
Workgroup: Remote ATtestation ProcedureS

Internet-Draft: draft-birkholz-rats-corim-03

Published: 11 July 2022

Intended Status: Standards Track

Expires: 12 January 2023

Authors: H. Birkholz

Fraunhofer SIT

T. Fossati

arm

Y. Deshpande

arm

N. Smith

Intel

W. Pan

Huawei Technologies

Concise Reference Integrity Manifest

Abstract

Remote Attestation Procedures (RATS) enable Relying Parties to

assess the trustworthiness of a remote Attester and therefore to

decide whether to engage in secure interactions with it. Evidence

about trustworthiness can be rather complex and it is deemed

unrealistic that every Relying Party is capable of the appraisal of

Evidence. Therefore that burden is typically offloaded to a

Verifier. In order to conduct Evidence appraisal, a Verifier

requires not only fresh Evidence from an Attester, but also trusted

Endorsements and Reference Values from Endorsers and Reference Value

Providers, such as manufacturers, distributors, or device owners.

This document specifies Concise Reference Integrity Manifests

(CoRIM) that represent Endorsements and Reference Values in CBOR

format. Composite devices or systems are represented by a collection

of Concise Module Identifiers (CoMID) and Concise Software

Identifiers (CoSWID) bundled in a CoRIM document.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the RATS Working Group

mailing list (rats@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/rats/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-rats/draft-birkholz-rats-corim.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/rats/
https://mailarchive.ietf.org/arch/browse/rats/
https://github.com/ietf-rats/draft-birkholz-rats-corim
https://github.com/ietf-rats/draft-birkholz-rats-corim
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology and Requirements Language

1.2. CDDL Typographical Conventions

1.3. Common Types

1.3.1. Non-Empty

1.3.2. Entity

1.3.3. Validity

1.3.4. UUID

1.3.5. UEID

1.3.6. OID

1.3.7. Tagged Integer Type

1.3.8. Hash Entry

2. CoRIM

2.1. CoRIM Map

2.1.1. Identity

2.1.2. Tags

2.1.3. Locator Map

2.1.4. Profile Types

2.1.5. Entities

2.2. Signed CoRIM

2.2.1. Protected Header Map

2.2.2. Meta Map

2.2.2.1. Signer Map

¶

¶

¶

¶

https://trustee.ietf.org/license-info

3. CoMID

3.1. Structure

3.1.1. Tag Identity

3.1.1.1. Tag ID

3.1.1.2. Tag Version

3.1.2. Entities

3.1.3. Linked Tag

3.1.4. Triples

3.1.4.1. Common Types

3.1.4.1.1. Environment

3.1.4.1.2. Class

3.1.4.1.3. Instance

3.1.4.1.4. Group

3.1.4.1.5. Measurements

3.1.4.1.5.1. Measurement Keys

3.1.4.1.5.2. Measurement Values

3.1.4.1.5.3. Version

3.1.4.1.5.4. Security Version Number

3.1.4.1.5.5. Flags

3.1.4.1.5.6. Raw Values Types

3.1.4.1.5.7. Address Types

3.1.4.1.6. Crypto Keys

3.1.4.1.7. Domain Types

3.1.4.2. Reference Values Triple

3.1.4.3. Endorsed Values Triple

3.1.4.4. Device Identity Triple

3.1.4.5. Attestation Keys Triple

3.1.4.6. Domain Dependency Triple

3.1.4.7. Domain Membership Triple

3.1.4.8. CoMID-CoSWID Linking Triple

3.2. Extensibility

4. Implementation Status

4.1. Veraison

5. Security and Privacy Considerations

6. IANA Considerations

6.1. New COSE Header Parameters

6.2. New CBOR Tags

6.3. New CoRIM Registries

6.4. New CoMID Registries

6.5. New Media Types

6.5.1. corim-signed+cbor

6.5.2. corim-unsigned+cbor

6.6. CoAP Content-Formats Registration

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Full CoRIM CDDL

Acknowledgments

Authors' Addresses

1. Introduction

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/86

1.1. Terminology and Requirements Language

This document uses terms and concepts defined by the RATS

architecture. For a complete glossary see Section 4 of [I-D.ietf-

rats-architecture].

The terminology from CBOR [STD94], CDDL [RFC8610] and COSE [RFC8152]

applies; in particular, CBOR diagnostic notation is defined in

Section 8 of [STD94] and Appendix G of [RFC8610].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. CDDL Typographical Conventions

The CDDL definitions in this document follow the naming conventions

illustrated in Table 1.

Type trait Example
Typographical

convention

extensible type

choice
int / text / ... $NAME-type-choice

closed type choice int / text NAME-type-choice

group choice
(1 => int // 2 =>

text)
$$NAME-group-choice

group
(1 => int, 2 => text

)
NAME-group

type int NAME-type

tagged type #6.123(int) tagged-NAME-type

map
{ 1 => int, 2 => text

}
NAME-map

flags &(a: 1, b: 2) NAME-flags

Table 1: Type Traits & Typographical Conventions

1.3. Common Types

The following CDDL types are used in both CoRIM and CoMID.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-18#section-4
https://rfc-editor.org/rfc/rfc8949#section-8
https://rfc-editor.org/rfc/rfc8610#appendix-G

1.3.1. Non-Empty

The non-empty generic type is used to express that a map with only

optional members MUST at least include one of the members.

non-empty<M> = (M) .and ({ + any => any })

1.3.2. Entity

The entity-map is a generic type describing an organization

responsible for the contents of a manifest. It is instantiated by

supplying two parameters:

A role-type-choice, i.e., a selection of roles that entities of

the instantiated type can claim

An extension-socket, i.e., a CDDL socket that can be used to

extend the attributes associated with entities of the

instantiated type

entity-map<role-type-choice, extension-socket> = {

 &(entity-name: 0) => $entity-name-type-choice

 ? &(reg-id: 1) => uri

 &(role: 2) => [+ role-type-choice]

 * extension-socket

}

$entity-name-type-choice /= text

The following describes each member of the entity-map.

entity-name (index 0): The name of entity which is responsible

for the action(s) as defined by the role. $entity-name-type-

choice can only be Other specifications can extend the $entity-

name-type-choice (see Section 6.4).

reg-id (index 1): A URI associated with the organization that

owns the entity name

role (index 2): A type choice defining the roles that the entity

is claiming. The role is supplied as a parameter at the time the

entity-map generic is instantiated.

extension-socket: A CDDL socket used to add new information

structures to the entity-map.

