
Network Working Group A. Fuchs
Internet-Draft H. Birkholz
Intended status: Informational Fraunhofer SIT
Expires: April 21, 2016 I. McDonald
 High North Inc
 C. Bormann
 Universitaet Bremen TZI
 October 19, 2015

Time-Based Uni-Directional Attestation
draft-birkholz-tuda-00

Abstract

 This memo documents the method and bindings used to conduct time-
 based unidirectional attestation between distinguishable endpoints
 over the network.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Fuchs, et al. Expires April 21, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft tuda October 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 3

2. Time-Based Uni-Directional Attestation 4
2.1. Attestation Element Update Cycles 6

3. Realisation Approaches 8
3.1. SNMP . 8
3.2. REST . 11

4. IANA Considerations . 11
5. Security Considerations 11
6. Acknowledgements . 11
7. Change Log . 11
8. Contributors . 12
9. Informative References 12
Appendix A. Realization with TPM 1.2 functions 14
A.1. TPM Functions . 14
A.1.1. Tick-Session and Tick-Stamp 14
A.1.2. Platform Configuration Registers (PCRs) 15
A.1.3. PCR restricted Keys 15
A.1.4. CertifyInfo . 15

A.2. Protocol and Procedure 16
A.2.1. AIK and AIK Certificate 16
A.2.2. Synchronization Token 17
A.2.3. RestrictionInfo 19
A.2.4. Measurement Log 21
A.2.5. Implicit Attestation 22
A.2.6. Attestation Verification Approach 23

 Authors' Addresses . 25

1. Introduction

 In many contexts and scenarios it is not feasible to deploy bi-
 directional protocols, due to constraints in the underlying
 communication schemes. Furthermore, many communication schemes do
 not have a notion of connection, which disallows the usage of
 connection context related state information. These constraints may
 make it impossible to deploy challenge-response based schemes to
 achieve freshness of messages in security protocols. Examples of
 these constrained environments include broadcast and multicast
 schemes such as automotive IEEE802.1p as well as communication models
 that do not maintain connection state over time, such as REST [REST]
 and SNMP [RFC3411].

https://datatracker.ietf.org/doc/html/rfc3411

Fuchs, et al. Expires April 21, 2016 [Page 2]

Internet-Draft tuda October 2015

 The protocols usually employed - such as the Platform Trust Service
 (PTS) Protocol [PTS] - for Remote Attestations using the Trusted
 Platform Module (TPM) as specified by the Trusted Computing Group
 (TCG) are based upon the TPM_Quote() function. It consists of the
 sending of a nonce-challenge that is then used within TPM_Quote()'s
 signature to prove the freshness of the Attestation response. This
 scheme requires bi-directional communication.

 This specification describes a new scheme for Remote Attestations
 based upon a combination of TPM_CertifyInfo() and TPM_TickStampBlob()
 to implement a time-based attestation scheme. The approach is based
 upon the work described in [MTAF] and [SFKE2008]. The freshness
 properties of a challenge-response based protocol define the time-
 frame between the transmission of the nonce and the reception of the
 response as the point in time of attestation. Given the time-based
 attestation scheme, the point in time of attestation lies within the
 time-frame given by the accuracy of the time-synchronization and the
 drift of clocks. If the point in time is within the range of the
 typical round-trip of a challenge response attestation, the freshness
 property of TUDA is equivalent to that of classic challenge response
 attestation. Even if the typical round-trip time is exceeded
 slightly, the TUDA attestation statements provide sufficiently fresh
 proofs for most scenarios. In contrast to classical attestations,
 TUDA attestations can serve as proof of integrity in audit logs with
 point in time guarantees. Also, it can be used via uni-directional
 and connection-less communication channels.

Appendix A contains a realization of TUDA using TPM 1.2 primitives.
 TODO: TPM 2.0 follows next year.

1.1. Terminology

 This specification makes use of the terminology defined in [RFC4949].

 This specification uses CDDL as defined in
 [I-D.greevenbosch-appsawg-cbor-cddl]. The specific data structures
 defined by this specification for use by other specifications are:

 tuda = [TUDA-Synctoken, TUDA-Verifytoken, TUDA-RestrictionInfo,
 TUDA-Cert, TUDA-Measurement-Log]

 Common types used in these are:

 Cert = bytes ; an X.509 certificate

 PCR-Hash = Hash
 Hash = bytes

https://datatracker.ietf.org/doc/html/rfc4949

Fuchs, et al. Expires April 21, 2016 [Page 3]

Internet-Draft tuda October 2015

 The roles used in this document are:

 Attestee: the endpoint that is the subject of the attestation to
 another endpoint.

 Verifier: the endpoint that consumes the attestation of another
 endpoint.

 TSA: Time Stamp Authority [RFC3161].

 TSA-CA: a Certificate Authority, that provides the certificate for
 the TSA.

 AIK-CA: The Attestation Identity Key (AIK) is a special key type
 used within TPMs for identity-related operations (such as
 TPM_Certify or TPM_Quote). Such an AIK can be established in many
 ways, using either a combination of TPM_MakeIdentity and
 TPM_ActivateIdentity with a so-called PrivacyCA [AIK-Enrollment]
 or by means of TPM_CreateWrapKey, readout in a secure environment
 and regular certification by a custom CA similar to IDevIDs or
 LDevIDs in [IEEE802.1AR]. AIK-CA is a placeholder for any CA and
 AIK-Cert is a placeholder for the corresponding Certificate,
 depending on what protocol was used. The specific protocols are
 out of scope for this document.

