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Abstract

A transparent and authentic Transparent Registry service in support

of a supply chain's integrity, transparency, and trust requires all

peers that contribute to the Registry operations to be trustworthy

and authentic. In this document, a countersigning variant is

specified that enables trust assertions on Merkle-tree based

operations for global supply chain registries. A generic procedure

for producing payloads to be signed and validated is defined and

leverages solutions and principles from the Concise Signing and

Encryption (COSE) space.
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1. Introduction

This document defines a method for issuing and verifying

countersignatures on COSE_Sign1 messages included in an

authenticated data structure such as a Merkle Tree.

We adopt the terminology of the Supply Chain Integrity,

Transparency, and Trust (SCITT) architecture document (An

Architecture for Trustworthy and Transparent Digital Supply Chains,
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see [I-D.birkholz-scitt-architecture]): Claim, Envelope,

Transparency Service, Registry, Receipt, and Verifier.

[TODO] Do we need to explain or introduce them here? We may also

define Tree (our shorthand for authenticated data structure),

Root (a succinct commitment to the Tree, e.g., a hand) and use

Issuer instead of TS.

From the Verifier's viewpoint, a Receipt is similar to a

countersignature V2 on a single signed message: it is a universally-

verifiable cryptographic proof of endorsement of the signed envelope

by the countersigner.

Compared with countersignatures on single COSE envelopes,

Receipts countersign the envelope in context, providing

authentication both of the envelope and of its logical position

in the authenticated data structure.

Receipts are proof of commitment to the whole contents of the

data structure, even if the Verifier knows only some of its

contents.

Receipts can be issued in bulk, using a single public-key

signature for issuing a large number of Receipts.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Common Parameters

Verifiers are configured by a collection of parameters to identify a

Transparency Service and verify its Receipts. These parameters MUST

be fixed for the lifetime of the Transparency Service and securely

communicated to all Verifiers.

At minimum, these parameters include:

a Service identifier: An opaque identifier (e.g. UUID) that

uniquely identifies the service and can be used to securely

retrieve all other Service parameters.
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The Tree algorithm used for issuing receipts, and its additional

parameters, if any. This document creates a registry (see 

Section 10.2.1) and describes an initial set of tree algorithms.

[TODO] The architecture also has fixed TS registration

policies.

3. Generic Receipt Structure

A Receipt represents a countersignature issued by a Transparency

Service.

The Receipt structure is a CBOR array with two items, in order:

protected: The protected header of the countersigner.

contents: The proof as a CBOR structure determined by the tree

algorithm.

Receipt = [

  protected: bstr .cbor {

    * label => value

  },

  contents: any

]

label = tstr / int

value = any

Each tree algorithm MUST define its contents type and procedures for

issuing and verifying a receipt.

4. COSE_Sign1 Countersigning

While the tree algorithms may differ in the way they aggregate

multiple envelopes to compute a digest to be signed by the TS, they

all share the same representation of the individual envelopes to be

countersigned (intuitively, their leaves).

This document uses the principles and structure definitions of

COSE_Sign1 countersigning V2 ([I-D.ietf-cose-countersign]). Each

envelope is authenticated using a Countersign_structure array,

recalled below.
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Countersign_structure = [

    context: "CounterSignatureV2",

    body_protected: empty_or_serialized_map,

    sign_protected: empty_or_serialized_map,

    external_aad: bstr,

    payload: bstr,

    other_fields: [

        signature: bstr

    ]

]

The body_protected, payload, and signature fields are copied from

the COSE_Sign1 message being countersigned.

The sign_protected field is provided by the TS, see Section 4.1

below. This field is included in the Receipt contents to enable the

Verifier to re-construct Countersign_structure, as specified by the

tree algorithm.

By convention, the TS always provides an empty external_aad: a zero-

length bytestring.

Procedure for reconstruction of Countersign_structure:

Let Target be the COSE_Sign1 message that corresponds to the

countersignature. Different environments will have different

mechanisms to achieve this. One obvious mechanism is to embed

the Receipt in the unprotected header of Target. Another

mechanism may be to store both artifacts separately and use a

naming convention, database, or other method to link both

together.