¶

¶

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

Examples of how the entity-map generic is instantiated can be found

in Section 2.1.5 and Section 3.1.2.

1.3.3. Validity

A validity-map represents the time interval during which the signer

warrants that it will maintain information about the status of the

signed object (e.g., a manifest).

In a validity-map, both ends of the interval are encoded as epoch-

based date/time as per Section 3.4.2 of [STD94].

validity-map = {

 ? &(not-before: 0) => time

 &(not-after: 1) => time

}

not-before (index 0): the date on which the signed manifest

validity period begins

not-after (index 1): the date on which the signed manifest

validity period ends

1.3.4. UUID

Used to tag a byte string as a binary UUID defined in Section 4.1.2.

of [RFC4122].

uuid-type = bytes .size 16

tagged-uuid-type = #6.37(uuid-type)

1.3.5. UEID

Used to tag a byte string as Universal Entity ID Claim (UUID)

defined in Section 4.2.1 of [I-D.ietf-rats-eat].

ueid-type = bytes .size 33

tagged-ueid-type = #6.550(ueid-type)

1.3.6. OID

Used to tag a byte string as the BER encoding [X.690] of an absolute

object identifier [RFC9090].

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-3.4.2
https://rfc-editor.org/rfc/rfc4122#section-4.1.2.
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-14#section-4.2.1

oid-type = bytes

tagged-oid-type = #6.111(oid-type)

1.3.7. Tagged Integer Type

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/87

tagged-int-type = #6.551(int)

1.3.8. Hash Entry

A hash entry represents the value of a hashing operation together

with the hash algorithm used. Defined in Section 2.9.1 of [I-D.ietf-

sacm-coswid]. The CDDL is copied below for convenience.

hash-entry = [

 hash-alg-id: int

 hash-value: bytes

]

2. CoRIM

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/98

At the top-level, a CoRIM can either be a CBOR-tagged corim-map

(Section 2.1) or a COSE signed corim-map (Section 2.2).

corim = #6.500(concise-rim-type-choice)

$concise-rim-type-choice /= #6.501(corim-map)

$concise-rim-type-choice /= #6.502(signed-corim)

2.1. CoRIM Map

The CDDL specification for the corim-map is as follows and this rule

and its constraints must be followed when creating or validating a

CoRIM map.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-sacm-coswid-21#section-2.9.1

corim-map = {

 &(id: 0) => $corim-id-type-choice

 &(tags: 1) => [+ $concise-tag-type-choice]

 ? &(dependent-rims: 2) => [+ corim-locator-map]

 ? &(profile: 3) => [+ profile-type-choice]

 ? &(rim-validity: 4) => validity-map

 ? &(entities: 5) => [+ corim-entity-map]

 * $$corim-map-extension

}

The following describes each child item of this map.

id (index 0): A globally unique identifier to identify a CoRIM.

Described in Section 2.1.1

tags (index 1): An array of one or more CoMID or CoSWID tags.

Described in Section 2.1.2

dependent-rims (index 2): One or more services supplying

additional, possibly dependent, manifests or related files.

Described in Section 2.1.3

profile (index 3): One or more unique identifiers for the

profiles of the tags contained in this CoRIM. All the listed

profiles MUST be understood. Failure to recognize a profile

identifier MUST result in the rejection of the entire processing.

Described in Section 2.1.4

rim-validity (index 4): Specifies the validity period of the

CoRIM. Described in Section 1.3.3

entities (index 5): A list of entities involved in a CoRIM life-

cycle. Described in Section 2.1.5

$$corim-map-extension: This CDDL socket is used to add new

information structures to the corim-map. See Section 6.3.

2.1.1. Identity

A CoRIM id can be either a text string or a UUID type that uniquely

identifies a CoRIM.

$corim-id-type-choice /= tstr

$corim-id-type-choice /= uuid-type

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

2.1.2. Tags

A $concise-tag-type-choice is a tagged CBOR payload that carries

either a CoMID (Section 3) or a CoSWID [I-D.ietf-sacm-coswid].

$concise-tag-type-choice /= #6.505(bytes .cbor concise-swid-tag)

$concise-tag-type-choice /= #6.506(bytes .cbor concise-mid-tag)

2.1.3. Locator Map

The locator map contains pointers to repositories where dependent

manifests, certificates, or other relevant information can be

retrieved by the Verifier.

corim-locator-map = {

 &(href: 0) => uri

 ? &(thumbprint: 1) => hash-entry

}

The following describes each child element of this type.

href (index 0): URI identifying the additional resource that can

be fetched

thumbprint (index 1): expected digest of the resource referenced

by href. See Section 1.3.8.

2.1.4. Profile Types

A profile specifies which of the optional parts of a CoRIM are

required, which are prohibited and which extension points are

exercised and how.

profile-type-choice = uri / tagged-oid-type

2.1.5. Entities

The CoRIM Entity is an instantiation of the Entity generic (Section

1.3.2) using a $corim-role-type-choice.

