /= #6.TBD-CoMID(bytes .cbor concise-mid-tag)

Typically a UUID or a text string that MUST uniquely

identify a CoRIM in a given scope.

A collection of one or more CoMID tags and/or CoSWID

tags.

One or more services available via the

Internet that can supply additional, possibly dependent manifests

(or other associated resources).

This CDDL socket is used to add new

information elements to the unsigned-corim-map container. See

FIXME.

3.2.1. The corim-locator-map Container

This map is used to locate and verify the integrity of resources

provided by external services, e.g. the CoRIM provider.

corim-locator-map = {

 corim.href => uri

 ? corim.thumbprint => hash-entry

}

A pointer to a services that supplies dependent files

or records.

A digest of the reference resource.

¶

¶

¶

¶

¶

¶

¶

¶

¶

comid.language:

comid.tag-identity:

comid.entity:

comid.linked-tags:

comid.triples:

$$comid-mid-tag-extension:

3.3. The concise-mid-tag Container

The CDDL specification for the root concise-mid-tag map is as

follows. This rule and its constraints MUST be followed when

generating or validating a CoMID tag.

concise-mid-tag = {

 ? comid.language => language-type

 comid.tag-identity => tag-identity-map

 ? comid.entity => one-or-more<entity-map>

 ? comid.linked-tags => one-or-more<linked-tag-map>

 comid.triples => triples-map

 * $$concise-mid-tag-extension

}

The following describes each member of the concise-mid-tag root map.

A textual language tag that conforms with the IANA

Language Subtag Registry [IANA.language-subtag-registry].

A composite identifier containing identifying

attributes that enable global unique identification of a CoMID

tag across versions.

A list of entities that contributed to the CoMID tag.

A lost of tags that are linked to this CoMID

tag.

A set of relationships in the form of triples,

representing a graph-like and semantic reference structure

between tags.

This CDDL socket is used to add new

information elements to the concise-mid-tag root container. See

FIXME.

3.4. The tag-identity-map Container

The CDDL specification for the tag-identity-map includes all

identifying attributes that enable a consumer of information to

anticipate required capabilities to process the corresponding tag

that map is included in. This rule and its constraints MUST be

followed when generating or validating a CoMID tag.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

comid.tag-id:

comid.tag-version:

$$tag-identity-map-extension:

tag-identity-map = {

 comid.tag-id => $tag-id-type-choice

 comid.tag-version => tag-version-type

 * $$tag-identity-map-extension

}

$tag-id-type-choice /= tstr

$tag-id-type-choice /= uuid-type

tag-version-type = uint .default 0

The following describes each member of the tag-identity-map

container.

An identifier for a CoMID that MUST be globally

unique.

An unsigned integer used as a version

identifier.

This CDDL socket is used to add new

information elements to the tag-identity-map container. See

FIXME.

3.5. The entity-map Container

This Container provides qualifying attributes that provide more

context information describing the module as well its origin and

purpose. This rule and its constraints MUST be followed when

generating or validating a CoMID tag.

entity-map = {

 comid.entity-name => $entity-name-type-choice

 ? comid.reg-id => uri

 comid.role => one-or-more<$comid-role-type-choice>

 * $$entity-map-extension

}

$comid-role-type-choice /= comid.tag-creator

$comid-role-type-choice /= comid.creator

$comid-role-type-choice /= comid.maintainer

The following describes each member of the tag-identity-map

container.

¶

¶

¶

¶

¶

¶

¶

¶

comid.entity-name:

comid.reg-id:

comid.role:

$$entity-map-extension:

comid.linked-tag-id:

comid.tag-rel:

The name of an organization that performs the

roles as indicated by comid.role.

The registration identifier of the organization that

has authority over the namespace for comid.entity-name.

The list of roles a CoMID entity is associated with.

The entity that generates the concise-mid-tag SHOULD include a

$comid-role-type-choice value of comid.tag-creator.

This CDDL socket is used to add new

information elements to the entity-map container. See FIXME.

3.6. The linked-tag-map Container

A list of tags that are linked to this CoMID tag.

linked-tag-map = {

 comid.linked-tag-id => $tag-id-type-choice

 comid.tag-rel => $tag-rel-type-choice

}

$tag-rel-type-choice /= comid.supplements

$tag-rel-type-choice /= comid.replaces

The following describes each member of the linked-tag-map container.

The tag-id of the linked tag. A linked tag MAY

be a CoMID tag or a CoSWID tag.

The relationship type with the linked tag. The

relationship type MAY be supplements or replaces, as well as

other types well-defined by additional specifications.

3.7. The triples-map Container

A set of directed properties that associate sets of data to provide

reference values, endorsed values, verification key material or

identifying key material for a specific hardware module that is a

component of a composite device. The map provides the core element

of CoMID tags that associate remote attestation relevant data with a

distinct hardware component that runs an execution environment (a

module that is either a Target Environment and/or an Attesting

Environment). This rule and its constraints MUST be followed when

generating or validating a CoMID tag.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

comid.reference-triples:

comid.endorsed-triples:

comid.attest-key-triples:

comid.identity-triples:

$$triples-map-extension:

triples-map = non-empty<{

 ? comid.reference-triples => one-or-more<reference-triple-record>

 ? comid.endorsed-triples => one-or-more<endorsed-triple-record>

 ? comid.attest-key-triples => one-or-more<attest-key-triple-record>

 ? comid.identity-triples => one-or-more<identity-triple-record>

 * $$triples-map-extension

}>

The following describes each member of the triple-map container.

A directed property that associates

reference measurements with a module that is a Target

Environment.

A directed property that associates

endorsed measurements with a module that is a Target Environment

or Attesting Environment.