2. Time-Based Uni-Directional Attestation

 A Time-Based Uni-Directional Attestation (TUDA) consists of the
 following four elements in order to gain assurance of the Attestee's
 platform configuration at a certain point in time.

 o TSA Certificate

 The certificate of the Time Stamp Authority that is used in a
 subsequent synchronization protocol token. This certificate is
 signed by the TSA-CA.

 o Synchronization Token

 The reference for Attestations are the Tick-Sessions of the TPM.
 In order to put Attestations into relation with a Real Time Clock
 (RTC), it is necessary to provide a cryptographic synchronization
 between the tick session and the RTC. To do so, a synchronization
 protocol is run with a Time Stamp Authority (TSA).

 o Restriction Info

https://datatracker.ietf.org/doc/html/rfc3161

Fuchs, et al. Expires April 21, 2016 [Page 4]

Internet-Draft tuda October 2015

 The attestation relies on the capability of the TPM to operate on
 restricted keys. Whenever the PCR values for the machine to be
 attested change, a new restricted key is created that can only be
 operated as long as the PCRs remain in their current state.

 In order to prove to the Verifier that this restricted temporary
 key actually has these properties and also to provide the PCR
 value that it is restricted, the TPM command TPM_CertifyInfo is
 used. It creates a signed certificate using the AIK about the
 newly created restricted key.

 o Measurement Log

 Similarly to regular attestations, the Verifier needs a way to
 reconstruct the PCRs' values in order to estimate the
 trustworthiness of the device. As such, a list of those elements
 that were extended into the PCRs is reported. Note though that
 for certain environments, this step may be optional if a list of
 valid PCR configurations exists and no measurement log is
 required.

 o Implicit Attestation

 The actual attestation is then based upon a TPM_TickStampBlob
 operation using the restricted temporary key that was certified in
 the steps above. The TPM_TickStampBlob is executed and thereby
 provides evidence that at this point in time (with respect to the
 TPM internal tick-session) a certain configuration existed (namely
 the PCR values associated with the restricted key). Together with
 the synchronization token this tick-related timing can then be
 related to the real-time clock.

 These elements could be sent en bloc, but it is recommended to
 retrieve them separately to save bandwidth, since each of these
 elements has different update cycles.

 Furthermore, in some scenarios it might be feasible not to store all
 elements on the Attestee end device, but instead they will be
 retrieved from another location or pre-deployed to the Verifier. It
 may even be feasible to only store public keys at the Verifier and
 skip all certificate provisioning completely in order to save
 bandwidth and computation time for certificate verification.

 When mapped to TPM1.2 (see Appendix A), one additional item is added
 to these five:

 o AIK Certificate ([AIK-Credential], [AIK-Enrollment]; see
Appendix A.2.1).

Fuchs, et al. Expires April 21, 2016 [Page 5]

Internet-Draft tuda October 2015

 A certificate about the Attestation Identity Key (AIK) used. This
 may or may not also be an [IEEE802.1AR] IDevID or LDevID,
 depending on their setting of the identity property.

2.1. Attestation Element Update Cycles

 An endpoint can be in various states and have various information
 associated with it during its life-cycle. For TUDA, a subset of the
 states (which includes associated information), that an endpoint and
 its TPM can be in, is important to the attestation process.

 o Some states are persistent, even after reboot. This includes
 certificates that are associated with the endpoint itself or with
 services it relies on.

 o Some states are more volatile and change at the beginning of each
 boot cycle. This includes the TPM-internal Tick-Session which
 provides the basis for the synchronization token and implicit
 attestation.

 o Some states are even more volatile and change during an uptime
 cycle (the period of time an endpoint is powered on, starting with
 its boot). This includes the content of PCR registers of a TPM
 and thereby also the PCR-restricted keys used during attestation.

 Depending on this lifetime of state, data has to be transported over
 the wire, or not. E.g. information that does not change due to a
 reboot typically has to be transported only once between the Attestee
 and the Verifier.

 There are three kind of events that require a renewed attestation:

 o The Attestee completes a boot-cycle

 o A relevant PCR changes

 o Too much time has passed since the last attestation statement

 Attestee Verifier
 | |
 Boot |
 | |
 Create Sync-Token |
 | |
 Create Restricted Key |
 Certify Restricted Key |
 | |
 | AIK-Cert ---> |

Fuchs, et al. Expires April 21, 2016 [Page 6]

Internet-Draft tuda October 2015

 | Sync-Token ---> |
 | Certify-Info ---> |
 | Measurement Log --------------------------------------> |
 | Attestation --> |
 | Verify Attestation
 | |
 | <Time Passed> |
 | |
 | Attestation --> |
 | Verify Attestation
 | |
 | <Time Passed> |
 | |
 PCR-Change |
 | |
 Create Restricted Key |
 Certify Restricted Key |
 | |
 | Certify-Info ---> |
 | Measurement Log --------------------------------------> |
 | Attestation --> |
 | Verify Attestation
 | |
 Boot |
 | |
 Create Sync-Token |
 | |
 Create Restricted Key |
 Certify Restricted Key |
 | |
 | Sync-Token ---> |
 | Certify-Info ---> |
 | Measurement Log --------------------------------------> |
 | Attestation --> |
 | Verify Attestation
 | |
 | <Time Passed> |
 | |
 | Attestation --> |
 | Verify Attestation
 | |