The only role defined in this specification for a CoRIM Entity is

manifest-creator.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

The $$corim-entity-map-extension extension socket is empty in this

specification.

corim-entity-map =

 entity-map<$corim-role-type-choice, $$corim-entity-map-extension>

$corim-role-type-choice /= &(manifest-creator: 1)

2.2. Signed CoRIM

Signing a CoRIM follows the procedures defined in CBOR Object

Signing and Encryption [RFC8152]. A CoRIM tag MUST be wrapped in a

COSE_Sign1 structure. The CoRIM MUST be signed by the CoRIM creator.

The following CDDL specification defines a restrictive subset of

COSE header parameters that MUST be used in the protected header

alongside additional information about the CoRIM encoded in a corim-

meta-map (Section 2.2.2).

COSE-Sign1-corim = [

 protected: bstr .cbor protected-corim-header-map

 unprotected: unprotected-corim-header-map

 payload: bstr .cbor tagged-corim-map

 signature: bstr

]

The following describes each child element of this type.

protected: A CBOR Encoded protected header which is protected by

the COSE signature. Contains information as given by Protected

Header Map below.

unprotected: A COSE header that is not protected by COSE

signature.

payload: A CBOR encoded tagged CoRIM.

signature: A COSE signature block which is the signature over the

protected and payload components of the signed CoRIM.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

*

¶

2.2.1. Protected Header Map

protected-corim-header-map = {

 &(alg-id: 1) => int

 &(content-type: 3) => "application/corim-unsigned+cbor"

 &(issuer-key-id: 4) => bstr

 &(corim-meta: 8) => bstr .cbor corim-meta-map

 * cose-label => cose-value

}

The following describes each child item of this map.

alg-id (index 1): An integer that identifies a signature

algorithm.

content-type (index 3): A string that represents the "MIME

Content type" carried in the CoRIM payload.

issuer-key-id (index 4): A bit string which is a key identity

pertaining to the CoRIM Issuer.

corim-meta (index 8): A map that contains metadata associated

with a signed CoRIM. Described in Section 2.2.2.

Additional data can be included in the COSE header map as per

Section 3 of [RFC8152].

2.2.2. Meta Map

The CoRIM meta map identifies the entity or entities that create and

sign the CoRIM. This ensures the consumer is able to identify

credentials used to authenticate its signer.

corim-meta-map = {

 &(signer: 0) => corim-signer-map

 ? &(signature-validity: 1) => validity-map

}

The following describes each child item of this group.

signer (index 0): Information about the entity that signs the

CoRIM. Described in Section 2.2.2.1

signature-validity (index 1): Validity period for the CoRIM.

Described in Section 1.3.3

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc8152#section-3

2.2.2.1. Signer Map

corim-signer-map = {

 &(signer-name: 0) => $entity-name-type-choice

 ? &(signer-uri: 1) => uri

 * $$corim-signer-map-extension

}

signer-name (index 0): Name of the organization that performs the

signer role

signer-uri (index 1): A URI identifying the same organization

$$corim-signer-map-extension: Extension point for future

expansion of the Signer map.

3. CoMID

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/88

3.1. Structure

The CDDL specification for the concise-mid-tag map is as follows and

this rule and its constraints MUST be followed when creating or

validating a CoMID tag:

concise-mid-tag = {

 ? &(language: 0) => text

 &(tag-identity: 1) => tag-identity-map

 ? &(entities: 2) => [+ entity-map]

 ? &(linked-tags: 3) => [+ linked-tag-map]

 &(triples: 4) => triples-map

 * $$concise-mid-tag-extension

}

The following describes each member of the concise-mid-tag map.

lang (index 0): A textual language tag that conforms with IANA

"Language Subtag Registry" [IANA.language-subtag-registry]. The

context of the specified language applies to all sibling and

descendant textual values, unless a descendant object has defined

a different language tag. Thus, a new context is established when

a descendant object redefines a new language tag. All textual

values within a given context MUST be considered expressed in the

specified language.

¶

*

¶

* ¶

*

¶

¶

¶

¶

¶

*

¶

tag-identity (index 1): A tag-identity-map containing unique

identification information for the CoMID. Described in Section

3.1.1.

entities (index 2): Provides information about one or more

organizations responsible for producing the CoMID tag. Described

in Section 3.1.2.

linked-tags (index 3): A list of one or more linked-tag-map

(described in Section 3.1.3), providing typed relationships

between this and other CoMIDs.

triples (index 4): One or more triples providing information

specific to the described module, e.g.: reference or endorsed

values, cryptographic material, or structural relationship

between the described module and other modules. Described in

(Section 3.1.4).

3.1.1. Tag Identity

tag-identity-map = {

 &(tag-id: 0) => $tag-id-type-choice

 ? &(tag-version: 1) => tag-version-type

}

The following describes each member of the tag-identity-map.

tag-id (index 0): A universally unique identifier for the CoMID.

Described in Section 3.1.1.1.

tag-version (index 1): Optional versioning information for the

tag-id . Described in Section 3.1.1.2.

3.1.1.1. Tag ID

$tag-id-type-choice /= tstr

$tag-id-type-choice /= uuid-type

A Tag ID is either a 16-byte binary string, or a textual identifier,

uniquely referencing the CoMID. The tag identifier MUST be globally

unique. Failure to ensure global uniqueness can create ambiguity in

tag use since the tag-id serves as the global key for matching,

lookups and linking. If represented as a 16-byte binary string, the

identifier MUST be a valid universally unique identifier as defined

by [RFC4122]. There are no strict guidelines on how the identifier

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

is structured, but examples include a 16-byte GUID (e.g., class 4

UUID) [RFC4122], or a URI [STD66].