A directed property that associates key

material used to verify evidence generated from a module that is

an attesting environment.

A directed property that associates key

material used to identify a module instance or a module class

that is an identifying part of a device(-set).

This CDDL socket is used to add new

information elements to the triples-map container. See FIXME.

3.8. The environment-map Container

This map represents the module(s) that a triple-map can point

directed properties (relationships) from in order to associate them

with external information for remote attestation, such as reference

values, endorsement and endorsed values, verification key material

for evidence, or identifying key material for module

(re-)identification. This map can identify a single module instance

via comid.instance or groups of modules via comid.group. Referencing

classes of modules requires the use of the more complex class-map

container. This rule and its constraints MUST be followed when

generating or validating a CoMID tag.

¶

¶

¶

¶

¶

¶

¶

¶

comid-class:

comid.instance:

comid.group:

environment-map = non-empty<{

 ? comid.class => class-map

 ? comid.instance => $instance-id-type-choice

 ? comid.group => $group-id-type-choice

}>

$instance-id-type-choice /= tagged-ueid-type

$instance-id-type-choice /= tagged-uuid-type

$group-id-type-choice /= tagged-uuid-type

The following describes each member of the environment-map

container.

A composite identifier for classes of environments/

modules.

An identifier for distinct instances of

environments/modules that is either a UEID or a UUID.

An identifier for a group of environments/modules that

is a UUID.

3.9. The class-map Container

This map enables a composite identifier intended to uniquely

identify modules that are of a distinct class of devices.

Effectively, all provided members in combination are a composite

module class identifier. This rule and its constraints MUST be

followed when generating or validating a CoMID tag. This rule and

its constraints MUST be followed when generating or validating a

CoMID tag.

class-map = non-empty<{

 ? comid.class-id => $class-id-type-choice

 ? comid.vendor => tstr

 ? comid.model => tstr

 ? comid.layer => uint

 ? comid.index => uint

}>

$class-id-type-choice /= tagged-oid-type

$class-id-type-choice /= tagged-impl-id-type

$class-id-type-choice /= tagged-uuid-type

The following describes each member of the class-map container.

¶

¶

¶

¶

¶

¶

¶

¶

3.10. The measurement-map and measurement-values-map Containers

One of the targets (range) that a triple-map can point to in order

to associate it with a module (domain) is the measurement-map. This

map is used to provide reference measurements values that can be

compared with Evidence Claim values or Endorsements and endorsed

values from other sources than the corresponding CoRIM. measurement-

map comes with a measurement key that identifies the measured

element with via a OID reference or a UUID. measurement-values-map

contains the actual measurements associated with the module(s). Byte

strings with corresponding bit masks that highlights which bits in

the byte string are used as reference measurements or endorsement

are located in raw-value-group. The members of measurement-values-

map provide well-defined and well-scoped semantics for reference

measurement or endorsements with respect to a given module instance,

class, or group. This rule and its constraints MUST be followed when

generating or validating a CoMID tag.¶

measurement-map = {

 ? comid.mkey => $measured-element-type-choice

 comid.mval => measurement-values-map

}

$measured-element-type-choice /= tagged-oid-type

$measured-element-type-choice /= tagged-uuid-type

measurement-values-map = non-empty<{

 ? comid.ver => version-map

 ? comid.svn => svn-type-choice

 ? comid.digests => digests-type

 ? comid.flags => flags-type

 ? raw-value-group

 ? comid.mac-addr => mac-addr-type-choice

 ? comid.ip-addr => ip-addr-type-choice

 ? comid.serial-number => serial-number-type

 ? comid.ueid => ueid-type

 ? comid.uuid => uuid-type

 * $$measurement-values-map-extension

}>

flags-type = bytes .bits operational-flags

operational-flags = &(

 not-configured: 0

 not-secure: 1

 recovery: 2

 debug: 3

)

serial-number-type = text

digests-type = one-or-more<hash-entry>

The following describes each member of the measurement-map and the

measurement-values-map container.

¶

¶

comid.mkey:

comid.ver:

comid.svn:

comid.digests:

comid.flags:

raw-value-group:

comid.mac-addr:

comid.ip-addr:

comid.serial-number:

comid.ueid:

comid.uuid:

$$measurement-values-map-extension:

An identifier for the set of measurements expressed in

measurement-values-map that is either an OID or a UUID.

A version number measurement.

A security related version number measurement.

A digest (typically a hash value) measurement.

Measurements that reflect operational modes that are

made permanent at manufacturing time such that they are not

expected to change during normal operation of the Attester.

A measurement in the form of a byte string that

can come with a corresponding bit mask defining the relevance of

each bit in the byte string as a measurement.

An EUI-48 or EUI-64 MAC address measurement.

An Ipv4 or Ipv6 address measurement.

A measurement of a serial number in text.

A measurement of a Unique Enough Identifier (UEID).

A measurement of a Universally Unique Identifier

(UUID).

This CDDL socket is used to add

new information elements to the measurement-values-map container.

See FIXME.

3.10.1. The version-map Container

This map expresses reference values about version information.

version-map = {

 comid.version => version-type

 ? comid.version-scheme => $version-scheme

}

version-type = text .default '0.0.0'

The following describes each member of the version-map container.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

comid.version:

comid-version-scheme:

tagged-svn:

tagged-min-svn:

The version in the form of a text string.

The version-scheme of the text string value

as defined in [I-D.ietf-sacm-coswid]

3.10.2. The svn-type-choice Enumeration

This choice defines the CBOR tagged Security Version Numbers (SVN)

that can be used as reference values for Evidence and Endorsements.

svn = int

min-svn = int

tagged-svn = #6.TBD-SVN(svn)

tagged-min-svn = #6.TBD-minSVN(min-svn)

svn-type-choice = tagged-svn / tagged-min-svn

The following describes the types in the svn-type-choice

enumeration.