 Figure 1: Example sequence of events

Fuchs, et al. Expires April 21, 2016 [Page 7]

Internet-Draft tuda October 2015

3. Realisation Approaches

3.1. SNMP

 An SNMP MIB should be defined that encodes each of the five TUDA data
 items as a table with each row containing a single read-only columnar
 SNMP object of datatype OCTET-STRING. The values of the set of rows
 in each table could be concatenated to reconstitute each CBOR encoded
 data item. The Verifier could retrieve the values for each of these
 CBOR data items by using SNMP GetNext requests to "walk" each table.
 The Verifier could then decode each of the CBOR encoded data items
 according to their CDDL definitions.

 Design Ideas:

 (1) Over time, attestation values will age and become outside the
 time window (i.e., no longer fresh attestations). Using a primary
 table index of a cycle counter object could disambiguate the
 transition from one attestation cycle to the next.

 (2) Over time, the measurement log information (for example) may grow
 quite large. To allow for more efficient data access using SNMP Get
 or GetBulk requests, two helper objects could be defined to point at
 the first and last active row in each table.

 (3) Notifications could be used to indicate to a Verifier that a new
 cycle has occurred (i.e., the synchronization data, measurement log,
 etc. have been updated by deleting old table rows and adding new
 rows). The notification should include the cycle counter object.

 A partial sketch of the proposed SNMP MIB follows:

 TUDA-V1-ATTESTATION-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, Integer32, Counter32, enterprises
 FROM SNMPv2-SMI; -- RFC 2578
 -- SNMP macros, datatypes, and the "enterprises" root OID

 tudaV1MIB MODULE-IDENTITY
 LAST-UPDATED "201510180000Z" -- October 18, 2015
 ORGANIZATION
 "Fraunhofer SIT"
 CONTACT-INFO
 "Andreas Fuchs
 Fraunhofer Institute for Secure Information Technology
 Email: andreas.fuchs@sit.fraunhofer.de

https://datatracker.ietf.org/doc/html/rfc2578

Fuchs, et al. Expires April 21, 2016 [Page 8]

Internet-Draft tuda October 2015

 Henk Birkholz
 Fraunhofer Institute for Secure Information Technology
 Email: henk.birkholz@sit.fraunhofer.de

 Ira E McDonald
 High North Inc
 Email: blueroofmusic@gmail.com

 Carsten Bormann
 Universitaet Bremen TZI
 Email: cabo@tzi.org"

 DESCRIPTION
 "The MIB module for monitoring of time-based unidirectional
 attestation information from a network endpoint system,
 based on the Trusted Computing Group TPM 1.2 definition.

 Copyright (C) Fraunhofer Institute for
 Secure Information Technology (2015)."

 REVISION "201510180000Z" -- October 18, 2015
 DESCRIPTION
 "Initial version, published as draft-birkholz-tuda-00."

 ::= { enterprises fraunhofersit(21616) mibs(1) tudaV1MIB(1) }

 tudaV1MIBNotifications OBJECT IDENTIFIER ::= { tudaV1MIB 0 }
 tudaV1MIBObjects OBJECT IDENTIFIER ::= { tudaV1MIB 1 }
 tudaV1MIBConformance OBJECT IDENTIFIER ::= { tudaV1MIB 2 }

 tudaV1General OBJECT IDENTIFIER ::= { tudaV1MIBObjects 1 }

 tudaV1GeneralCycles OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Count of TUDA attestation cycles that have occurred.

 DEFVAL intentionally omitted - counter object."
 ::= { tudaV1GeneralCycles }

 tudaV1SyncToken OBJECT IDENTIFIER ::= { tudaV1MIBObjects 2 }

 tudaV1SyncTokenFirst OBJECT-TYPE
 SYNTAX Integer32 (0..2147483647)
 MAX-ACCESS read-only
 STATUS current

https://datatracker.ietf.org/doc/html/draft-birkholz-tuda-00

Fuchs, et al. Expires April 21, 2016 [Page 9]

Internet-Draft tuda October 2015

 DESCRIPTION
 "Low-order index of first active row of TUDA sync token data."
 DEFVAL { 0 }
 ::= { tudaV1SyncToken 2 }

 tudaV1SyncTokenLast OBJECT-TYPE
 SYNTAX Integer32 (0..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Low-order index of last active row of TUDA sync token data."
 DEFVAL { 0 }
 ::= { tudaV1SyncToken 3 }

 tudaV1SyncTokenTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TudaV1SyncTokenEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table for the TUDA synchronization token data."
 ::= { tudaV1SyncToken 1 }

 tudaV1SyncTokenEntry OBJECT-TYPE
 SYNTAX TudaV1SyncTokenEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry for one chunk of TUDA synchronization token data."
 INDEX { tudaV1GeneralCycles,
 tudaV1SyncTokenIndex }
 ::= { tudaV1SyncTokenTable 1 }

 TudaV1SyncTokenEntry ::= SEQUENCE {
 tudaV1SyncTokenIndex Integer32,
 tudaV1SyncTokenData OCTET STRING
 }

 tudaV1SyncTokenIndex OBJECT-TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Low-order index of this synchronization token entry.