3.1.1.2. Tag Version

tag-version-type = uint .default 0

Tag Version is an integer value that indicates the specific release

revision of the tag. Typically, the initial value of this field is

set to 0 and the value is increased for subsequent tags produced for

the same module release. This value allows a CoMID tag producer to

correct an incorrect tag previously released without indicating a

change to the underlying module the tag represents. For example, the

tag version could be changed to add new metadata, to correct a

broken link, to add a missing reference value, etc. When producing a

revised tag, the new tag-version value MUST be greater than the old

tag-version value.

3.1.2. Entities

comid-entity-map =

 entity-map<$comid-role-type-choice, $$comid-entity-map-extension>

The CoMID Entity is an instantiation of the Entity generic (Section

1.3.2) using a $comid-role-type-choice.

The $$comid-entity-map-extension extension socket is empty in this

specification.

$comid-role-type-choice /= &(tag-creator: 0)

$comid-role-type-choice /= &(creator: 1)

$comid-role-type-choice /= &(maintainer: 2)

The roles defined for a CoMID entity are:

tag-creator (value 0): creator of the CoMID tag.

creator (value 1): original maker of the module described by the

CoMID tag.

maintainer (value 2): an entity making changes to the module

described by the CoMID tag.

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

3.1.3. Linked Tag

The linked tag map represents a typed relationship between the

embedding CoMID tag (the source) and another CoMID tag (the target).

linked-tag-map = {

 &(linked-tag-id: 0) => $tag-id-type-choice

 &(tag-rel: 1) => $tag-rel-type-choice

}

The following describes each member of the tag-identity-map.

linked-tag-id (index 0): Unique identifier for the target tag.

For the definition see Section 3.1.1.1.

tag-rel (index 1): the kind of relation linking the source tag to

the target identified by linked-tag-id.

$tag-rel-type-choice /= &(supplements: 0)

$tag-rel-type-choice /= &(replaces: 1)

The relations defined in this specification are:

supplements (value 0): the source tag provides additional

information about the module described in the target tag.

replaces (value 1): the source tag corrects erroneous information

contained in the target tag. The information in the target MUST

be disregarded.

3.1.4. Triples

The triples-map contains all the CoMID triples broken down per

category. Not all category need to be present but at least one

category MUST be present and contain at least one entry.

triples-map = non-empty<{

 ? &(reference-triples: 0) => [+ reference-triple-record]

 ? &(endorsed-triples: 1) => [+ endorsed-triple-record]

 ? &(identity-triples: 2) => [+ identity-triple-record]

 ? &(attest-key-triples: 3) => [+ attest-key-triple-record]

 ? &(dependency-triples: 4) => [+ domain-dependency-triple-record]

 ? &(membership-triples: 5) => [+ domain-membership-triple-record]

 ? &(coswid-triples: 6) => [+ coswid-triple-record]

 * $$triples-map-extension

}>

¶

¶

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

The following describes each member of the triples-map:

reference-triples (index 0): Triples containing reference values.

Described in Section 3.1.4.2.

endorsed-triples (index 1): Triples containing endorsed values.

Described in Section 3.1.4.3.

identity-triples (index 2): Triples containing identity

credentials. Described in Section 3.1.4.4.

attest-key-triples (index 3): Triples containing verification

keys associated with attesting environments. Described in Section

3.1.4.5.

dependency-triples (index 4): Triples describing trust

relationships between domains. Described in Section 3.1.4.6.

membership-triples (index 5): Triples describing topological

relationships between (sub-)modules. Described in Section

3.1.4.7.

coswid-triples (index 6): Triples associating modules with

existing CoSWID tags. Described in Section 3.1.4.8.

3.1.4.1. Common Types

3.1.4.1.1. Environment

An environment-map may be used to represent a whole attester, an

attesting environment, or a target environment. The exact semantic

depends on the context (triple) in which the environment is used.

An environment is named after a class, instance or group identifier

(or a combination thereof).

environment-map = non-empty<{

 ? &(class: 0) => class-map

 ? &(instance: 1) => $instance-id-type-choice

 ? &(group: 2) => $group-id-type-choice

}>

The following describes each member of the environment-map:

class (index 0): Contains "class" attributes associated with the

module. Described in Section 3.1.4.1.2.

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

instance (index 1): Contains a unique identifier of a module's

instance. See Section 3.1.4.1.3.

group (index 2): identifier for a group of instances, e.g., if an

anonymization scheme is used.

3.1.4.1.2. Class

The Class name consists of class attributes that distinguish the

class of environment from other classes. The class attributes

include class-id, vendor, model, layer, and index. The CoMID author

determines which attributes are needed.

class-map = non-empty<{

 ? &(class-id: 0) => $class-id-type-choice

 ? &(vendor: 1) => tstr

 ? &(model: 2) => tstr

 ? &(layer: 3) => uint

 ? &(index: 4) => uint

}>

$class-id-type-choice /= tagged-oid-type

$class-id-type-choice /= tagged-uuid-type

$class-id-type-choice /= tagged-int-type

The following describes each member of the class-map:

class-id (index 0): Identifies the environment via a well-known

identifier. Typically, class-id is an object identifier (OID) or

universally unique identifier (UUID). Use of this attribute is

preferred.

vendor (index 1): Identifies the entity responsible for choosing

values for the other class attributes that do not already have

naming authority.

model (index 2): Describes a product, generation, and family. If

populated, vendor MUST also be populated.

layer (index 3): Is used to capture where in a sequence the

environment exists. For example, the order in which bootstrap

code is executed may have security relevance.

index (index 4): Is used when there are clones (i.e., multiple

instances) of the same class of environment. Each clone is given

a different index value to disambiguate it from the other clones.

For example, given a chassis with several network interface

controllers (NIC), each NIC can be given a different index value.

