
Workgroup: Network Working Group

Internet-Draft:

draft-birkholz-scitt-software-use-cases-01

Published: 15 February 2023

Intended Status: Informational

Expires: 19 August 2023

Authors: H. Birkholz

Fraunhofer SIT

Y. Deshpande

ARM

D. Brooks

REA

R. Martin

MITRE

B. Knight

Microsoft

Detailed Software Supply Chain Uses Cases for SCITT

Abstract

This document includes a collection of representative Software

Supply Chain Use Case Descriptions. These use cases aim to identify

software supply chain problems that the industry faces today and

acts as a guideline for developing a comprehensive solution for

these classes of scenarios.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-birkholz-scitt-software-use-cases/.

Discussion of this document takes place on the SCITT Working Group

mailing list (mailto:scitt@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/scitt/. Subscribe at https://

www.ietf.org/mailman/listinfo/scitt/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-scitt/draft-birkholz-scitt-software-supply-chain-

use-cases.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-birkholz-scitt-software-use-cases/
https://datatracker.ietf.org/doc/draft-birkholz-scitt-software-use-cases/
mailto:scitt@ietf.org
https://mailarchive.ietf.org/arch/browse/scitt/
https://mailarchive.ietf.org/arch/browse/scitt/
https://www.ietf.org/mailman/listinfo/scitt/
https://www.ietf.org/mailman/listinfo/scitt/
https://github.com/ietf-scitt/draft-birkholz-scitt-software-supply-chain-use-cases
https://github.com/ietf-scitt/draft-birkholz-scitt-software-supply-chain-use-cases
https://github.com/ietf-scitt/draft-birkholz-scitt-software-supply-chain-use-cases
https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 August 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Generic Problem Statement

3. Software Supply Chain Use Cases

3.1. Verification that Signing Certificate is Authorized by

Supplier

3.2. Multi Stakeholder Evaluation of a Released Software Product

3.3. Security Analysis of a Software Product

3.4. Promotion of a Software Component by multiple entities

3.5. Post-Boot Firmware Provenance

3.6. Auditing of Software Product

3.7. Authentic Software Components in Air-Gapped Infrastructure

3.8. Firmware Delivery to large set of constrained IoT Devices

3.9. Software Integrator assembling a software product for a

smart car

4. Normative References

Authors' Addresses

1. Introduction

Modern software applications are an intricate mix of first-party and

third-party code, development practices and tools, deployment

methods and infrastructure, and interfaces and protocols. The

software supply chain comprises all elements associated with an

application's design, development, build, integration, deployment,

and maintenance throughout its entire lifecycle. The complexity of

software coupled with a lack of lifecycle visibility increases the

risks associated with system attack surface and the number of cyber

¶

¶

¶

¶

https://trustee.ietf.org/license-info

threats capable of harmful impacts, such as exfiltration of data,

disruption of operations, and loss of reputation, intellectual

property, and financial assets. There is a need for a platform

architecture that will allow consumers to know that suppliers

maintained appropriate security practices without requiring access

to proprietary intellectual property. SCITT-enabled products and

analytics solutions will assist in managing compliance and assessing

risk to help prevent and detect supply chain attacks across the

entire software lifecycle while prioritizing data privacy.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Generic Problem Statement

Supply chain security is a paramount prerequisite to successfully

protect consumers and minimize economic, public health, and safety

impacts. Supply chain security has historically focused on risk

management practices to safeguard logistics, meet compliance

regulations, demand forecasts, and optimize inventory. While these

elements are foundational to a healthy supply chain, an integrated

cyber security-based perspective of the software supply chains

remains broadly undefined. Recently, the global community has

experienced numerous supply chain attacks targeting weaknesses in

software supply chains. As illustrated in Figure 1, a software

supply chain attack may leverage one or more lifecycle stages and

directly or indirectly target the component.

¶

¶

¶

Figure 1: Example Lifecycle Threats

DevSecOps often depends on third-party and open-source solutions.

These dependencies can be quite complex throughout the supply chain

 Dependencies Malicious 3rd-party package or version

 |

 |

 +-----+-----+

 | |

 | Code | Compromise source control

 | |

 +-----+-----+

 |

 +-----+-----+

 | | Malicious plug-ins;

 | Commit | Malcious commit

 | |

 +-----+-----+

 |

 +-----+-----+

 | | Modify build tasks or build environment;

 | Build | Poison build agent/compiler;

 | | Tamper with build cache

 +-----+-----+

 |

 +-----+-----+

 | | Compromise test tools;

 | Test | Falsification of test results

 | |

 +-----+-----+

 |

 +-----+-----+

 | | Use bad package;

 | Package | Compromise package repository

 | |

 +-----+-----+

 |

 +-----+-----+

 | | Modify release tasks;