A specific SVN.

A lower bound for allowed SVN.

3.10.3. The raw-value-group Container

FIXME This group can express a single raw byte value and can come

with an optional bit mask that defines which bits in the byte string

is used as a reference value, by setting corresponding position in

the bit mask to 1.

raw-value-group = (

 comid.raw-value => raw-value-type

 ? comid.raw-value-mask => raw-value-mask-type

)

raw-value-type = bytes

raw-value-mask-type = bytes

The following describes the types in the raw-value-group Container.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

comid.raw-value:

comid.raw-value-mask:

FIXME Bit positions in raw-value-type that

correspond to bit positions in raw-value-mask-type.

A raw-value-mask-type bit corresponding to a

bit in raw-value-type MUST be 1 to evaluate the corresponding

raw-value-type bit.

3.10.4. The ip-addr-type-choice Enumeration

This type choice expresses IP addresses as reference values.

ip-addr-type-choice = ip4-addr-type / ip6-addr-type

ip4-addr-type = bytes .size 4

ip6-addr-type = bytes .size 16

3.10.5. The mac-addr-type-choice Enumeration

This type choice expresses MAC addresses as reference values.

mac-addr-type-choice = eui48-addr-type / eui64-addr-type

eui48-addr-type = bytes .size 6

eui64-addr-type = bytes .size 8

3.11. The verification-key-map Container

One of the targets (range) that a triple-map can point to in order

to associate it with a module (domain). This map is used to provide

the key material for evidence verification (effectively signature

checking or a lightweight proof-of-possession of private signing key

material) or for identity assertion/check (where a proof-of-

possession implies a certain device identity). In support of

informed trust decisions, an optional trust anchor in the form a

PKIX certification path that is associated with the provided key

material can be included. This rule and its constraints MUST be

followed when generating or validating a CoMID tag.

verification-key-map = {

 comid.key => pkix-base64-key-type

 ? comid.keychain => [+ pkix-base64-cert-type]

}

pkix-base64-key-type = tstr

pkix-base64-cert-type = tstr

¶

¶

¶

¶

¶

¶

¶

¶

comid.key:

comid.keychain:

The following describes each member of the verification-key-map

container.

Verification key material in DER format base64 encoded.

Typically, but not necessarily, a public key.

One or more base64 encoded PKIX certificates. The

certificate containing the public key in comid.key MUST be the

first certificate. Additional certificates MAY follow. Each

subsequent certificate SHOULD certify the previous certificate.

4. Full CDDL Definition

This section aggregates the CDDL definitions specified in this

document in a full CDDL definitions including:

the COSE envelope for CoRIM: signed-corim

the CoRIM document: unsigned-corim

the CoMID document: concise-mid-tag

Not included in the full CDDL definition are CDDL dependencies to

CoSWID. The following CDDL definitions can be found in [I-D.ietf-

sacm-coswid]:

the COSE envelope for CoRIM: signed-coswid

the CoSWID document: concise-swid-tag

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

<CODE BEGINS>

corim = #6.500($concise-reference-integrity-manifest-type-choice)

$concise-reference-integrity-manifest-type-choice /= #6.501(unsigned-corim-map)

$concise-reference-integrity-manifest-type-choice /= #6.502(signed-corim)

signed-corim = #6.18(COSE-Sign1-corim)

protected-signed-corim-header-map = {

 corim.alg-id => int

 corim.content-type => "application/rim+cbor"

 corim.issuer-key-id => bstr

 corim.meta => corim-meta-map

 * cose-label => cose-values

}

corim-meta-map = {

 corim.signer => [+ corim-entity-map]

 ? corim.validity => validity-map

}

corim-entity-map = {

 corim.entity-name => $entity-name-type-choice

 ? corim.reg-id => uri

 corim.role => $corim-role-type-choice

 * $$corim-entity-map-extension

}

$corim-role-type-choice /= corim.manifest-creator

$corim-role-type-choice /= corim.manifest-signer

validity-map = {

 ? corim.not-before => time

 corim.not-after => time

}

unprotected-signed-corim-header-map = {

 * cose-label => cose-values

}

COSE-Sign1-corim = [

 protected: bstr .cbor protected-signed-corim-header-map

 unprotected: unprotected-signed-corim-header-map

 payload: bstr .cbor unsigned-corim-map

 signature: bstr

]

unsigned-corim-map = {

 corim.id => $corim-id-type-choice

 corim.tags => [+ $concise-tag-type-choice]

 ? corim.dependent-rims => [+ corim-locator-map]

 ? corim.profile => [+ profile-type-choice]

 * $$unsigned-corim-map-extension

}

profile-type-choice = uri / tagged-oid-type

corim-locator-map = {

 corim.href => uri

 ? corim.thumbprint => hash-entry

}

$concise-tag-type-choice /= #6.505(bytes .cbor concise-swid-tag)

$concise-tag-type-choice /= #6.506(bytes .cbor concise-mid-tag)

concise-mid-tag = {

 ? comid.language => language-type

 comid.tag-identity => tag-identity-map

 ? comid.entity => [+ entity-map]

 ? comid.linked-tags => [+ linked-tag-map]

 comid.triples => triples-map

 * $$concise-mid-tag-extension

}

language-type = text

tag-identity-map = {

 comid.tag-id => $tag-id-type-choice

 ? comid.tag-version => tag-version-type

}

$tag-id-type-choice /= tstr

$tag-id-type-choice /= uuid-type

tag-version-type = uint .default 0

entity-map = {

 comid.entity-name => $entity-name-type-choice

 ? comid.reg-id => uri

 comid.role => [+ $comid-role-type-choice]

