
Delay-Tolerant Networking E. Birrane
Internet-Draft E. DiPietro
Intended status: Informational D. Linko
Expires: January 1, 2019 Johns Hopkins Applied Physics Laboratory
 June 30, 2018

AMA Application Data Model
draft-birrane-dtn-adm-03

Abstract

 This document defines a physical data model that captures the
 information necessary to asynchronously manage applications. This
 model provides a set of common type definitions, data structures, and
 a template for publishing standardized representations of model
 elements.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 1, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Birrane, et al. Expires January 1, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft ADM June 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Scope . 3

2. Requirements Language . 4
3. Terminology . 4
4. Data Modeling Concept of Operations 5
5. Asynchronous Management Model (AMM) 6
5.1. The AMM Resource Identifier (ARI) 6
5.1.1. Namespaces . 7
5.1.2. Object Names . 9
5.1.3. Parameters . 9
5.1.4. Special Case: Literal Values 10
5.1.5. String Canonical Forms 11
5.1.6. Examples . 12

5.2. AMM Type Definitions 15
5.2.1. Primitive Types 15
5.2.2. Derived Types . 15
5.2.3. Collections . 17

5.3. Object Definitions 18
5.3.1. Common Object Metadata 18
5.3.2. Externally Defined Data (EDD) 19
5.3.3. Constant (CONST) 19
5.3.4. Control (CTRL) 20
5.3.5. Macro (MAC) . 21
5.3.6. Operator (OP) . 21
5.3.7. Reports . 23
5.3.8. State-Based Rule (SBR) 24
5.3.9. Tables . 25
5.3.10. Time-Based Rule (TBR) 27
5.3.11. Variable (VAR) 28
5.3.12. Common Object Processing 29

5.4. Data Type Mnemonics and Enumerations 30
5.4.1. AMM Objects . 30
5.4.2. Primitive Data Types 31
5.4.3. Compound Data Types 32
5.4.4. Numeric Promotions 33
5.4.5. Numeric Conversions 33

6. JSON ADM Template . 33
6.1. ADM Inclusion . 34
6.2. ADMT Object Collections 34
6.3. ADM Metadata . 35
6.4. Type Encodings . 36
6.4.1. Primitive Type Encoding 36
6.4.2. Derived Type Encoding 36

Birrane, et al. Expires January 1, 2019 [Page 2]

Internet-Draft ADM June 2018

6.4.3. Collection Encoding 37
6.5. ARI Encoding . 38
6.6. ADM Structures . 40
6.6.1. General Notes . 40
6.6.2. Constant (CONST) Encoding 41
6.6.3. Control (CTRL) Encoding 41
6.6.4. Externally Defined Data (EDD) Encoding 42
6.6.5. Macro Encoding 43
6.6.6. Operator (OP) Encoding 43
6.6.7. Table Template (TBLT) Encoding 44
6.6.8. Report Template Encoding 44
6.6.9. Variables Encoding 46
6.6.10. Exemptions . 47

7. ADM Author Considerations 47
8. IANA Considerations . 49
9. Security Considerations 49
10. References . 49
10.1. Normative References 49
10.2. Informative References 49

 Authors' Addresses . 50

1. Introduction

 The Asynchronous Management Architecture (AMA) [I-D.birrane-dtn-ama]
 defines a concept for the open-loop control of applications (and
 protocols) in situations where timely, highly-available connections
 cannot exist amongst managing and managed nodes in a network. While
 the AMA provides a logical data model, it does not include the
 detailed information necessary to produce interoperable data models.

1.1. Scope

 This document defines a physical data model suitable for managing
 applications in accordance with the AMA. This physical model is
 termed the Asynchronous Management Model (AMM) and consists of the
 data types and data structures needed to manage applications in
 asynchronous networks.

 This document also provides a template, called the Application Data
 Model Template (ADMT), for the standardized representation of
 application-specific instances of this model. Using the types and
 structures defined by the AMM, individual applications can capture
 their unique, static management information in documents compliant
 with the ADMT. These application-specific documents are called
 Application Data Models (ADMs).

 The AMM presented in this document does not assume any specific type
 of application or underlying network encoding. In order to

Birrane, et al. Expires January 1, 2019 [Page 3]

Internet-Draft ADM June 2018

 communicate model elements between AMA Agents and Managers in a
 network, the model must be encoded for transmission. Any such
 encoding scheme is outside of the scope of this document. Generally,
 the encoding of the model is a separate concern from the
 specification of data within the model.

 Because different networks may use different encodings for data,
 mandating an encoding format would require incompatible networks to
 encapsulate data in ways that could introduce inefficiency and
 obfuscation. It is envisioned that different networks would be able
 to encode ADMs in their native encodings such that the translation of
 ADM data from one encoding to another can be completed using
 mechanical action taken at network borders.