 | Release | Modify build drop prior to release

 | |

 +-----+-----+

 |

 +-----+-----+

 | |

 | Deploy | Tamper with versioning and update process

 | |

 +-----------+

and render the checking of lifecycle compliance difficult. There is

a need for manageable auditability and accountability of digital

products. Typically, the range of types of statements about digital

products (and their dependencies) is vast, heterogeneous, and can

differ between community policy requirements. Taking the type and

structure of all statements about digital and products into account

might not be possible. Examples of statements may include commit

signatures, build environment and parameters, software bill of

materials, static and dynamic application security testing results,

fuzz testing results, release approvals, deployment records,

vulnerability scan results, and patch logs. In consequence, instead

of trying to understand and describe the detailed syntax and

semantics of every type of statement about digital products, the

SCITT architecture focuses on ensuring statement authenticity,

visibility/transparency, and intends to provide scalable

accessibility. The following use case illustrates the scope of SCITT

and elaborate on the generic problem statement above.

3. Software Supply Chain Use Cases

3.1. Verification that Signing Certificate is Authorized by Supplier

Consumers wish to verify the authenticity and integrity of software

they use before installation. To do this today, they rely on the

digital signature of the software. This can be misleading, however,

as there is no guarantee that the certificate used to sign the

software is authorized by the Supplier for signing. For example, a

malicious actor may obtain a signing certificate from a reputable

organization and use that certificate to sign malicious software.

The consumer, believing the software originated from the reputable

organization, would then install malicious software.

A consumer of software wants:

to verify the authenticity and integrity of software they use

before installation.

There is no standardized way to:

enable the consumer to verify that software originated from a

'duly authorized signing party' on behalf of the supplier, and is

still valid.

3.2. Multi Stakeholder Evaluation of a Released Software Product

In IT industry it is a common practice that once a software product

is released, it is evaluated on various aspects. For example, an

auditing company, a code review company or a government body will

examine the software product and issue authoritative reports about

the product. The end users (consumers or distribution entities) use

¶

¶

¶

*

¶

¶

*

¶

these report to make an accurate assessment as to whether the

software product is deemed fit to use.

There are multiple such authoritative bodies that make such

assessments. There is no assurance that all the bodies may be aware

of statements from other authoritative entities or actively

acknowledge them. Discovery of all sources of such reports and/or

identity of the authoritative bodies adds a significant cost to the

end user or consumer of the product.

A consumer of released software product wants:

to offload the burden of identifying all relevant authoritative

entities to an entity who does it on their behalf

to offload the burden to filter from and select all statements

that are applicable to a particular release of a multi release

software product, to an entity who does this on their behalf

to make an informed decisions on which authoritative entities to

believe based on the best visibility of all authoritative

entities possible

There is no standardized way to:

aggregate large numbers of related statements in one place and

discover them

referencing other statements via a statement

identifying or discover all (or at least a critical mass) of

relevant authoritative entities

3.3. Security Analysis of a Software Product

This use case is a specialization of the use case above.

A released software product is often accompanied by a set of

complementary statements about it's security compliance. This gives

enough confidence to both producers and consumers that the released

software has a good security standard and is suitable to use.

Subsequently, multiple security researchers often run sophisticated

security analysis tools on the same product. The intention is to

identify any security weaknesses or vulnerabilities in the package.

Initially a particular analysis can identify itself as a simple

weakness in a software component. Over a period of time, a statement

from another third-party illustrates that the weakness is exposed in

the same software component in a way that it is an exploitable

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

* ¶

*

¶

¶

¶

¶

vulnerability. The producer of the software product now provides a

statement that confirms the linking of software component

vulnerability with the software product and also issues an advisory

statement on how to mitigate the vulnerability. At first, the

producer provides an updated software product that still uses the

vulnerable software component but shields the issue in a fashion

that inhibits exploitation. Later, A second update of the software

product includes a security patch to the affected software component

from the software producer. Finally, A third update includes a new

release (updated version) of the formerly insecure software

component. For this release, both the software product and the

affected software component are deemed secure by the producer and

consumers.

A consumer of a released software wants:

to know where to get these security statements from producers and

third-parties related to the software product in a timely and

unambiguous fashion,

how to attribute them to an authoritative issuer,

how to associate the statements in a meaningful manner via a set

of well-known semantic relationships, and

how to consistently, efficiently, and homogeneously check their

authenticity.

There is no standardized way to:

know the various sources of statements,

how to express the provenance and historicity of statements,

how to related/link various heterogeneous statements in a simple

fashion, and

check that the statement comes from a source with authority to

issue that statement.