 DEFVAL intentionally omitted - index object."
 ::= { tudaV1SyncTokenEntry 1 }

 tudaV1SyncTokenData OBJECT-TYPE

Fuchs, et al. Expires April 21, 2016 [Page 10]

Internet-Draft tuda October 2015

 SYNTAX OCTET STRING (SIZE(0..1024))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A CBOR encoded chunk of the synchronization token data."
 DEFVAL { "" }
 ::= { tudaV1SyncTokenEntry 2 }

 tudaV1AIKCert OBJECT IDENTIFIER ::= { tudaV1MIBObjects 3 }

 tudaV1AIKCertTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TudaV1AIKCertEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table for the TUDA AIK certificate data."
 ::= { tudaV1AIKCert 1 }

 -- etc. for remaining CBOR data items for TUDA
 END

3.2. REST

 Each of the five data items is defined as a media type (Section 4).
 Representations of resources for each of these media types can be
 retrieved from URIs that are defined by the respective servers
 [RFC7320]. As can be derived from the URI, the actual retrieval is
 via one of the HTTPs ([RFC7230], [RFC7540]) or CoAP [RFC7252]. How a
 client obtains these URIs is dependent on the application; e.g., CoRE
 Web links [RFC6690] can be used to obtain the relevant URIs from the
 self-description of a server, or they could be prescribed by a
 RESTCONF data model [I-D.ietf-netconf-restconf].

4. IANA Considerations

 This memo includes a request to IANA. TBD

5. Security Considerations

 There are Security Considerations. TBD

6. Acknowledgements

7. Change Log

 (This section to be removed by the RFC editor.)

 Changes from version 00 to version 01:

https://datatracker.ietf.org/doc/html/rfc7320
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6690

Fuchs, et al. Expires April 21, 2016 [Page 11]

Internet-Draft tuda October 2015

 TBD with 01

8. Contributors

 TBD

9. Informative References

 [AIK-Credential]
 "TCG Credential Profile", 2007,
 <http://www.trustedcomputinggroup.org/files/

temp/642686EC-1D09-3519-AD58BB4C50BD5028/
IWG%20Credential_Profiles_V1_R1_14.pdf>.

 [AIK-Enrollment]
 TCG Infrastructure Working Group, "A CMC Profile for AIK
 Certificate Enrollment", 2011,
 <https://www.trustedcomputinggroup.org/files/

resource_files/738DF0BB-1A4B-B294-D0AF6AF9CC023163/
IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf>.

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Vigano, C. and H. Birkholz, "CBOR data definition language
 (CDDL): a notational convention to express CBOR data
 structures", draft-greevenbosch-appsawg-cbor-cddl-07 (work
 in progress), October 2015.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-08 (work in
 progress), October 2015.

 [IEEE802.1AR]
 IEEE Computer Society, "IEEE Standard for Local and
 metropolitan area networks -- Secure Device Identity",
 IEEE Std 802.1AR, 2009.

 [MTAF] Fuchs, A., "Improving Scalability for Remote Attestation",
 Master Thesis (Diplomarbeit), Technische Universitaet
 Darmstadt, Germany, 2008.

 [PTS] "TCG Attestation PTS Protocol Binding to TNC IF-M", 2011,
 <http://www.trustedcomputinggroup.org/files/

resource_files/508E7E89-1A4B-B294-D06395D5FD7EC4E7/
IFM_PTS_v1_0_r28.pdf>.

http://www.trustedcomputinggroup.org/files/temp/642686EC-1D09-3519-AD58BB4C50BD5028/IWG%20Credential_Profiles_V1_R1_14.pdf
http://www.trustedcomputinggroup.org/files/temp/642686EC-1D09-3519-AD58BB4C50BD5028/IWG%20Credential_Profiles_V1_R1_14.pdf
http://www.trustedcomputinggroup.org/files/temp/642686EC-1D09-3519-AD58BB4C50BD5028/IWG%20Credential_Profiles_V1_R1_14.pdf
https://www.trustedcomputinggroup.org/files/resource_files/738DF0BB-1A4B-B294-D0AF6AF9CC023163/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf
https://www.trustedcomputinggroup.org/files/resource_files/738DF0BB-1A4B-B294-D0AF6AF9CC023163/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf
https://www.trustedcomputinggroup.org/files/resource_files/738DF0BB-1A4B-B294-D0AF6AF9CC023163/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-07
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-08
http://www.trustedcomputinggroup.org/files/resource_files/508E7E89-1A4B-B294-D06395D5FD7EC4E7/IFM_PTS_v1_0_r28.pdf
http://www.trustedcomputinggroup.org/files/resource_files/508E7E89-1A4B-B294-D06395D5FD7EC4E7/IFM_PTS_v1_0_r28.pdf
http://www.trustedcomputinggroup.org/files/resource_files/508E7E89-1A4B-B294-D06395D5FD7EC4E7/IFM_PTS_v1_0_r28.pdf

Fuchs, et al. Expires April 21, 2016 [Page 12]

Internet-Draft tuda October 2015

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", Ph.D. Dissertation,
 University of California, Irvine, 2000,
 <http://www.ics.uci.edu/~fielding/pubs/dissertation/

fielding_dissertation.pdf>.