 * $$entity-map-extension

}

$comid-role-type-choice /= comid.tag-creator

$comid-role-type-choice /= comid.creator

$comid-role-type-choice /= comid.maintainer

linked-tag-map = {

 comid.linked-tag-id => $tag-id-type-choice

 comid.tag-rel => $tag-rel-type-choice

}

$tag-rel-type-choice /= comid.supplements

$tag-rel-type-choice /= comid.replaces

triples-map = non-empty<{

 ? comid.reference-triples => [+ reference-triple-record]

 ? comid.endorsed-triples => [+ endorsed-triple-record]

 ? comid.attest-key-triples => [+ attest-key-triple-record]

 ? comid.identity-triples => [+ identity-triple-record]

 * $$triples-map-extension

}>

reference-triple-record = [

 environment-map ; target environment

 [+ measurement-map] ; reference measurements

]

endorsed-triple-record = [

 environment-map ; (target or attesting) environment

 [+ measurement-map] ; endorsed measurements

]

attest-key-triple-record = [

 environment-map ; attesting environment

 [+ verification-key-map] ; attestation verification key(s)

]

identity-triple-record = [

 environment-map ; device identifier (instance or class)

 [+ verification-key-map] ; DevID, or semantically equivalent

]

pkix-base64-key-type = tstr

pkix-base64-cert-type = tstr

verification-key-map = {

 ; Verification key in DER format base64-encoded.

 ; Typically, but not necessarily a public key.

 comid.key => pkix-base64-key-type

 ; Optional X.509 certificate chain corresponding to the public key

 ; in comid.key, encoded as an array of one or more base64-encoded

 ; DER PKIX certificates. The certificate containing the public key

 ; in comid.key MUST be the first certificate. This MAY be followed

 ; by additional certificates, with each subsequent certificate

 ; being the one used to certify the previous one.

 ? comid.keychain => [+ pkix-base64-cert-type]

}

environment-map = non-empty<{

 ? comid.class => class-map

 ? comid.instance => $instance-id-type-choice

 ? comid.group => $group-id-type-choice

}>

class-map = non-empty<{

 ? comid.class-id => $class-id-type-choice

 ? comid.vendor => tstr

 ? comid.model => tstr

 ? comid.layer => uint

 ? comid.index => uint

}>

$class-id-type-choice /= tagged-oid-type

$class-id-type-choice /= tagged-uuid-type

$instance-id-type-choice /= tagged-ueid-type

$instance-id-type-choice /= tagged-uuid-type

$group-id-type-choice /= tagged-uuid-type

oid-type = bytes

tagged-oid-type = #6.111(oid-type)

tagged-uuid-type = #6.37(uuid-type)

ueid-type = bytes .size 33

tagged-ueid-type = #6.550(ueid-type)

$measured-element-type-choice /= tagged-oid-type

$measured-element-type-choice /= tagged-uuid-type

measurement-map = {

 ? comid.mkey => $measured-element-type-choice

 comid.mval => measurement-values-map

}

measurement-values-map = non-empty<{

 ? comid.ver => version-map

 ? comid.svn => svn-type-choice

 ? comid.digests => digests-type

 ? comid.flags => flags-type

 ? raw-value-group

 ? comid.mac-addr => mac-addr-type-choice

 ? comid.ip-addr => ip-addr-type-choice

 ? comid.serial-number => serial-number-type

 ? comid.ueid => ueid-type

 ? comid.uuid => uuid-type

 * $$measurement-values-map-extension

}>

version-map = {

 comid.version => version-type

 ? comid.version-scheme => $version-scheme

}

version-type = text .default '0.0.0'

svn = int

min-svn = int

tagged-svn = #6.552(svn)

tagged-min-svn = #6.553(min-svn)

svn-type-choice = tagged-svn / tagged-min-svn

flags-type = bytes .bits operational-flags

operational-flags = &(

 not-configured: 0

 not-secure: 1

 recovery: 2

 debug: 3

)

raw-value-group = (

 comid.raw-value => raw-value-type

 ? comid.raw-value-mask => raw-value-mask-type

)

raw-value-type = bytes

raw-value-mask-type = bytes

ip-addr-type-choice = ip4-addr-type / ip6-addr-type

ip4-addr-type = bytes .size 4

ip6-addr-type = bytes .size 16

mac-addr-type-choice = eui48-addr-type / eui64-addr-type

eui48-addr-type = bytes .size 6

eui64-addr-type = bytes .size 8

serial-number-type = text

digests-type = [+ hash-entry]

concise-swid-tag = {

 tag-id => text / bstr .size 16,

 tag-version => integer,

 ? corpus => bool,

 ? patch => bool,

 ? supplemental => bool,

 software-name => text,

 ? software-version => text,

 ? version-scheme => $version-scheme,

 ? media => text,

 ? software-meta => one-or-more<software-meta-entry>,

 entity => one-or-more<entity-entry>,

 ? link => one-or-more<link-entry>,

 ? payload-or-evidence,

 * $$coswid-extension,

 global-attributes,

}

payload-or-evidence //= (payload => payload-entry)

payload-or-evidence //= (evidence => evidence-entry)

any-uri = uri

label = text / int

$version-scheme /= multipartnumeric

$version-scheme /= multipartnumeric-suffix

$version-scheme /= alphanumeric

$version-scheme /= decimal

$version-scheme /= semver

$version-scheme /= int / text

any-attribute = (

 label => one-or-more<text> / one-or-more<int>

)

one-or-more<T> = T / [2* T]

global-attributes = (

 ? lang => text,

 * any-attribute,

)

hash-entry = [

 hash-alg-id: int,

 hash-value: bytes,

]