3.4. Promotion of a Software Component by multiple entities

A software component source (e.g., a library) released by a certain

original producer is becoming popular. The released software

component source is accompanied by a statement of authenticity

(e.g., a detached signature). Over time, due to its enhanced

applicability to various products, there has been an increasing

amount of multiple providers of the same software component version

on the internet.

¶

¶

*

¶

* ¶

*

¶

*

¶

¶

* ¶

* ¶

*

¶

*

¶

¶

Some providers include this particular software component as part of

their release package bundle and provide the package with proof of

authenticity using their own issuer authority. Some packages include

the original statement of authenticity, and some do not. Over time,

some providers no longer offer the exact same software component

source but pre-compiled software component binaries. Some sources do

not provide the exact same software component but include patches

and fixes produced by third-parties, as these emerge faster than

solutions from the original producer. Due to complex distribution

and promotion lifecycle scenarios, the original software component

takes myriad forms.

A consumer of a released software wants:

to understand if a particular provider is actually the original

provider or a promoter,

to know if and how the source, or resulting binary, of a promoted

software component differs from the original software component,

to check the provenance and history of a software component's

source back to its origin, and

to assess whether to trust a promoter or not.

There is no standardized way to:

to reliably discern a provider that is the original producer from

a provider that is a trustworthy promoter or from an illegitimate

provider,

track the provenance path from an original producer to a

particular provider

to check for the trustworthiness of a provider

to check the integrity of modifications or transformations done

by a provider

3.5. Post-Boot Firmware Provenance

In contrast to operating systems or user space software components

of a large and complex systems, firmware components are often

already executed during boot-cycles before there is an opportunity

to authenticate them.

Authentication takes place, for example, by validating a signed

artefact against a Reference Integrity Manifest (RIM). Corresponding

procedures are often called authenticated, measured, or secure boot.

The output of these high assurance boot procedures is often used as

¶

¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

* ¶

*

¶

¶

input to more complex verification known as remote attestation

procedures.

If measurements before execution are not possible, static after-the-

fact analysis is required, typically by examining artifacts. When

best practices are followed, in such cases measurements (e.g., a

hash or digests) are stored in a protected or shielded environment

(e.g., TEEs or TPMs). After finishing a boot sequence, these

measurements about foundational firmware are retrieved after-the-

fact from shielded locations and must be compared to reference

values that are part of RIMs. A verifying system appraising the

integrity of a boot sequence must identify, locate, retrieve, and

authenticate corresponding RIMs.

A consumer of published software wants:

to easily identify sources for RIMs

to select appropriate RIMs and download them for the appraisal of

measurements

to be able to assure the authenticity, applicability, and

freshness of RIMs over time

There is no standardized way to:

identify, locate, retrieve and authenticate RIMs in a uniform

fashion

to uniquely identify among multiple potential available RIMs

(e.g., by age, source, signing authority, etc.)

to store RIMs in a fashion that enables their usage in appraisal

procedures years after they were created in a secure and

believable fashion

3.6. Auditing of Software Product

An organization has established procurement requirements and

compliance policies for software use. In order to allow the

acquisition and deployment of software in certain security domains

of the organization, a check of software quality and characteristics

must succeed. Compliance and requirement checking includes audits of

the results of organisational procedures and technical procedures,

which can originate from checks conducted by the organization itself

or checks conducted by trusted third parties. Consecutively,

consumers of statements about a released software can be auditors.

Examples of procedure results important to audits include: available

fresh and applicable code reviews, certification documents (e.g.,

FIPS or Common Criteria), virus scans, vulnerability disclosure

¶

¶

¶

* ¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

reports (fixed or not fixed), security impact or applicability

justification statements. Relevant compliance, requirement, and

check result documents originate from various sources and include a

wide range of representations and formats.

A consumer of a released software wants:

to provide methods with different levels of complexity to

auditors of a released software

expects the creator or distributor of released software to enable

audit procedures and make corresponding documents visible and

available

the cost of audits to be manageable and scale well

complete visibility and accessibility to documents required for

audits

There is no standardized way to:

discover and associate relevant documents and check results

required for various types of audits

assert the authenticity and provenance of documents relevant to

audits in a deterministic and uniform fashion

check the validity of identity statements about relevant

documents after the fact (when they were made) in a consistent,

long-term fashion

allow for more than one level of complexity of audit procedures

(potentially depending on criticality)

3.7. Authentic Software Components in Air-Gapped Infrastructure

Some software is deployed on systems not connected to the Internet.

Authenticity checks for off-line systems can occur at time of

deployment of released software. Off-line systems require

appropriate configuration and maintenance to be able to conduct

useful authenticity checks. If the off-line systems in operation are

part of constrained node environments, they do not possess the

capabilities to process and evaluate all kinds of different

authenticity proofs that come with a released software.