 [RFC3161] Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,
 "Internet X.509 Public Key Infrastructure Time-Stamp
 Protocol (TSP)", RFC 3161, DOI 10.17487/RFC3161, August
 2001, <http://www.rfc-editor.org/info/rfc3161>.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 DOI 10.17487/RFC3411, December 2002,
 <http://www.rfc-editor.org/info/rfc3411>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", FYI
 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <http://www.rfc-editor.org/info/rfc4949>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC

7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7320] Nottingham, M., "URI Design and Ownership", BCP 190, RFC
7320, DOI 10.17487/RFC7320, July 2014,

 <http://www.rfc-editor.org/info/rfc7320>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI
 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://datatracker.ietf.org/doc/html/rfc3161
http://www.rfc-editor.org/info/rfc3161
https://datatracker.ietf.org/doc/html/rfc3411
http://www.rfc-editor.org/info/rfc3411
https://datatracker.ietf.org/doc/html/rfc4949
http://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/rfc6690
http://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/bcp190
https://datatracker.ietf.org/doc/html/rfc7320
https://datatracker.ietf.org/doc/html/rfc7320
http://www.rfc-editor.org/info/rfc7320
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540

Fuchs, et al. Expires April 21, 2016 [Page 13]

Internet-Draft tuda October 2015

 [SFKE2008]
 Stumpf, F., Fuchs, A., Katzenbeisser, S., and C. Eckert,
 "Improving the scalability of platform attestation", ACM
 Proceedings of the 3rd ACM workshop on Scalable trusted
 computing, page 1-10, 2008.

 [TPM12] "Information technology -- Trusted Platform Module -- Part
 1: Overview", ISO/IEC 11889-1, 2009.

Appendix A. Realization with TPM 1.2 functions

A.1. TPM Functions

 The following TPM structures, resources and functions are used within
 this approach. They are based upon the TPM 1.2 specification
 [TPM12].

A.1.1. Tick-Session and Tick-Stamp

 On every boot, the TPM initializes a new Tick-Session. Such a tick-
 session consists of a nonce that is randomly created upon each boot
 to identify the current boot-cycle - the phase between boot-time of
 the device and shutdown or power-off - and prevent replaying of old
 tick-session values. The TPM uses its internal entropy source that
 guarantees virtually no collisions of the nonce values between two of
 such boot cycles.

 It further includes an internal timer that is being initialize to
 Zero on each reboot. From this point on, the TPM increments this
 timer continuously based upon its internal secure clocking
 information until the device is powered down or set to sleep. By its
 hardware design, the TPM will detect attacks on any of those
 properties.

 The TPM offers the function TPM_TickStampBlob, which allows the TPM
 to create a signature over the current tick-session and two
 externally provided input values. These input values are designed to
 serve as a nonce and as payload data to be included in a
 TickStampBlob: TickstampBlob := sig(TPM-key, currentTicks || nonce ||
 externalData).

 As a result, one is able to proof that at a certain point in time
 (relative to the tick-session) after the provisioning of a certain
 nonce, some certain externalData was known and provided to the TPM.
 If an approach however requires no input values or only one input
 value (such as the use in this document) the input values can be set
 to well-known value. The convention used within TCG specifications

Fuchs, et al. Expires April 21, 2016 [Page 14]

Internet-Draft tuda October 2015

 and within this document is to use twenty bytes of zero
 h'00' as well-known value.

A.1.2. Platform Configuration Registers (PCRs)

 The TPM is a secure cryptoprocessor that provides the ability to
 store measurements and metrics about an endpoint's configuration and
 state in a secure, tamper-proof environment. Each of these security
 relevant metrics can be stored in a volatile Platform Configuration
 Register (PCR) inside the TPM. These measurements can be conducted
 at any point in time, ranging from an initial BIOS boot-up sequence
 to measurements taken after hundreds of hours of uptime.

 The initial measurement is triggered by the Platforms so-called pre-
 BIOS or ROM-code. It will conduct a measurement of the first
 loadable pieces of code; i.e.\ the BIOS. The BIOS will in turn
 measure its Option ROMs and the BootLoader, which measures the OS-
 Kernel, which in turn measures its applications. This describes a
 so-called measurement chain. This typically gets recorded in a so-
 called measurement log, such that the values of the PCRs can be
 reconstructed from the individual measurements for validation.

 Via its PCRs, a TPM provides a Root of Trust that can, for example,
 support secure boot or remote attestation. The attestation of an
 endpoint's identity or security posture is based on the content of an
 TPM's PCRs (platform integrity measurements).

A.1.3. PCR restricted Keys

 Every key inside the TPM can be restricted in such a way that it can
 only be used if a certain set of PCRs are in a predetermined state.
 For key creation the desired state for PCRs are defined via the
 PCRInfo field inside the keyInfo parameter. Whenever an operation
 using this key is performed, the TPM first checks whether the PCRs
 are in the correct state. Otherwise the operation is denied by the
 TPM.

A.1.4. CertifyInfo

 The TPM offers a command to certify the properties of a key by means
 of a signature using another key. This includes especially the
 keyInfo which in turn includes the PCRInfo information used during
 key creation. This way, a third party can be assured about the fact
 that a key is only usable if the PCRs are in a certain state.