 Since the specification does not mandate an encoding format, the AMM
 and ADMT must provide enough information to make encoding (and
 translating from one encoding to another) an unambiguous process.
 Therefore, where necessary, this document provides identification,
 enumeration and other schemes that ensure ADMs contain enough
 information to prevent ambiguities caused by different encoding
 schemes.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Terminology

 Note: The terms "Actor", "Agent", "Externally Defined Data",
 "Variable", "Constant", Control", "Literal", "Macro", "Manager",
 "Operator", "Report", "Report Template", "Rule", "State-Based Rule",
 "Table", "Table Template", and "Time-Based Rule" are used without
 modification from the definitions provided in the
 [I-D.birrane-dtn-ama].

 Additional terms defined in this document are as follows.

 o Application - A software implementation running on an Agent and
 being managed by a Manager. This includes software that
 implements protocol processing on an Agent.

 o Application Data Model (ADM) - The set of statically-defined data
 items necessary to manage an application asynchronously.

 o Application Data Model Template (ADMT) - A standard format for
 expressing predefined data items for an application.

https://datatracker.ietf.org/doc/html/rfc2119

Birrane, et al. Expires January 1, 2019 [Page 4]

Internet-Draft ADM June 2018

 o AMM Resource Identifier (ARI) - A unique identifier for any AMM
 object, syntactically conformant to the Uniform Resource
 Identifier (URI) syntax documented in [RFC3986] and using the
 scheme name "ari".

 o ADM Namespace - A moderated, hierarchical taxonomy of namespaces
 that describe a set of ADM scopes. Specifically, an individual
 ADM namespace is a specific sequence of ADM namespaces, from most
 general to most specific, that uniquely and unambiguously identify
 the namespace of a particular ADM.

 o Operational Data Model (ODM) - The operational configuration of an
 Agent. This includes the union of all ADM information supported
 by the Agent as well as all operational, dynamic configuration
 applied to the Agent by Managers in the network.

4. Data Modeling Concept of Operations

 In order to asynchronously manage an application in accordance with
 the [I-D.birrane-dtn-ama], an application-specific data model must be
 created containing any predefined management information for that
 application. This model is termed the Application Data Model (ADM)
 and forms the core set of information for that application in
 whichever network it is deployed. The ADM syntactically conforms to
 the ADMT and uses the data structures and types that comprise the
 AMM.

 The information standardized in the ADM represents static
 configurations and definitions that apply to any deployment of the
 application, regardless of the network in which it is operating.
 Within any given network, Managers supplement the information
 provided by ADMs with dynamic definitions and values. The
 operational configuration of the network is the union of all
 supported ADMs and all Manager-defined dynamic configurations. This
 is termed the Operational Data Model (ODM).

 The relationships amongst the AMM, ADMT, and ADM are illustrated in
 Figure 1.

https://datatracker.ietf.org/doc/html/rfc3986

Birrane, et al. Expires January 1, 2019 [Page 5]

Internet-Draft ADM June 2018

 Data Model Relationship

 +---------+ +---------+
 | AMM |-------------->| ADMT |
 +----+----+ +----+----+
 | |
 | +----------+-------------+
 V | | |
 +----------+ V V V
 | Network | +-------+ +-------+ +-------+
 | Specific | | ADM 1 | | ADM 2 | ... | ADM N |
 | Config. | +---+---+ +---+---+ +---+---+
 +----+-----+ | | |
 | | | |
 V V V V
 +---+
 | ODM |
 +---+

 Figure 1

 In this figure, AMM data types and structures form the common
 elements of the management model used by both ADMs and network
 specific configurations. Together, the set of static information
 provided by the union of all supported ADMs with the set of operator-
 specified dynamic AMM objects, forms the operational data model used
 to manage the network.

5. Asynchronous Management Model (AMM)

 This section describes the Asynchronous Management Model, which is
 the set of objects used to implement the logical data model provided
 by the AMA. This section also provides additional information
 necessary to work with this model, such as data type specifications,
 identifier constructs, and naming conventions.

5.1. The AMM Resource Identifier (ARI)

 Every object in the AMM must be uniquely identifiable, regardless of
 whether the item is defined formally in an ADM document or informally
 by operators in the context of a specific network deployment. The
 AMM Resource Identifier (ARI) uniquely identifies AMM objects.

 There are three components to the ARI: namespaces, object names, and
 parameters. This section defines each of these components, discusses
 special cases, and presents a string canonicalization of these
 identifiers, with examples.

Birrane, et al. Expires January 1, 2019 [Page 6]

Internet-Draft ADM June 2018

5.1.1. Namespaces

 AMM objects exist within unique namespaces to prevent conflicting
 names within network deployments, particularly in cases where network
 operators are allowed to define their own object names. In this
 capacity, namespaces exists to eliminate the chance of a conflicting
 object name. They MUST NOT be used as a security mechanism. An
 Agent or Manager MUST NOT infer security information or access
 control based solely on namespace information.