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

3.1.4.1.3. Instance

An instance carries a unique identifier that is reliably bound to an

instance of the attester.

The types defined for an instance identifier are UEID or UUID.

$instance-id-type-choice /= tagged-ueid-type

$instance-id-type-choice /= tagged-uuid-type

3.1.4.1.4. Group

A group carries a unique identifier that is reliably bound to a

group of attesters, for example when a number of attester are hidden

in the same anonymity set.

The type defined for a group identified is UUID.

$group-id-type-choice /= tagged-uuid-type

3.1.4.1.5. Measurements

Measurements can be of a variety of things including software,

firmware, configuration files, read-only memory, fuses, IO ring

configuration, partial reconfiguration regions, etc. Measurements

comprise raw values, digests, or status information.

An environment has one or more measurable elements. Each element can

have a dedicated measurement or multiple elements could be combined

into a single measurement. Measurements can have class, instance or

group scope. This is typically determined by the triple's

environment.

Class measurements apply generally to all the attesters in the given

class. Instance measurements apply to a specific attester instances.

Environments identified by a class identifier have measurements that

are common to the class. Environments identified by an instance

identifier have measurements that are specific to that instance.

measurement-map = {

 ? &(mkey: 0) => $measured-element-type-choice

 &(mval: 1) => measurement-values-map

}

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The following describes each member of the measurement-map:

mkey (index 0): An optional unique identifier of the measured

(sub-)environment. See Section 3.1.4.1.5.1.

mval (index 1): The measurements associated with the

(sub-)environment. Described in Section 3.1.4.1.5.2.

3.1.4.1.5.1. Measurement Keys

The types defined for a measurement identifier are OID, UUID or

uint.

$measured-element-type-choice /= tagged-oid-type

$measured-element-type-choice /= tagged-uuid-type

$measured-element-type-choice /= uint

3.1.4.1.5.2. Measurement Values

A measurement-values-map contains measurements associated with a

certain environment. Depending on the context (triple) in which they

are found, elements in a measurement-values-map can represent class

or instance measurements. Note that some of the elements have

instance scope only.

measurement-values-map = non-empty<{

 ? &(version: 0) => version-map

 ? &(svn: 1) => svn-type-choice

 ? &(digests: 2) => [+ hash-entry]

 ? &(flags: 3) => flags-map

 ? (

 &(raw-value: 4) => $raw-value-type-choice,

 ? &(raw-value-mask: 5) => raw-value-mask-type

)

 ? &(mac-addr: 6) => mac-addr-type-choice

 ? &(ip-addr: 7) => ip-addr-type-choice

 ? &(serial-number: 8) => text

 ? &(ueid: 9) => ueid-type

 ? &(uuid: 10) => uuid-type

 ? &(name: 11) => text

 * $$measurement-values-map-extension

}>

The following describes each member of the measurement-values-map.

version (index 0): Typically changes whenever the measured

environment is updated. Described in Section 3.1.4.1.5.3.

¶

*

¶

*

¶

¶

¶

¶

¶

¶

*

¶

svn (index 1): The security version number typically changes only

when a security relevant change is made to the measured

environment. Described in Section 3.1.4.1.5.4.

digests (index 2): Contains the digest(s) of the measured

environment together with the respective hash algorithm used in

the process. See Section 1.3.8.

flags (index 3): Describes security relevant operational modes.

For example, whether the environment is in a debug mode, recovery

mode, not fully configured, not secure, not replay protected or

not integrity protected. The flags field indicates which

operational modes are currently associated with measured

environment. Described in Section 3.1.4.1.5.5.

raw-value (index 4): Contains the actual (not hashed) value of

the element. An optional raw-value-mask (index 5) indicates which

bits in the raw-value field are relevant for verification. A mask

of all ones ("1") means all bits in the raw-value field are

relevant. Multiple values could be combined to create a single

raw-value attribute. The vendor determines how to pack multiple

values into a single raw-value structure. The same packing format

is used when collecting Evidence so that Reference Values and

collected values are bit-wise comparable. The vendor determines

the encoding of raw-value and the corresponding raw-value-mask.

mac-addr (index 6): A EUI-48 or EUI-64 MAC address associated

with the measured environment. Described in Section 3.1.4.1.5.7.

ip-addr (index 7): An IPv4 or IPv6 address associated with the

measured environment. Described in Section 3.1.4.1.5.7.

serial-number (index 8): A text string representing the product

serial number.

ueid (index 9): UEID associated with the measured environment.

See Section 1.3.5.

uuid (index 10): UUID associated with the measured environment.

See Section 1.3.4.

name (index 11): a name associated with the measured environment.

3.1.4.1.5.3. Version

A version-map contains details about the versioning of a measured

environment.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

version-map = {

 &(version: 0) => text

 ? &(version-scheme: 1) => $version-scheme

}

The following describes each member of the version-map:

version (index 0): the version string

version-scheme (index 1): an optional indicator of the versioning

convention used in the version attribute. Defined in Section 4.1

of [I-D.ietf-sacm-coswid]. The CDDL is copied below for

convenience.

$version-scheme /= &(multipartnumeric: 1)

$version-scheme /= &(multipartnumeric-suffix: 2)

$version-scheme /= &(alphanumeric: 3)

$version-scheme /= &(decimal: 4)

$version-scheme /= &(semver: 16384)

$version-scheme /= int / text

3.1.4.1.5.4. Security Version Number

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/89

svn-type = uint

svn = svn-type

min-svn = svn-type

tagged-svn = #6.552(svn)

tagged-min-svn = #6.553(min-svn)

svn-type-choice = tagged-svn / tagged-min-svn

3.1.4.1.5.5. Flags

The flags-map measurement describes a number of boolean operational

modes. If a flags-map value is not specified, then the operational

mode is unknown.