Fuchs, et al. Expires April 21, 2016 [Page 15]

Internet-Draft tuda October 2015

A.2. Protocol and Procedure

A.2.1. AIK and AIK Certificate

 Attestations are based upon a cryptographic signature performed by
 the TPM using a so-called Attestation Identity Key (AIK). An AIK has
 the properties that it cannot be exported from a TPM and is used for
 attestations. Trust in the AIK is established by an X.509
 Certificate emitted by a Certificate Authority. The AIK certificate
 is either provided directly or via a so-called PrivacyCA
 [AIK-Enrollment].

 This element consists of the AIK certificate that includes the AIK's
 public key used during verification as well as the certificate chain
 up to the Root CA for validation of the AIK certificate itself.

 TUDA-Cert = [AIK-Cert, TSA-Cert]; maybe split into two for SNMP
 AIK-Cert = Cert
 TSA-Cert = Cert

 Figure 2: TUDA-Cert element in CDDL

 The TSA-Cert is a standard certificate of the TSA.

 The AIK-Cert may be provisioned in a secure environment using
 standard means or it may follow the PrivacyCA protocols. Figure 3
 gives a rough sketch of this protocol. See [AIK-Enrollment] for more
 information.

 The X.509 Certificate is built from the AIK public key and the
 corresponding PKCS #7 certificate chain, as shown in Figure 3.

 Required TPM functions:

Fuchs, et al. Expires April 21, 2016 [Page 16]

Internet-Draft tuda October 2015

 | create_AIK_Cert(...) = {
 | AIK = TPM_MakeIdentity()
 | IdReq = CollateIdentityRequest(AIK,EK)
 | IdRes = Call(AIK-CA, IdReq)
 | AIK-Cert = TPM_ActivateIdentity(AIK, IdRes)
 | }
 |
 | /* Alternative */
 |
 | create_AIK_Cert(...) = {
 | AIK = TPM_CreateWrapKey(Identity)
 | AIK-Cert = Call(AIK-CA, AIK.pubkey)
 | }

 Figure 3: Creating the TUDA-Cert element

A.2.2. Synchronization Token

 The reference for Attestations are the Tick-Sessions of the TPM. In
 order to put Attestations into relation with a Real Time Clock (RTC),
 it is necessary to provide a cryptographic synchronization between
 the tick session and the RTC. To do so, a synchronization protocol
 is run with a Time Stamp Authority (TSA) that consists of three
 steps:

 o The TPM creates a TickStampBlob using the AIK

 o This TickstampBlob is used as nonce to the Timestamp of the TSA

 o Another TickStampBlob with the AIK is created using the TSA's
 Timestamp a nonce

 The first TickStampBlob is called "left" and the second "right" in a
 reference to their position on a time-axis.

 These three elements, with the TSA's certificate factored out, form
 the synchronization token

Fuchs, et al. Expires April 21, 2016 [Page 17]

Internet-Draft tuda October 2015

 TUDA-Synctoken = [
 left: TickStampBlob-Output,
 timestamp: TimeStampToken,
 right: TickStampBlob-Output,
]

 TimeStampToken = bytes ; RFC 3161

 TickStampBlob-Output = [
 currentTicks: TPM-CURRENT-TICKS,
 sig: bytes,
]

 TPM-CURRENT-TICKS = [
 currentTicks: uint
 ? (
 tickRate: uint
 tickNonce: TPM-NONCE
)
]
 ; Note that TickStampBlob-Output "right" can omit the values for
 ; tickRate and tickNonce since they are the same as in "left"

 TPM-NONCE = bytes .size 20

 Figure 4: TUDA-Sync element in CDDL

 Required TPM functions:

 TPM_TickStampBlob: explain various inputs and applications

https://datatracker.ietf.org/doc/html/rfc3161

Fuchs, et al. Expires April 21, 2016 [Page 18]

Internet-Draft tuda October 2015

| dummyDigest = h'00'
| dummyNonce = dummyDigest
|
| create_sync_token(AIKHandle, TSA) = {
| ts_left = TPM_TickStampBlob(
| keyHandle = AIK_Handle, /*TPM_KEY_HANDLE*/
| antiReplay = dummyNonce, /*TPM_NONCE*/
| digestToStamp = dummyDigest /*TPM_DIGEST*/)
|
| ts = TSA_Timestamp(TSA, nonce = hash(ts_left))
|
| ts_right = TPM_TickStampBlob(
| keyHandle = AIK_Handle, /*TPM_KEY_HANDLE*/
| antiReplay = dummyNonce, /*TPM_NONCE*/
| digestToStamp = hash(ts)) /*TPM_DIGEST*/
|
| TUDA-SyncToken = [[ts_left.ticks, ts_left.sig], ts,
| [ts_right.ticks.currentTicks, ts_right.sig]]
| /* Note: leave out the nonce and tickRate field for ts_right.ticks */
| }

 Figure 5: Creating the Sync-Token element

A.2.3. RestrictionInfo

 The attestation relies on the capability of the TPM to operate on
 restricted keys. Whenever the PCR values for the machine to be
 attested change, a new restricted key is created that can only be
 operated as long as the PCRs remain in their current state.

 In order to prove to the Verifier that this restricted temporary key
 actually has these properties and also to provide the PCR value that
 it is restricted, the TPM command TPM_CertifyInfo is used. It
 creates a signed certificate using the AIK about the newly created
 restricted key.