entity-entry = {

 entity-name => text,

 ? reg-id => any-uri,

 role => one-or-more<$role>,

 ? thumbprint => hash-entry,

 * $$entity-extension,

 global-attributes,

}

$role /= tag-creator

$role /= software-creator

$role /= aggregator

$role /= distributor

$role /= licensor

$role /= maintainer

$role /= int / text

link-entry = {

 ? artifact => text,

 href => any-uri,

 ? media => text,

 ? ownership => $ownership,

 rel => $rel,

 ? media-type => text,

 ? use => $use,

 * $$link-extension,

 global-attributes,

}

$ownership /= shared

$ownership /= private

$ownership /= abandon

$ownership /= int / text

$rel /= ancestor

$rel /= component

$rel /= feature

$rel /= installationmedia

$rel /= packageinstaller

$rel /= parent

$rel /= patches

$rel /= requires

$rel /= see-also

$rel /= supersedes

$rel /= supplemental

$rel /= -256..64436 / text

$use /= optional

$use /= required

$use /= recommended

$use /= int / text

software-meta-entry = {

 ? activation-status => text,

 ? channel-type => text,

 ? colloquial-version => text,

 ? description => text,

 ? edition => text,

 ? entitlement-data-required => bool,

 ? entitlement-key => text,

 ? generator => text,

 ? persistent-id => text,

 ? product => text,

 ? product-family => text,

 ? revision => text,

 ? summary => text,

 ? unspsc-code => text,

 ? unspsc-version => text,

 * $$software-meta-extension,

 global-attributes,

}

path-elements-group = (? directory => one-or-more<directory-entry>,

 ? file => one-or-more<file-entry>,

)

resource-collection = (

 path-elements-group,

 ? process => one-or-more<process-entry>,

 ? resource => one-or-more<resource-entry>,

 * $$resource-collection-extension,

)

file-entry = {

 filesystem-item,

 ? size => uint,

 ? file-version => text,

 ? hash => hash-entry,

 * $$file-extension,

 global-attributes,

}

directory-entry = {

 filesystem-item,

 ? path-elements => { path-elements-group },

 * $$directory-extension,

 global-attributes,

}

process-entry = {

 process-name => text,

 ? pid => integer,

 * $$process-extension,

 global-attributes,

}

resource-entry = {

 type => text,

 * $$resource-extension,

 global-attributes,

}

filesystem-item = (

 ? key => bool,

 ? location => text,

 fs-name => text,

 ? root => text,

)

payload-entry = {

 resource-collection,

 * $$payload-extension,

 global-attributes,

}

evidence-entry = {

 resource-collection,

 ? date => integer-time,

 ? device-id => text,

 * $$evidence-extension,

 global-attributes,

}

integer-time = #6.1(int)

tag-id = 0

software-name = 1

entity = 2

evidence = 3

link = 4

software-meta = 5

payload = 6

hash = 7

corpus = 8

patch = 9

media = 10

supplemental = 11

tag-version = 12

software-version = 13

version-scheme = 14

lang = 15

directory = 16

file = 17

process = 18

resource = 19

size = 20

file-version = 21

key = 22

location = 23

fs-name = 24

root = 25

path-elements = 26

process-name = 27

pid = 28

type = 29

entity-name = 31

reg-id = 32

role = 33

thumbprint = 34

date = 35

device-id = 36

artifact = 37

href = 38

ownership = 39

rel = 40

media-type = 41

use = 42

activation-status = 43

channel-type = 44

colloquial-version = 45

description = 46

edition = 47

entitlement-data-required = 48

entitlement-key = 49

generator = 50

persistent-id = 51

product = 52

product-family = 53

revision = 54

summary = 55

unspsc-code = 56

unspsc-version = 57

multipartnumeric = 1

multipartnumeric-suffix = 2

alphanumeric = 3

decimal = 4

semver = 16384

tag-creator=1

software-creator=2

aggregator=3

distributor=4

licensor=5

maintainer=6

shared=1

private=2

abandon=3

ancestor=1

component=2

feature=3

installationmedia=4

packageinstaller=5

parent=6

patches=7

requires=8

see-also=9

supersedes=10

optional=1

required=2

recommended=3

comid.language = 0

comid.tag-identity = 1

comid.entity = 2

comid.linked-tags = 3

comid.triples = 4

comid.tag-id = 0

comid.tag-version = 1

comid.entity-name = 0

comid.reg-id = 1

comid.role = 2

comid.linked-tag-id = 0

comid.tag-rel = 1

comid.reference-triples = 0

comid.endorsed-triples = 1

comid.identity-triples = 2

comid.attest-key-triples = 3

comid.class = 0

comid.instance = 1

comid.group = 2

comid.class-id = 0

comid.vendor = 1

comid.model = 2

comid.layer = 3

comid.index = 4

comid.mkey = 0

comid.mval = 1

comid.ver = 0

comid.svn = 1

comid.digests = 2

comid.flags = 3

comid.raw-value = 4

comid.raw-value-mask = 5

comid.mac-addr = 6

comid.ip-addr = 7

comid.serial-number = 8

comid.ueid = 9

comid.uuid = 10

comid.key = 0

comid.keychain = 1

comid.version = 0

comid.version-scheme = 1

comid.supplements = 0

comid.replaces = 1

comid.tag-creator = 0

comid.creator = 1

comid.maintainer = 2

corim.id = 0

corim.tags = 1

corim.dependent-rims = 2

corim.profile = 3

corim.href = 0

corim.thumbprint = 1

corim.alg-id = 1

corim.content-type = 3

corim.issuer-key-id = 4

corim.meta = 8

corim.not-before = 0

corim.not-after = 1

corim.signer = 0

corim.validity = 1

corim.entity-name = 0

corim.reg-id = 1

corim.role = 2

corim.manifest-creator = 1

corim.manifest-signer = 2

non-empty<M> = (M) .within ({ + any => any })

cose-label = int / tstr

cose-values = any

$entity-name-type-choice /= text

$corim-id-type-choice /= tstr

$corim-id-type-choice /= uuid-type

uuid-type = bytes .size 16

<CODE ENDS>

5. Privacy Considerations

Privacy Considerations

6. Security Considerations

Security Considerations

7. IANA Considerations

This document has a number of IANA considerations, as described in

the following subsections. In summary, 6 new registries are

established with this request, with initial entries provided for

each registry. New values for 5 other registries are also requested.