A consumer of a released software wants:

a proof of authenticity that can be checked by an off-line system

for vast periods of time after system deployment

¶

¶

*

¶

*

¶

* ¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

a proof of authenticity to be small and as uniform as possible to

allow for application in constrained node environments

a simple and low cost way to update the configuration of a system

component in charge of validity or authenticity checking

There is no standardized way to:

provide an authenticity proof that can be checked by off-line

systems in a simple and uniform fashion

enable rich systems, regular systems, and constrained systems to

conduct authenticity checks via the same procedure / code base

to verify the authenticity and integrity of software in a fashion

that scales from applications such as global open source

repositories down to off-line constrained devices

3.8. Firmware Delivery to large set of constrained IoT Devices

Firmware is a critical component for successful execution of any

constrained IoT device. It is often the bedrock on which the

security story of the devices it powers. For example, personal

health monitoring devices (eHealth devices) are generally battery

driven and offer health telemetry monitoring, such as temperature,

blood pressure, and pulse rate. These devices typically connect to

the Internet through an intermediary base station using wireless

technologies. Through this connection, the telemetry data and

analytics transfer, and devices receive firmware updates when

published by the vendor. The public network, open distribution

system, and firmware update process create several security

challenges.

Consumers and other interested parties of a firmware update

ecosystem wants:

to know that the received firmware for system update is not

faulty or malicious

to know if the signing identity used to assert the authenticity

of the firmware is somehow used to sign unintended updates

to ascertain that the released firmware is not subverted or

compromised due to an insider risk - be it malicious or otherwise

to confirm that the publishers know if their deliverable has been

compromised. Can they trust their key protection or audit

logging?

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

to know how the update client on an instance of a health

monitoring system discerns a general update from one specially

crafted for just a small subset of a fleet of devices

There is no standardized way to:

provide an update framework that allows validation of

authenticity of firmware revisions

to verify that the firmware update seen by a single device, is

indeed the same as seen by all the devices.

reliably discern an update that has been signed by the

appropriate and intended signing identity

make an informed judgement on all available information about

firmware at the install time. For example, the firmware is still

in a good state or otherwise?

3.9. Software Integrator assembling a software product for a smart car

Software Integration is a complex activity. This typically involves

getting various software components from multiple suppliers and

producing an integrated package deployed as part of device assembly.

For example, car manufacturers source integrated software for their

autonomous vehicles from third parties that integrates software

components from various sources. Integration complexity creates a

higher risk of security vulnerabilities to the delivered software.

Consumer of an integrated software wants:

all components presents in a software product listed, and the

ability to identify and retrieve them from a secure and tamper-

proof location

to receive an alert when a vulnerability scan detects a known

security issue on a running software component

verifiable proofs on build process and build environment with all

supplier tiers to ensure end to end build quality and security

There is no standardized way to:

provide a tiered and transparent framework that allows for

verification of integrity and authenticity of the integrated

software at both component and product level before installation

notify software integrators of vulnerabilities identified during

security scans of running software

*

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

[RFC2119]

[RFC8174]

provide valid annotations on build integrity to ensure

conformance

4. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://doi.org/10.17487/RFC2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://doi.org/10.17487/RFC8174>.

Authors' Addresses

Henk Birkholz

Fraunhofer Institute for Secure Information Technology

Rheinstrasse 75

64295 Darmstadt

Germany

Email: henk.birkholz@sit.fraunhofer.de

Yogesh Deshpande

ARM

Email: yogesh.deshpande@arm.com

Dick Brooks

REA

Email: dick@reliableenergyanalytics.com

Robert Martin

MITRE

Email: ramartin@mitre.org

Brian Knight

Microsoft

Email: brianknight@microsoft.com

*

¶

https://doi.org/10.17487/RFC2119
https://doi.org/10.17487/RFC8174
mailto:henk.birkholz@sit.fraunhofer.de
mailto:yogesh.deshpande@arm.com
mailto:dick@reliableenergyanalytics.com
mailto:ramartin@mitre.org
mailto:brianknight@microsoft.com

	Detailed Software Supply Chain Uses Cases for SCITT
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Generic Problem Statement
	3. Software Supply Chain Use Cases
	3.1. Verification that Signing Certificate is Authorized by Supplier
	3.2. Multi Stakeholder Evaluation of a Released Software Product
	3.3. Security Analysis of a Software Product
	3.4. Promotion of a Software Component by multiple entities
	3.5. Post-Boot Firmware Provenance
	3.6. Auditing of Software Product
	3.7. Authentic Software Components in Air-Gapped Infrastructure
	3.8. Firmware Delivery to large set of constrained IoT Devices
	3.9. Software Integrator assembling a software product for a smart car

	4. Normative References
	Authors' Addresses