 This token is formed from the list of:

 o PCR list,

 o the newly created restricted public key, and

 o the certificate.

 TUDA-RestrictionInfo = [Composite,
 restrictedKey_Pub: Pubkey,
 TPM-CERTIFY-INFO]

Fuchs, et al. Expires April 21, 2016 [Page 19]

Internet-Draft tuda October 2015

 PCRSelection = bytes .size (2..4) ; used as bit string

 Composite = [
 bitmask: PCRSelection,
 values: [*PCR-Hash],
]

 Pubkey = bytes ; do we need to expose structure here?

 TPM-CERTIFY-INFO = [
 ; we don't encode TPM-STRUCT-VER:
 ; these are 4 bytes always equal to h'01010000'
 keyUsage: uint, ; 4byte? 2byte?
 keyFlags: bytes .size 4, ; 4byte
 authDataUsage: uint, ; 1byte (enum)
 algorithmParms: TPM-KEY-PARMS,
 pubkeyDigest: Hash,
 ; we don't encode TPM-NONCE data, which is 20 bytes, all zero
 parentPCRStatus: bool,
 ; no need to encode pcrinfosize
 pcrinfo: TPM-PCR-INFO, ; we have exactly one
]

 TPM-PCR-INFO = [
 pcrSelection: PCRSelection; /* TPM_PCR_SELECTION */
 digestAtRelease: PCR-Hash; /* TPM_COMPOSITE_HASH */
 digestAtCreation: PCR-Hash; /* TPM_COMPOSITE_HASH */
]

 TPM-KEY-PARMS = [
 ; algorithmID: uint, ; <= 4 bytes -- not encoded, constant for TPM1.2
 encScheme: uint, ; <= 2 bytes
 sigScheme: uint, ; <= 2 bytes
 parms: TPM-RSA-KEY-PARMS,
]

 TPM-RSA-KEY-PARMS = [
 ; "size of the RSA key in bits":
 keyLength: uint
 ; "number of prime factors used by this RSA key":
 numPrimes: uint
 ; "This SHALL be the size of the exponent":
 exponentSize: null / uint / biguint
 ; "If the key is using the default exponent then the exponentSize
 ; MUST be 0" -> we represent this case as null
]

Fuchs, et al. Expires April 21, 2016 [Page 20]

Internet-Draft tuda October 2015

 Figure 6: TUDA-Key element in CDDL

 Required TPM functions:

 | dummyDigest = h'00'
 | dummyNonce = dummyDigest
 |
 | create_Composite
 |
 | create_restrictedKey_Pub(pcrsel) = {
 | PCRInfo = {pcrSelection = pcrsel,
 | digestAtRelease = hash(currentValues(pcrSelection))
 | digestAtCreation = dummyDigest}
 | / * PCRInfo is a TPM_PCR_INFO and thus also a TPM_KEY */
 |
 | wk = TPM_CreateWrapKey(keyInfo = PCRInfo)
 | wk.keyInfo.pubKey
 | }
 |
 | create_TPM-Certify-Info = {
 | CertifyInfo = TPM_CertifyKey(
 | certHandle = AIK, /* TPM_KEY_HANDLE */
 | keyHandle = wk, /* TPM_KEY_HANDLE */
 | antiReply = dummyNonce) /* TPM_NONCE */
 |
 | CertifyInfo.strip()
 | /* Remove those values that are not needed */
 | }

 Figure 7: Creating the pubkey

A.2.4. Measurement Log

 Similarly to regular attestations, the Verifier needs a way to
 reconstruct the PCRs' values in order to estimate the trustworthiness
 of the device. As such, a list of those elements that were extended
 into the PCRs is reported. Note though that for certain
 environments, this step may be optional if a list of valid PCR
 configurations exists and no measurement log is required.

Fuchs, et al. Expires April 21, 2016 [Page 21]

Internet-Draft tuda October 2015

 TUDA-Measurement-Log = [*PCR-Event]
 PCR-Event = [
 type: PCR-Event-Type,
 pcr: uint,
 template-hash: PCR-Hash,
 filedata-hash: tagged-hash,
 pathname: text; called filename-hint in ima (non-ng)
]

 PCR-Event-Type = &(
 bios: 0
 ima: 1
 ima-ng: 2
)

 ; might want to make use of COSE registry here
 ; however, that might never define a value for sha1
 tagged-hash /= [sha1: 0, bytes .size 20]
 tagged-hash /= [sha256: 1, bytes .size 32]

A.2.5. Implicit Attestation

 The actual attestation is then based upon a TickStampBlob using the
 restricted temporary key that was certified in the steps above. The
 TPM-Tickstamp is executed and thereby provides evidence that at this
 point in time (with respect to the TPM internal tick-session) a
 certain configuration existed (namely the PCR values associated with
 the restricted key). Together with the synchronization token this
 tick-related timing can then be related to the real-time clock.

 This element consists only of the TPM_TickStampBlock with no nonce.