7.1. COSE Header Parameters Registry

The 'corim metadata' parameter has been added to the "COSE Header

Parameters" registry:

Name: 'corim metadata'

¶

¶

¶

¶

¶

* ¶

Label: 11

Value: corim-meta-map

Description: Provides a map of additional metadata for a CoRIM

payload composed of (1) one or more entities that created or

signed the corresponding CoRIM and (2) its period of validity

Reference: 'corim-meta-map' in {model-corim-meta-map} of this

document

7.2. CoRIM Map Items Registry

This document defines a new registry titled "CoRIM Map". The

registry uses integer values as index values for items in 'unsigned-

corim-map' CBOR maps.

Future registrations for this registry are to be made based on

[RFC8126] as follows:

Range Registration Procedures

0-127 Standards Action

128-255 Specification Required

Table 3: CoRIM Map Items

Registration Procedures

All negative values are reserved for Private Use.

Initial registrations for the "CoRIM Map" registry are provided

below. Assignments consist of an integer index value, the item name,

and a reference to the defining specification.

Index Item Name Specification

0 corim.id RFC-AAAA

1 corim.tags RFC-AAAA

2 corim.dependent-rims RFC-AAAA

3-255 Unassigned

Table 4: CoRIM Map Items Initial

Registrations

7.3. CoRIM Entity-Map Items Registry

This document defines a new registry titled "CoRIM Entity Map". The

registry uses integer values as index values for items in 'corim-

enentity-map' CBOR maps.

Future registrations for this registry are to be made based on

[RFC8126] as follows:

* ¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

Range Registration Procedures

0-127 Standards Action

128-255 Specification Required

Table 5: CoRIM Entity Map Items

Registration Procedures

All negative values are reserved for Private Use.

Initial registrations for the "CoRIM Entity Map" registry are

provided below. Assignments consist of an integer index value, the

item name, and a reference to the defining specification.

Index Item Name Specification

0 corim.entity-name RFC-AAAA

1 corim.reg-id RFC-AAAA

2 corim.role RFC-AAAA

3-255 Unassigned

Table 6: CoRIM Enity Map Items Initial

Registrations

7.4. CoRIM Entity-Types Registry

This document defines a new registry titled "CoRIM Entity Types".

The registry maintains well-defined integer values as choices for

'$entity-name-type-choice' CBOR uints.

Future registrations for this registry are to be made based on

[RFC8126] as follows:

Range Registration Procedures

0-127 Standards Action

128-255 Specification Required

Table 7: CoRIM Entity Types

Registration Procedures

All negative values are reserved for Private Use.

Initial registrations for the "CoRIM Entity Types" registry are

provided below. Assignments consist of an integer value, the item

name, and a reference to the defining specification.

Index Item Name Specification

0 corim.manifest-creator RFC-AAAA

1 corim.manifest-signer RFC-AAAA

2-255 Unassigned

¶

¶

¶

¶

¶

¶

Table 8: CoRIM Entity Types Initial

Registrations

7.5. CoMID Map Items Registry

This document defines a new registry titled "CoMID Map". The

registry uses integer values as index values for items in 'concise-

mid-tag' CBOR maps.

Future registrations for this registry are to be made based on

[RFC8126] as follows:

Range Registration Procedures

0-127 Standards Action

128-255 Specification Required

Table 9: CoMID Map Items

Registration Procedures

All negative values are reserved for Private Use.

Initial registrations for the "CoMID Map" registry are provided

below. Assignments consist of an integer index value, the item name,

and a reference to the defining specification.

Index Item Name Specification

0 comid.language RFC-AAAA

1 comid.tag-identity RFC-AAAA

2 comid.entity RFC-AAAA

3 comid.linked-tags RFC-AAAA

4 comid.triples RFC-AAAA

5-255 Unassigned

Table 10: CoMID Map Items Initial

Registrations

7.6. CoMID Entity-Map Items Registry

This document defines a new registry titled "CoMID Entity Map". The

registry uses integer values as index values for items in 'comid-

entity-map' CBOR maps.

Future registrations for this registry are to be made based on

[RFC8126] as follows:

Range Registration Procedures

0-127 Standards Action

128-255 Specification Required

¶

¶

¶

¶

¶

¶

Table 11: CoMID Entity Map Items

Registration Procedures

All negative values are reserved for Private Use.

Initial registrations for the "CoMID Entity Map" registry are

provided below. Assignments consist of an integer index value, the

item name, and a reference to the defining specification.

Index Item Name Specification

0 comid.entity-name RFC-AAAA

1 comid.reg-id RFC-AAAA

2 comid.role RFC-AAAA

3-255 Unassigned

Table 12: CoMID Entity Map Items Initial

Registrations

7.7. CoMID Triples-Map Items Registry

This document defines a new registry titled "CoMID Triples Map". The

registry uses integer values as index values for items in 'comid-

triples-map' CBOR maps.

Future registrations for this registry are to be made based on

[RFC8126] as follows:

Range Registration Procedures

0-127 Standards Action

128-255 Specification Required

Table 13: CoMID triples Map Items

Registration Procedures

All negative values are reserved for Private Use.