¶

¶

* ¶

*

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-sacm-coswid-21#section-4.1

flags-map = {

 ? &(configured: 0) => bool

 ? &(secure: 1) => bool

 ? &(recovery: 2) => bool

 ? &(debug: 3) => bool

 ? &(replay-protected: 4) => bool

 ? &(integrity-protected: 5) => bool

 * $$flags-map-extension

}

The following describes each member of the flags-map:

configured (index 0): The measured environment is fully

configured for normal operation if the flag is true.

secure (index 1): The measured environment's configurable

security settings are fully enabled if the flag is true.

recovery (index 2): The measured environment is NOT in a recovery

state if the flag is true.

debug (index 3): The measured environment is in a debug enabled

state if the flag is true.

replay-protected (index 4): The measured environment is protected

from replay by a previous image that differs from the current

image if the flag is true.

integrity-protected (index 5): The measured environment is

protected from unauthorized update if the flag is true.

3.1.4.1.5.6. Raw Values Types

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/90

$raw-value-type-choice /= #6.560(bytes)

raw-value-mask-type = bytes

3.1.4.1.5.7. Address Types

The types or associating addressing information to a measured

environment are:

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

ip-addr-type-choice = ip4-addr-type / ip6-addr-type

ip4-addr-type = bytes .size 4

ip6-addr-type = bytes .size 16

mac-addr-type-choice = eui48-addr-type / eui64-addr-type

eui48-addr-type = bytes .size 6

eui64-addr-type = bytes .size 8

3.1.4.1.6. Crypto Keys

A cryptographic key can be one of the following formats:

tagged-pkix-base64-key-type: PEM encoded SubjectPublicKeyInfo.

Defined in Section 13 of [RFC7468].

tagged-pkix-base64-cert-type: PEM encoded X.509 public key

certificate. Defined in Section 5 of [RFC7468].

tagged-pkix-base64-cert-path-type: X.509 certificate chain

created by the concatenation of as many PEM encoded X.509

certificates as needed. The certificates MUST be concatenated in

order so that each directly certifies the one preceding.

$crypto-key-type-choice /= tagged-pkix-base64-key-type

$crypto-key-type-choice /= tagged-pkix-base64-cert-type

$crypto-key-type-choice /= tagged-pkix-base64-cert-path-type

tagged-pkix-base64-key-type = #6.554(tstr)

tagged-pkix-base64-cert-type = #6.555(tstr)

tagged-pkix-base64-cert-path-type = #6.556(tstr)

3.1.4.1.7. Domain Types

A domain is a context for bundling a collection of related

environments and their measurements.

Three types are defined: uint and text for local scope, UUID for

global scope.

$domain-type-choice /= uint

$domain-type-choice /= text

$domain-type-choice /= tagged-uuid-type

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7468#section-13
https://rfc-editor.org/rfc/rfc7468#section-5

3.1.4.2. Reference Values Triple

A Reference Values triple relates reference measurements to a Target

Environment. For Reference Value Claims, the subject identifies a

Target Environment, the object contains measurements, and the

predicate asserts that these are the expected (i.e., reference)

measurements for the Target Environment.

reference-triple-record = [

 environment-map

 [+ measurement-map]

]

3.1.4.3. Endorsed Values Triple

An Endorsed Values triple declares additional measurements that are

valid when a Target Environment has been verified against reference

measurements. For Endorsed Value Claims, the subject is either a

Target or Attesting Environment, the object contains measurements,

and the predicate defines semantics for how the object relates to

the subject.

endorsed-triple-record = [

 environment-map

 [+ measurement-map]

]

3.1.4.4. Device Identity Triple

A Device Identity triple relates one or more cryptographic keys to a

device. The subject of an Identity triple uses an instance or class

identifier to refer to a device, and a cryptographic key is the

object. The predicate asserts that the identity is authenticated by

the key. A common application for this triple is device identity.

identity-triple-record = [

 environment-map

 [+ $crypto-key-type-choice]

]

3.1.4.5. Attestation Keys Triple

An Attestation Keys triple relates one or more cryptographic keys to

an Attesting Environment. The Attestation Key triple subject is an

¶

¶

¶

¶

¶

¶

Attesting Environment whose object is a cryptographic key. The

predicate asserts that the Attesting Environment signs Evidence that

can be verified using the key.

attest-key-triple-record = [

 environment-map

 [+ $crypto-key-type-choice]

]

3.1.4.6. Domain Dependency Triple

A Domain Dependency triple defines trust dependencies between

measurement sources. The subject identifies a domain (Section

3.1.4.1.7) that has a predicate relationship to the object

containing one or more dependent domains. Dependency means the

subject domain's trustworthiness properties rely on the object

domain(s) trustworthiness having been established before the

trustworthiness properties of the subject domain exists.

domain-dependency-triple-record = [

 $domain-type-choice

 [+ $domain-type-choice]

]

3.1.4.7. Domain Membership Triple

A Domain Membership triple assigns domain membership to

environments. The subject identifies a domain (Section 3.1.4.1.7)

that has a predicate relationship to the object containing one or

more environments. Endorsed environments (Section 3.1.4.3)

membership is conditional upon successful matching of Reference

Values (Section 3.1.4.2) to Evidence.

domain-membership-triple-record = [

 $domain-type-choice

 [+ environment-map]

]

3.1.4.8. CoMID-CoSWID Linking Triple

A CoSWID triple relates reference measurements contained in one or

more CoSWIDs to a Target Environment. The subject identifies a

Target Environment, the object one or more unique tag identifiers of

¶

¶

¶

¶

¶

¶

existing CoSWIDs, and the predicate asserts that these contain the

expected (i.e., reference) measurements for the Target Environment.

coswid-triple-record = [

 environment-map

 [+ concise-swid-tag-id]

]

concise-swid-tag-id = text / bstr .size 16

3.2. Extensibility

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/91

4. Implementation Status

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

presented here that was supplied by IETF contributors. This is not

intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that

other implementations may exist.