Extract body_protected, payload, and signature from Target.

Create a Countersign_structure using the extracted fields from

Target, and sign_protected from the Receipt contents.

4.1. Countersigner Header Parameters

The following parameters MUST be included in the protected header of

the countersigner (sign_protected in Section 4):

Service ID (label: TBD): The Service identifier, as defined in

the Transparency Service parameters.

Tree Algorithm (label: TBD): The Tree Algorithm used for issuing

the receipt, as defined in the Transparency Service parameters.
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Issued At (label: TBD): The time at which the countersignature

was issued as the number of seconds from 1970-01-01T00:00:00Z

UTC, ignoring leap seconds.

5. Receipt Verification

Given a signed envelope and a Receipt for it, the following steps

must be followed to verify this Receipt.

Decode the protected header of the Receipt and look-up the TS

parameters using the Service ID header parameter.

Verify that the Tree Algorithm parameter value in the receipt

protected header matches the one in the TS parameters.

Construct a Countersign_structure as described in Section 4,

using the protected header of the Receipt as sign_protected.

CBOR-encode Countersign_structure as To-Be-Included, using the

CBOR encoding described in Section 7.

Invoke the Tree Algorithm receipt verification procedure with

the TS parameters and To-Be-Included as inputs.

The Verifier SHOULD apply additional checks before accepting the

countersigned envelope as valid, based on its protected headers and

payload.

6. CCF Tree Algorithm

The CCF tree algorithm specifies an algorithm based on a binary

Merkle tree over the sequence of all ledger entries, as implemented

in the CCF framework (see [CCF_Merkle_Tree]).

6.1. Additional Parameters

The algorithm requires that the TS define additional parameters:

Signature Algorithm: The ECDSA signature algorithm used to sign

the Merkle tree root (see Section 10.2.2).

Service Certificate: The self-signed X.509 certificate used as

trust anchor to verify signatures generated by the transparency

service using the Signature Algorithm.

All definitions in this section use the hash algorithm required by

the signature algorithm set in the TS parameters (see Section 

Section 6.1). We write HASH to refer to this algorithm, and

HASH_SIZE for the fixed length of its output in bytes.
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6.2. Cryptographic Components

Note: This section is adapted from Section 2.1 of [RFC9162], which

provides additional discussion of Merkle trees.

6.2.1. Binary Merkle Trees

The input of the Merkle Tree Hash (MTH) function is a list of n

bytestrings, written D_n = {d[0], d[1], ..., d[n-1]}. The output is

a single HASH_SIZE bytestring, also called the tree root hash.

This function is defined as follows:

The hash of an empty list is the hash of an empty string:

The hash of a list with one entry (also known as a leaf hash) is:

For n > 1, let k be the largest power of two smaller than n (i.e., k

< n <= 2k). The Merkle Tree Hash of an n-element list D_n is then

defined recursively as:

where:

|| denotes concatenation

: denotes concatenation of lists

D[k1:k2] = D'_(k2-k1) denotes the list {d'[0] = d[k1], d'[1] =

d[k1+1], ..., d'[k2-k1-1] = d[k2-1]} of length (k2 - k1).

6.2.2. Merkle Inclusion Proofs

A Merkle inclusion proof for a leaf in a Merkle Tree is the shortest

list of intermediate hash values required to re-compute the tree

root hash from the digest of the leaf bytestring. Each node in the

tree is either a leaf node or is computed from the two nodes

immediately below it (i.e., towards the leaves). At each step up the

tree (towards the root), a node from the inclusion proof is combined

with the node computed so far. In other words, the inclusion proof

consists of the list of missing nodes required to compute the nodes

leading from a leaf to the root of the tree. If the root computed

from the inclusion proof matches the true root, then the inclusion

proof proves that the leaf exists in the tree.
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6.2.2.1. Verifying an Inclusion Proof

When a client has received an inclusion proof and wishes to verify

inclusion of a leaf_hash for a given root_hash, the following

algorithm may be used to prove the hash was included in the

root_hash:

6.2.2.2. Generating an Inclusion Proof

Given the MTH input D_n = {d[0], d[1], ..., d[n-1]} and an index i <

n in this list, run the MTH algorithm and record the position and

value of every intermediate hash concatenated and hashed first with

the digest of the leaf, then with the resulting intermediate hash

value. (Most implementations instead record all intermediate hash

computations, so that they can produce all inclusion proofs for a

given tree by table lookups.)