Initial registrations for the "CoMID Triples Map" registry are

provided below. Assignments consist of an integer index value, the

item name, and a reference to the defining specification.

Index Item Name Specification

0 comid.reference-triples RFC-AAAA

1 comid.endorsed-triples RFC-AAAA

2 comid.identity-triples RFC-AAAA

3 comid.attest-key-triples RFC-AAAA

4-255 Unassigned

Table 14: CoMID Triples Map Items Initial

Registrations

¶

¶

¶

¶

¶

¶

7.8. CoMID Measurement-Values-Map Items Registry

This document defines a new registry titled "CoMID Measurement-

Values Map". The registry uses integer values as index values for

items in 'comid-measurement-values-map' CBOR maps.

Future registrations for this registry are to be made based on

[RFC8126] as follows:

Range Registration Procedures

0-127 Standards Action

128-255 Specification Required

Table 15: CoMID Measurement-Values

Map Items Registration Procedures

All negative values are reserved for Private Use.

Initial registrations for the "CoMID Measurement-Values Map"

registry are provided below. Assignments consist of an integer index

value, the item name, and a reference to the defining specification.

Index Item Name Specification

0 comid.ver RFC-AAAA

1 comid.svn RFC-AAAA

2 comid.digests RFC-AAAA

3 comid.flags RFC-AAAA

4 comid.raw-value RFC-AAAA

5 comid.raw-value-mask RFC-AAAA

6 comid.mac-addr RFC-AAAA

7 comid.ip-addr RFC-AAAA

8 comid.serial-number RFC-AAAA

9 comid.ueid RFC-AAAA

10 comid.uuid RFC-AAAA

11-255 Unassigned

Table 16: CoMID Measurement-Values Map Items

Initial Registrations

7.9. CoMID Tag-Relationship-Types Registry

This document defines a new registry titled "CoMID Tag-Relationship

Types". The registry maintains well-defined integer values as

choices for '$tag-rel-type-choice' CBOR uints.

Future registrations for this registry are to be made based on

[RFC8126] as follows:

¶

¶

¶

¶

¶

¶

Range Registration Procedures

0-127 Standards Action

128-255 Specification Required

Table 17: CoMID Tag-Relationship

Types Registration Procedures

All negative values are reserved for Private Use.

Initial registrations for the "CoMID Tag-Relationship Types"

registry are provided below. Assignments consist of an integer

value, the item name, and a reference to the defining specification.

Index Item Name Specification

0 comid.supplements RFC-AAAA

1 comid.replaces RFC-AAAA

2-255 Unassigned

Table 18: CoMID Tag-Relationship Types

Initial Registrations

7.10. CoMID Role-Types Registry

This document defines a new registry titled "CoMID Role Types". The

registry maintains well-defined integer values as choices for

'$comid-role-type-choice' CBOR uints.

Future registrations for this registry are to be made based on

[RFC8126] as follows:

Range Registration Procedures

0-127 Standards Action

128-255 Specification Required

Table 19: CoMID Role Types

Registration Procedures

All negative values are reserved for Private Use.

Initial registrations for the "CoMID Role Types" registry are

provided below. Assignments consist of an integer value, the item

name, and a reference to the defining specification.

Index Item Name Specification

0 comid.tag-creator RFC-AAAA

1 comid.creator RFC-AAAA

2 comid.maintainer RFC-AAAA

3-255 Unassigned

¶

¶

¶

¶

¶

¶

Table 20: CoMID Role Types Initial

Registrations

7.11. rim+cbor Media Type Registration

IANA is requested to add the following to the IANA "Media Types"

registry [IANA.media-types].

Type name: application

Subtype name: rim+cbor

Required parameters: none

Optional parameters: none

Encoding considerations: Must be encoded as using [RFC8949]. See

RFC-AAAA for details.

Security considerations: See Section 6 of RFC-AAAA.

Interoperability considerations: Applications MAY ignore any key

value pairs that they do not understand. This allows backwards

compatible extensions to this specification.

Published specification: RFC-AAAA

Applications that use this media type: The type is used by remote

attestation procedures, supply chain integrity management systems,

vulnerability assessment systems, and in applications that rely on

trustworthy endorsements and reference values describing the

intended operational state of a system.

Fragment identifier considerations: Fragment identification for

application/rim+cbor is supported by using fragment identifiers as

specified by Section 9.5 of [RFC8949].

Additional information:

Magic number(s): first five bytes in hex: 43 4f 52 49 4d

File extension(s): corim

Macintosh file type code(s): none

Macintosh Universal Type Identifier code: org.ietf.corim conforms to

public.data

Person & email address to contact for further information: Henk

Birkholz <henk.birkholz@sit.fraunhofer.de>

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-9.5

Intended usage: COMMON

Restrictions on usage: None

Author: Henk Birkholz <henk.birkholz@sit.fraunhofer.de>

Change controller: IESG

7.12. CoAP Content-Format Registration

IANA is requested to assign a CoAP Content-Format ID for the CoRIM

media type in the "CoAP Content-Formats" sub-registry, from the

"IETF Review or IESG Approval" space (256..999), within the "CoRE

Parameters" registry [RFC7252] [IANA.core-parameters]:

Media type Encoding ID Reference

application/rim+cbor - TBD1 RFC-AAAA

Table 21: CoAP Content-Format IDs

7.13. CoRIM CBOR Tag Registration

IANA is requested to allocate tags in the "CBOR Tags" registry

[IANA.cbor-tags], preferably with the specific value requested:

Tag Data Item Semantics

500
tagged array or

tagged map

Concise Reference Integrity Manifest

(CoRIM) [RFC-AAAA]