According to [RFC7942], "this will allow reviewers and working

groups to assign due consideration to documents that have the

benefit of running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

4.1. Veraison

Organization responsible for the implementation: Veraison

Project, Linux Foundation

Implementation's web page: https://github.com/veraison/corim/

README.md

Brief general description: The corim/corim and corim/comid

packages provide a golang API for low-level manipulation of

Concise Reference Integrity Manifest (CoRIM) and Concise Module

¶

¶

¶

¶

¶

*

¶

*

¶

*

https://github.com/veraison/corim/README.md
https://github.com/veraison/corim/README.md

Identifier (CoMID) tags respectively. The corim/cocli package

uses the API above (as well as the API from the veraison/swid

package) to provide a user command line interface for working

with CoRIM, CoMID and CoSWID. Specifically, it allows creating,

signing, verifying, displaying, uploading, and more. See https://

github.com/cocli/README.md for further details.

Implementation's level of maturity: alpha.

Coverage: the whole protocol is implemented, including PSA-

specific extensions [I-D.fdb-rats-psa-endorsements].

Version compatibility: Version -02 of the draft

Licensing: Apache 2.0 https://github.com/veraison/corim/blob/

main/LICENSE

Implementation experience: n/a

Contact information: https://veraison.zulipchat.com

Last updated: https://github.com/veraison/corim/commits/main

5. Security and Privacy Considerations

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/92

6. IANA Considerations

6.1. New COSE Header Parameters

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/96

6.2. New CBOR Tags

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/93

6.3. New CoRIM Registries

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/94

6.4. New CoMID Registries

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/95

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

https://github.com/cocli/README.md
https://github.com/cocli/README.md
https://github.com/veraison/corim/blob/main/LICENSE
https://github.com/veraison/corim/blob/main/LICENSE
https://veraison.zulipchat.com
https://github.com/veraison/corim/commits/main

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author/Change controller:

Provisional registration?

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

6.5. New Media Types

IANA is requested to add the following media types to the "Media

Types" registry [IANA.media-types].

Name Template Reference

corim-signed+cbor
application/corim-

signed+cbor

RFCthis, Section

6.5.1

corim-

unsigned+cbor

application/corim-

unsigned+cbor

RFCthis, Section

6.5.2

Table 2: New Media Types

6.5.1. corim-signed+cbor

application

corim-signed+cbor

n/a

"profile" (CoRIM profile in string format.

OIDs MUST use the dotted-decimal notation.)

binary

Section 5 of RFCthis

n/a

RFCthis

Attestation Verifiers,

Endorsers and Reference-Value providers that need to transfer

COSE Sign1 wrapped CoRIM payloads over HTTP(S), CoAP(S), and

other transports.

n/a

D9 01 F6 D2, D9 01 F4 D9 01 F6 D2

n/a

n/a

RATS WG

mailing list (rats@ietf.org)

COMMON

none

IETF

Maybe

6.5.2. corim-unsigned+cbor

application

corim-unsigned+cbor

n/a

"profile" (CoRIM profile in string format.

OIDs MUST use the dotted-decimal notation.)

binary

Section 5 of RFCthis

n/a

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author/Change controller:

Provisional registration?

[I-D.ietf-rats-architecture]

[I-D.ietf-rats-eat]

[I-D.ietf-sacm-coswid]

RFCthis

Attestation Verifiers,

Endorsers and Reference-Value providers that need to transfer

unprotected CoRIM payloads over HTTP(S), CoAP(S), and other

transports.

n/a

D9 01 F5, D9 01 F4 D9 01 F5

n/a

n/a

RATS WG

mailing list (rats@ietf.org)

COMMON

none

IETF

Maybe

6.6. CoAP Content-Formats Registration

IANA is requested to register the two following Content-Format

numbers in the "CoAP Content-Formats" sub-registry, within the

"Constrained RESTful Environments (CoRE) Parameters" Registry

[IANA.core-parameters]:

Content-Type Content Coding ID Reference

application/corim-signed+cbor - TBD1 RFCthis

application/corim-unsigned+cbor - TBD2 RFCthis

Table 3: New Content-Formats

7. References

7.1. Normative References

Birkholz, H., Thaler, D., Richardson,

M., Smith, N., and W. Pan, "Remote Attestation Procedures

Architecture", Work in Progress, Internet-Draft, draft-

ietf-rats-architecture-18, 14 June 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-rats-

architecture-18>.

Lundblade, L., Mandyam, G., and J. O'Donoghue,

"The Entity Attestation Token (EAT)", Work in Progress,

Internet-Draft, draft-ietf-rats-eat-14, 10 July 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-rats-

eat-14>.

Birkholz, H., Fitzgerald-McKay, J., Schmidt,

C., and D. Waltermire, "Concise Software Identification

Tags", Work in Progress, Internet-Draft, draft-ietf-sacm-

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-18
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-18
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-18
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-14
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-14

[IANA.core-parameters]

[IANA.language-subtag-registry]

[IANA.media-types]

[RFC2119]

[RFC4122]

[RFC7468]

[RFC8152]

[RFC8174]

[RFC8610]

[RFC9090]

[STD66]

coswid-21, 7 March 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-sacm-coswid-21>.

IANA, "Constrained RESTful Environments

(CoRE) Parameters", <https://www.iana.org/assignments/

core-parameters>.

IANA, "Language Subtag Registry",

<https://www.iana.org/assignments/language-subtag-

registry>.