 The AMM defines three ways to identify namespaces for AMM object
 names: Moderated Namespaces, Anonymous Namespaces, and Issuer
 Namespaces.

5.1.1.1. Moderated Namespaces

 The most effective way to ensure the uniqueness of an AMM Object is
 to name it in the context of a moderated namespace. These namespaces
 are assigned by an overseeing organization as part of a maintained
 namespace registry.

 Moderated namespaces are hierarchical, which allows the grouping of
 objects that share common attributes - for example, objects
 associated with related protocols may have protocol-specific
 namespaces that are grouped under a single encompassing namespace.
 Namespaces that are closer to a root node in the moderated hierarchy
 have broader scope than namespaces closer to leaf nodes in that
 hierarchy. There is no requirement that the namespace hierarchy be
 represented as a single tree structure; multiple root nodes are
 acceptable and likely to exist.

 In a hierarchical model of namespaces, a particular namespace can be
 identified as the path to that namespace through the hierarchy. The
 expression of that path within an ADM is accomplished by listing each
 namespace along the path, separated by the tokenizing character "/".
 For example, consider the namespaces in the following figure.

Birrane, et al. Expires January 1, 2019 [Page 7]

Internet-Draft ADM June 2018

 +-------+ +-------+
 | TOP-A | | TOP-B |
 +---+---+ +---+---+
 | _____|_____
 | | |
 +-------+ +-------+ +-------+
 | MID-A | | MID-B | | MID-C |
 +-------+ +-------+ +-------+
 _________|_________ | |
 | | | | |
 +-------+ +-------+ +-------+ +-------+ +-------+
 | LOW-A | | LOW-B | | LOW-C | | LOW-A | | LOW-A |
 +-------+ +-------+ +-------+ +-------+ +-------+

 Given this hierarchy, the following are all valid namespace
 representations.

 TOP-A/

 TOP-A/MID-A

 TOP-A/MID-A/LOW-A

 TOP-B/MID-B/LOW-A

 TOP-B/MID-C/LOW-A

 Moderated namespaces require resources to review and publish and are
 best suited for static AMM object definitions, such as those found in
 ADMs.

5.1.1.2. Anonymous Namespaces

 It is possible for network operators to define AMM objects that are
 not associated with a namespace. In this case, a nil namespace can
 be defined. This special case is considered the use of an
 "anonymous" namespace.

 Policy decisions as to whether anonymous namespaces are allowed in
 the system should be determined before network deployment. The use
 of an anonymous namespace greatly increases the chances of naming
 collisions.

5.1.1.3. Informal Namespaces

 Network-specific configurations, as illustrated in Figure 1, are
 dynamic, ephemeral, not captured in published ADMs, and do not use
 moderated namespaces. Instead, AMM objects that comprise network-

Birrane, et al. Expires January 1, 2019 [Page 8]

Internet-Draft ADM June 2018

 specific configuration can be uniquely differentiated as a function
 of their "Issuer" and an issuer-specific "Tag".

 An Issuer is any string that identifies the organization that is
 defining an AMM object. This value may come from a global registry
 of organizations, an issuing node address, a signed known value, or
 some other network-unique marking. Issuers MUST NOT conflict with
 known moderated namespaces, and Agents and Managers should not
 process Issuers that conflict with existing moderated namespaces.

 A Tag is any string used to disambiguate AMM Objects for an Issuer.
 The contents of the tag are left to the discretion of the Issuer.
 Examples of potential tag values include an issuer-known version
 number or a (signed) hashing of the data item associated with the
 reference identifier.

5.1.2. Object Names

 Object names are strings whose value is determined by the creator of
 the object. For those objects defined in accordance with the ADMT
 Template, the structure of the object name is given in Section 5.3.1.

5.1.3. Parameters

 Parameterization is used in the AMM to enable expressive autonomous
 function and reduce the amount of traffic communicated between
 Managers and Agents. In the AMM, most objects can be parameterized
 and the meaning of parameterization for each object is described in
 detail in Section 5.3.

 If there are two instances of an AMM object that have the same
 namespace and same object name but have different parameters, then
 those instances are both unique and the ARIs for those instances MUST
 also be unique. Therefore, parameters are considered part of an AMM
 object's identifier.

 There are two types of parameters defined in the AMM: Formal and
 Actual parameters. The terms formal parameter and actual parameter
 follow common computer programming vernacular for discussing function
 declarations and function calls, respectively.

5.1.3.1. Formal Parameters

 Formal parameters define the type, name, and order of the information
 that customizes an AMM Object. They represent the unchanging
 "definition" of the parameterized object.