 TUDA-Verifytoken = TickStampBlob-Output

 Figure 8: TUDA-Verify element in CDDL

 Required TPM functions:

 | imp_att = TPM_TickStampBlob(
 | keyHandle = restrictedKey_Handle, /*TPM_KEY_HANDLE*/
 | antiReplay = dummyNonce, /*TPM_NONCE*/
 | digestToStamp = dummyDigest) /*TPM_DIGEST*/
 |
 | VerifyToken = imp_att

 Figure 9: Creating the Verify Token

Fuchs, et al. Expires April 21, 2016 [Page 22]

Internet-Draft tuda October 2015

A.2.6. Attestation Verification Approach

 The five TUDA elements transport the essential content that is
 required to enable verification of the attestation statement at the
 Verifier. The following listings illustrate the verification
 algorithm to be used at the Verifier in pseudocode. The pseudocode
 provided covers the entire verification task. If only a subset of
 TUDA elements changed (see Section 2.1), only the corresponding code
 listings need to be re-executed.

 | TSA_pub = verifyCert(TSA-CA, Cert.TSA-Cert)
 | AIK_pub = verifyCert(AIK-CA, Cert.AIK-Cert)

 Figure 10: Verification of Certificates

 | ts_left = Synctoken.left
 | ts_right = Synctoken.right
 |
 | /* Reconstruct ts_right's omitted values; Alternatively assert == */
 | ts_right.currentTicks.tickRate = ts_left.currentTicks.tickRate
 | ts_right.currentTicks.tickNonce = ts_left.currentTicks.tickNonce
 |
 | ticks_left = ts_left.currentTicks
 | ticks_right = ts_right.currentTicks
 |
 | /* Verify Signatures */
 | verifySig(AIK_pub, dummyNonce || dummyDigest || ticks_left)
 | verifySig(TSA_pub, hash(ts_left) || timestamp.time)
 | verifySig(AIK_pub, dummyNonce || hash(timestamp) || ticks_right)
 |
 | delta_left = timestamp.time -
 | ticks_left.currentTicks * ticks_left.tickRate / 1000
 |
 | delta_right = timestamp.time -
 | ticks_right.currentTicks * ticks_right.tickRate / 1000

 Figure 11: Verification of Synchronization Token

Fuchs, et al. Expires April 21, 2016 [Page 23]

Internet-Draft tuda October 2015

 | compositeHash = hash_init()
 | for value in Composite.values:
 | hash_update(compositeHash, value)
 | compositeHash = hash_finish(compositeHash)
 |
 | certInfo = reconstruct_static(TPM-CERTIFY-INFO)
 |
 | assert(Composite.bitmask == ExpectedPCRBitmask)
 | assert(certInfo.pcrinfo.PCRSelection == Composite.bitmask)
 | assert(certInfo.pcrinfo.digestAtRelease == compositeHash)
 | assert(certInfo.pubkeyDigest == hash(restrictedKey_Pub))
 |
 | verifySig(AIK_pub, dummyNonce || certInfo)

 Figure 12: Verification of Restriction Info

| for event in Measurement-Log:
| if event.pcr not in ExpectedPCRBitmask:
| continue
| if event.type == BIOS:
| assert_whitelist-bios(event.pcr, event.template-hash)
| if event.type == ima:
| assert(event.pcr == 10)
| assert_whitelist(event.pathname, event.filedata-hash)
| assert(event.template-hash == hash(event.pathname || event.filedata-
hash))
| if event.type == ima-ng:
| assert(event.pcr == 10)
| assert_whitelist-ng(event.pathname, event.filedata-hash)
| assert(event.template-hash == hash(event.pathname || event.filedata-
hash))
|
| virtPCR[event.pcr] = hash_extend(virtPCR[event.pcr], event.template-hash)
|
| for pcr in ExpectedPCRBitmask:
| assert(virtPCR[pcr] == Composite.values[i++]

 Figure 13: Verification of Measurement Log

Fuchs, et al. Expires April 21, 2016 [Page 24]

Internet-Draft tuda October 2015

 | ts = Verifytoken
 |
 | /* Reconstruct ts's omitted values; Alternatively assert == */
 | ts.currentTicks.tickRate = ts_left.currentTicks.tickRate
 | ts.currentTicks.tickNonce = ts_left.currentTicks.tickNonce
 |
 | verifySig(restrictedKey_pub, dummyNonce || dummyDigest || ts)
 |
 | ticks = ts.currentTicks
 |
 | time_left = delta_left + ticks.currentTicks * ticks.tickRate / 1000
 | time_right = delta_right + ticks.currentTicks * ticks.tickRate / 1000
 |
 | [time_left, time_right]

 Figure 14: Verification of Attestation Token

Authors' Addresses

 Andreas Fuchs
 Fraunhofer Institute for Secure Information Technology
 Rheinstrasse 75
 Darmstadt 64295
 Germany

 Email: andreas.fuchs@sit.fraunhofer.de

 Henk Birkholz
 Fraunhofer Institute for Secure Information Technology
 Rheinstrasse 75
 Darmstadt 64295
 Germany

 Email: henk.birkholz@sit.fraunhofer.de

 Ira E McDonald
 High North Inc
 PO Box 221
 Grand Marais 49839
 US

 Email: blueroofmusic@gmail.com

Fuchs, et al. Expires April 21, 2016 [Page 25]

Internet-Draft tuda October 2015

 Carsten Bormann
 Universitaet Bremen TZI
 Bibliothekstr. 1
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Fuchs, et al. Expires April 21, 2016 [Page 26]