IANA, "Media Types", <https://www.iana.org/

assignments/media-types>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

rfc/rfc4122>.

Josefsson, S. and S. Leonard, "Textual Encodings of PKIX,

PKCS, and CMS Structures", RFC 7468, DOI 10.17487/

RFC7468, April 2015, <https://www.rfc-editor.org/rfc/

rfc7468>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/rfc/rfc8152>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Bormann, C., "Concise Binary Object Representation (CBOR)

Tags for Object Identifiers", RFC 9090, DOI 10.17487/

RFC9090, July 2021, <https://www.rfc-editor.org/rfc/

rfc9090>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

https://datatracker.ietf.org/doc/html/draft-ietf-sacm-coswid-21
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-coswid-21
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/language-subtag-registry
https://www.iana.org/assignments/language-subtag-registry
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-types
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc7468
https://www.rfc-editor.org/rfc/rfc7468
https://www.rfc-editor.org/rfc/rfc8152
https://www.rfc-editor.org/rfc/rfc8152
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc9090
https://www.rfc-editor.org/rfc/rfc9090

[STD94]

[X.690]

[I-D.fdb-rats-psa-endorsements]

[RFC7942]

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/rfc/

rfc8949>.

International Telecommunications Union, "Information

technology — ASN.1 encoding rules: Specification of Basic

Encoding Rules (BER), Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER)", ITU-T Recommendation

X.690, August 2015, <https://www.itu.int/rec/T-REC-X.

690>.

7.2. Informative References

Fossati, T., Deshpande, Y., and H.

Birkholz, "Arm's Platform Security Architecture (PSA)

Attestation Verifier Endorsements", Work in Progress,

Internet-Draft, draft-fdb-rats-psa-endorsements-01, 11

May 2022, <https://datatracker.ietf.org/doc/html/draft-

fdb-rats-psa-endorsements-01>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/rfc/rfc7942>.

Appendix A. Full CoRIM CDDL

Content missing. Tracked at: https://github.com/ietf-rats/draft-

birkholz-rats-corim/issues/80

corim = []

Acknowledgments

Carl Wallace for review and comments on this document.

Authors' Addresses

Henk Birkholz

Fraunhofer SIT

Email: henk.birkholz@sit.fraunhofer.de

Thomas Fossati

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc8949
https://www.itu.int/rec/T-REC-X.690
https://www.itu.int/rec/T-REC-X.690
https://datatracker.ietf.org/doc/html/draft-fdb-rats-psa-endorsements-01
https://datatracker.ietf.org/doc/html/draft-fdb-rats-psa-endorsements-01
https://www.rfc-editor.org/rfc/rfc7942
https://www.rfc-editor.org/rfc/rfc7942
mailto:henk.birkholz@sit.fraunhofer.de

arm

Email: Thomas.Fossati@arm.com

Yogesh Deshpande

arm

Email: yogesh.deshpande@arm.com

Ned Smith

Intel

Email: ned.smith@intel.com

Wei Pan

Huawei Technologies

Email: william.panwei@huawei.com

mailto:Thomas.Fossati@arm.com
mailto:yogesh.deshpande@arm.com
mailto:ned.smith@intel.com
mailto:william.panwei@huawei.com

	Concise Reference Integrity Manifest
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology and Requirements Language
	1.2. CDDL Typographical Conventions
	1.3. Common Types
	1.3.1. Non-Empty
	1.3.2. Entity
	1.3.3. Validity
	1.3.4. UUID
	1.3.5. UEID
	1.3.6. OID
	1.3.7. Tagged Integer Type
	1.3.8. Hash Entry

	2. CoRIM
	2.1. CoRIM Map
	2.1.1. Identity
	2.1.2. Tags
	2.1.3. Locator Map
	2.1.4. Profile Types
	2.1.5. Entities

	2.2. Signed CoRIM
	2.2.1. Protected Header Map
	2.2.2. Meta Map
	2.2.2.1. Signer Map

	3. CoMID
	3.1. Structure
	3.1.1. Tag Identity
	3.1.1.1. Tag ID
	3.1.1.2. Tag Version

	3.1.2. Entities
	3.1.3. Linked Tag
	3.1.4. Triples
	3.1.4.1. Common Types
	3.1.4.1.1. Environment
	3.1.4.1.2. Class
	3.1.4.1.3. Instance
	3.1.4.1.4. Group
	3.1.4.1.5. Measurements
	3.1.4.1.5.1. Measurement Keys
	3.1.4.1.5.2. Measurement Values
	3.1.4.1.5.3. Version
	3.1.4.1.5.4. Security Version Number
	3.1.4.1.5.5. Flags
	3.1.4.1.5.6. Raw Values Types
	3.1.4.1.5.7. Address Types
	3.1.4.1.6. Crypto Keys
	3.1.4.1.7. Domain Types

	3.1.4.2. Reference Values Triple
	3.1.4.3. Endorsed Values Triple
	3.1.4.4. Device Identity Triple
	3.1.4.5. Attestation Keys Triple
	3.1.4.6. Domain Dependency Triple
	3.1.4.7. Domain Membership Triple
	3.1.4.8. CoMID-CoSWID Linking Triple

	3.2. Extensibility

	4. Implementation Status
	4.1. Veraison

	5. Security and Privacy Considerations
	6. IANA Considerations
	6.1. New COSE Header Parameters
	6.2. New CBOR Tags
	6.3. New CoRIM Registries
	6.4. New CoMID Registries
	6.5. New Media Types
	6.5.1. corim-signed+cbor
	6.5.2. corim-unsigned+cbor

	6.6. CoAP Content-Formats Registration

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Full CoRIM CDDL
	Acknowledgments
	Authors' Addresses