6.3. Encoding Signed Envelopes into Tree Leaves

This section describes the encoding of signed envelopes and

auxiliary ledger entries into the leaf bytestrings passed as input

to the Merkle Tree function.

Each bytestring is computed from three inputs:

internal_hash: a string of HASH_SIZE bytes;

internal_data: a string of at most 1024 bytes; and

data_hash: either the HASH of the CBOR-encoded

Countersign_structure of the signed envelope, using the CBOR

encoding described in Section 7, or a bytestring of size

HASH_SIZE filled with zeroes for auxiliary ledger entries.

as the concatenation of three hashes:

This ensures that leaf bytestrings are always distinct from the

inputs of the intermediate computations in MTH, which always consist

¶

recompute_root(leaf_hash, proof):

  h := leaf_hash

  for [left, hash] in proof:

    if left

      h := HASH(hash || h)

    else

      h := HASH(h || hash)

  return h

¶
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of two hashes, and also that leaf bytestrings for signed envelopes

and for auxiliary ledger entries are always distinct.

The internal_hash and internal_data bytestrings are internal to the

CCF implementation. Similarly, the auxiliary ledger entries are

internal to CCF. They are opaque to receipt Verifiers, but they

commit the TS to the whole ledger contents and may be used for

additional, CCF-specific auditing.

6.4. Receipt Contents Structure

The Receipt contents structure is a CBOR array. The items of the

array in order are:

signature: the ECDSA signature over the Merkle tree root as bstr.

Note that the Merkle tree root hash is the prehashed input to

ECDSA and is not hashed twice.

node_certificate: a DER-encoded X.509 certificate for the public

key for signature verification. This certificate MUST be a valid

CCF node certificate for the service; in particular, it MUST form

a valid X.509 certificate chain with the service certificate.

inclusion_proof: the intermediate hashes to recompute the signed

root of the Merkle tree from the leaf digest of the envelope.

The array MUST have at most 64 items.

The inclusion proof structure is an array of [left, hash]

pairs where left indicates the ordering of digests for the

intermediate hash compution. The hash MUST be a bytestring of

length HASH_SIZE.

leaf_info: auxiliary inputs to recompute the leaf digest included

in the Merkle tree: the internal hash and the internal data.

internal_hash MUST be a bytestring of length HASH_SIZE;

internal_data MUST be a bytestring of length less than 1024.

The inclusion of an additional, short-lived certificate endorsed by

the TS enables flexibility in its distributed implementation, and

may support additional CCF-specific auditing.

The CDDL fragment that represents the above text follows.
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ReceiptContents = [

    signature: bstr,

    node_certificate: bstr,

    inclusion_proof: [+ ProofElement],

    leaf_info: LeafInfo

]

ProofElement = [

    left: bool

    hash: bstr

]

LeafInfo = [

    internal_hash: bstr,

    internal_data: bstr

]

6.5. Receipt Contents Verification

Given the To-Be-Included bytes (see Section 5) and the TS

parameters, the following steps must be followed to verify the

Receipt contents.

Verify that the Receipt Content structure is well-formed, as

described in Section 6.4.

Compute LeafBytes as the bytestring concatenation of the

internal hash, the hash of internal data, and the hash of the

To-Be-Included bytes.

Compute the leaf digest.

Compute the root hash from the leaf hash and the Merkle proof

using the Merkle Tree Hash Algorithm found in the service's

parameters (see Section 6.1):

Verify the certificate chain established by the node

certificate embedded in the receipt and the fixed service

certificate in the TS parameters (see Section 6.1). TBD needs

more details
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 LeafBytes := internal_hash || HASH(internal_data) || HASH(To-Be-Included)¶

3. ¶

 LeafHash := HASH(LeafBytes)¶
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 root := recompute_root(LeafHash, inclusion_proof)¶
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Verify that signature is a valid signature value of the root

hash, using the public key of the node certificate and the

Signature Algorithm of the TS parameters.