501 map unsigned CoRIM [RFC-AAAA]

502 array signed CoRIM [RFC-AAAA]

505 bstr
byte string with CBOR-encoded Concise SWID

tag [RFC-AAAA]

506 bstr
byte string with CBOR-encoded Concise MID

tag [RFC-AAAA]

Table 22: CoRIM CBOR Tags

7.14. CoMID CBOR Tag Registration

IANA is requested to allocate tags in the "CBOR Tags" registry

[IANA.cbor-tags], preferably with the specific value requested:

Tag
Data

Item
Semantics

550 bstr UEID with max size of 33 bytes [RFC-AAAA]

551 int Security Version Number [RFC-AAAA]

552 int
lower bound of allowed Security Version Number [RFC-

AAAA]

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-rats-architecture]

[I-D.ietf-sacm-coswid]

[IANA.cbor-tags]

[IANA.core-parameters]

[IANA.language-subtag-registry]

[IANA.media-types]

[RFC2119]

[RFC7231]

[RFC7252]

[RFC8126]

Table 23: CoMID CBOR Tags

8. References

8.1. Normative References

Birkholz, H., Thaler, D., Richardson,

M., Smith, N., and W. Pan, "Remote Attestation Procedures

Architecture", Work in Progress, Internet-Draft, draft-

ietf-rats-architecture-12, 23 April 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-rats-

architecture-12>.

Birkholz, H., Fitzgerald-McKay, J., Schmidt,

C., and D. Waltermire, "Concise Software Identification

Tags", Work in Progress, Internet-Draft, draft-ietf-sacm-

coswid-18, 12 July 2021, <https://datatracker.ietf.org/

doc/html/draft-ietf-sacm-coswid-18>.

IANA, "Concise Binary Object Representation (CBOR)

Tags", <http://www.iana.org/assignments/cbor-tags>.

IANA, "Constrained RESTful Environments

(CoRE) Parameters", <http://www.iana.org/assignments/

core-parameters>.

IANA, "Language Subtag Registry",

<http://www.iana.org/assignments/language-subtag-

registry>.

IANA, "Media Types", <http://www.iana.org/

assignments/media-types>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/rfc/rfc7231>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/rfc/

rfc7252>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-12
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-12
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-12
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-coswid-18
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-coswid-18
http://www.iana.org/assignments/cbor-tags
http://www.iana.org/assignments/core-parameters
http://www.iana.org/assignments/core-parameters
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/media-types
http://www.iana.org/assignments/media-types
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252

[RFC8174]

[RFC8610]

[RFC8949]

[RFC4949]

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/rfc/

rfc8949>.

8.2. Informative References

Shirey, R., "Internet Security Glossary, Version 2", FYI

36, RFC 4949, DOI 10.17487/RFC4949, August 2007,

<https://www.rfc-editor.org/rfc/rfc4949>.

Authors' Addresses

Henk Birkholz

Fraunhofer SIT

Rheinstrasse 75

64295 Darmstadt

Germany

Email: henk.birkholz@sit.fraunhofer.de

Thomas Fossati

Arm Limited

United Kingdom

Email: Thomas.Fossati@arm.com

Yogesh Deshpande

Arm Limited

United Kingdom

Email: yogesh.deshpande@arm.com

Ned Smith

Intel Corporation

United States of America

https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc4949
mailto:henk.birkholz@sit.fraunhofer.de
mailto:Thomas.Fossati@arm.com
mailto:yogesh.deshpande@arm.com

Email: ned.smith@intel.com

Wei Pan

Huawei Technologies

Email: william.panwei@huawei.com

mailto:ned.smith@intel.com
mailto:william.panwei@huawei.com

	Concise Reference Integrity Manifest
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation

	2. Concise Reference Integrity Manifests
	2.1. Typographical Conventions
	2.2. Prefixes and Namespaces
	2.3. Extensibility
	2.4. Concise RIM Extension Points
	2.5. CDDL Generic Types
	2.5.1. Non-Empty
	2.5.2. One-Or-More

	3. Concise RIM Data Definition
	3.1. The signed-corim Container
	3.1.1. The corim-meta-map Container
	3.1.2. The corim-entity-map Container
	3.1.3. The validity-map Container

	3.2. The unsigned-corim-map Container
	3.2.1. The corim-locator-map Container

	3.3. The concise-mid-tag Container
	3.4. The tag-identity-map Container
	3.5. The entity-map Container
	3.6. The linked-tag-map Container
	3.7. The triples-map Container
	3.8. The environment-map Container
	3.9. The class-map Container
	3.10. The measurement-map and measurement-values-map Containers
	3.10.1. The version-map Container
	3.10.2. The svn-type-choice Enumeration
	3.10.3. The raw-value-group Container
	3.10.4. The ip-addr-type-choice Enumeration
	3.10.5. The mac-addr-type-choice Enumeration

	3.11. The verification-key-map Container

	4. Full CDDL Definition
	5. Privacy Considerations
	6. Security Considerations
	7. IANA Considerations
	7.1. COSE Header Parameters Registry
	7.2. CoRIM Map Items Registry
	7.3. CoRIM Entity-Map Items Registry
	7.4. CoRIM Entity-Types Registry
	7.5. CoMID Map Items Registry
	7.6. CoMID Entity-Map Items Registry
	7.7. CoMID Triples-Map Items Registry
	7.8. CoMID Measurement-Values-Map Items Registry
	7.9. CoMID Tag-Relationship-Types Registry
	7.10. CoMID Role-Types Registry
	7.11. rim+cbor Media Type Registration
	7.12. CoAP Content-Format Registration
	7.13. CoRIM CBOR Tag Registration
	7.14. CoMID CBOR Tag Registration

	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