6.6. Receipt Generation

This document provides a reference algorithm for producing valid

receipts, but it omits any discussion of TS registration policy and

any CCF-specific implementation details.

The algorithm takes as input a list of entries to be jointly

countersigned, each entry consisting of internal_hash, 

internal_data, and an optional signed envelope. (This optional item

reflects that a CCF ledger records both signed envelopes and

auxiliary entries.)

For each signed envelope, create the countersigner protected

header and compute the Countersign_structure as described in 

Section 4.

For each item in the list, compute LeafBytes as the bytestring

concatenation of the internal hash, the hash of internal data

and, if the envelope is present, the hash of the CBOR-encoding

of Countersign_structure, using the CBOR encoding described in 

Section 7, otherwise a HASH_SIZE bytestring of zeroes.

Compute the tree root hash by applying MTH to the resulting

list of leaf bytestrings, keeping the results for all

intermediate HASH values.

Select a valid node_certificate and compute a signature of the

root of the tree with the corresponding signing key.

For each signed envelope provided in the input,

Collect an inclusion_proof by selecting intermediate hash

values, as described above.

Produce the receipt contents using this inclusion_proof, the

fixed node_certificate and signature, and the bytestrings 

internal_hash and internal_data provided with the envelope.

Produce the receipt using the countersigner protected header

and this receipt's contents.

7. CBOR Encoding Restrictions

In order to always regenerate the same byte string for the "to be

included" and "to be hashed" values, the core deterministic encoding
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rules defined in Section 4.2.1 of [RFC8949] MUST be used for all

their CBOR structures.

8. Privacy Considerations

TBD

9. Security Considerations

TBD

10. IANA Considerations

10.1. Additions to Existing Registries

10.1.1. New Entries to the COSE Header Parameters Registry

IANA is requested to register the new COSE Header parameters defined

below in the "COSE Header Parameters" registry.

10.1.1.1. COSE_Sign1 Countersign receipt

Name: COSE_Sign1 Countersign receipt

Label: TBD (temporary: 394, see also 

[I-D.birkholz-scitt-architecture])

Value Type: [+ Receipt]

Description: One or more COSE_Sign1 Countersign Receipts to be

embedded in the unprotected header of the countersigned COSE_Sign1

message.

10.1.1.2. Issued At

Name: Issued At

Label: TBD

Value Type: uint

Description: The time at which the signature was issued as the

number of seconds from 1970-01-01T00:00:00Z UTC, ignoring leap

seconds.

10.2. New SCITT-Related Registries

IANA is asked to add a new registry "TBD" to the list that appears

at https://www.iana.org/assignments/.
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[RFC2119]

[RFC6234]

The rest of this section defines the subregistries that are to be

created within the new "TBD" registry.

10.2.1. Tree Algorithms

IANA is asked to establish a registry of tree algorithm identifiers,

named "Tree Algorithms", with the following registration procedures:

TBD

The "Tree Algorithms" registry initially consists of:

Identifier Tree Algorithm Reference

CCF CCF tree algorithm This document

Table 1: Initial content of Tree Algorithms

registry

The designated expert(s) should ensure that the proposed algorithm

has a public specification and is suitable for use as [TBD].

10.2.2. Signature Algorithms

IANA is asked to establish a registry of signature algorithm

identifiers, named "Signature Algorithms", with the following

registration procedures: TBD

The "Signature Algorithms" registry initially consists of:

Identifier Signature Algorithm Reference

ES256
Deterministic ECDSA (NIST P-256) with HMAC-

SHA256
[RFC6979]

Table 2: Initial content of Signature Algorithms registry

The designated expert(s) should ensure that the proposed algorithm

has a public specification and is suitable for use as a

cryptographic signature algorithm.
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