Birrane, et al. Expires January 1, 2019 [Page 9]

Internet-Draft ADM June 2018

 Formal parameters MUST include type and name information and MAY
 include an optional default value. If specified, a default value
 will be used whenever a set of actual parameters fails to provide a
 value for this formal parameter.

5.1.3.2. Actual Parameters

 Actual parameters represent the data values passed to a parameterized
 AMM Object. They "fulfill" the parameter requirements defined by the
 formal parameters for that object.

 An actual parameter MUST specify a value and MAY specify a type. If
 a type is provided it MUST match the type provided by the formal
 parameter. An actual parameter MUST NOT include NAME information.

 There are two ways in which the value of an actual parameter can be
 specified: parameter-by-value and parameter-by-name.

 Parameter-By-Value
 This method involves directly supplying the value as part of
 the actual parameter. It is the default method for supplying
 values.

 Parameter-By-Name
 This method involves specifying the name of some other
 parameter and using that other parameter's value for the
 value of this parameter. This method is useful when a
 parameterized AMM Object contains another parameterized AMM
 Object. The contained object's actual parameter can be given
 as the name of the containing object's parameter. In that
 way, a containing object's parameters can be "pass down" to
 all of the objects it contains.

5.1.3.3. Optional Parameters

 In cases where a formal parameter contains a default value, the
 associated actual parameter may be omitted. Default values in formal
 parameters (and, thus, optional actual parameters) are encouraged as
 they reduce the size of data items communicated amongst Managers and
 Agents in a network.

5.1.4. Special Case: Literal Values

 As defined in the AMA, Literal values are those whose value and
 identifier are equivalent. For example, the literal "4" serves as
 both an identifier and a value. When literal values are used in
 objects in the AMM, they are able to have a simplified identification
 scheme.

Birrane, et al. Expires January 1, 2019 [Page 10]

Internet-Draft ADM June 2018

 Because the value of a Literal object serves as its identifier, there
 is no need for namespaces, object names, or parameters. A literal
 can be completely identified by its data type and data value. Since
 Literals in the AMA are used to identify primitive data types, the
 type of a Literal identifier MUST be as described in Table 2.

5.1.5. String Canonical Forms

 While there may exist multiple encodings of an ARI, to include the
 JSON encodings presented in Section 6 and other binary encodings in
 other specifications, this section defines a universal string
 representation of the ARI, as such a representation is helpful to
 express examples in this and other documents.

 This representation is not prescriptive; other string encodings may
 exist that differ from the one used in this document.

5.1.5.1. General ARI String Representation

 The String Canonical Form of the ARI is expressed as a Uniform
 Resource Identifier (URI), as documented in [RFC3986]. A URI is
 syntactically decomposed into a scheme name and a scheme-specific
 part. The set of known scheme names is moderated by IANA. The
 scheme-specific part of the URI is dependent on the scheme name.

 The scheme name of the ARI is "ari". The scheme-specific part of the
 "ari" scheme follows the format:

 ari:/<Namespace>/<ObjectName><(Parameters)>

 With the string representation of each scheme given as follows.

 Namespaces
 Namespaces are represented as "/" separated lists, with
 individual namespace types represented as follows:

 * Moderated namespaces are listed in order from the most
 general namespace to the most specific namespace. For
 example: "GENERAL/MIDDLE/SPECIFIC/".

 * Anonymous namespaces are empty and are represented as "/".

 * Informal namespaces follow the general pattern of
 moderated namespaces - starting with the general Issuer
 followed by the more specific issuer tag. For example:
 "Issuer/Tag". In cases where the Tag is omitted, then the
 representation is simply "Issuer/".

https://datatracker.ietf.org/doc/html/rfc3986

Birrane, et al. Expires January 1, 2019 [Page 11]

Internet-Draft ADM June 2018

 Object Names
 The object name is a string as specified in Section 5.3.1.

 Parameters
 If present, parameters are represented as a comma-separated
 string enclosed in parenthesis. Different types of
 parameters are represented as follows.

 * Formal parameters follow the pattern <type> <name> and if
 there is a default value, it is represented by the
 substring "= <value>".

 * Actual Parameters-By-Value are represented as the string
 encoding of their value.

 * Actual Parameters-By-Name are represented as the name of
 the parameter enclosed in angle brackets.

 Note: If an actual parameter is missing for a formal
 parameter that has a default value, then the ARI string MUST
 have a blank space where the actual parameter would have
 been. This missing parameter will also have a comma,
 separating it from other actual parameters in the ARI string.

5.1.5.1.1. Shortform Encoding

 In cases where a default namespace can be assumed (for example, in
 the context of an ADM with a defined namespace) the prefix
 ari:/Namespace/ can be omitted.

5.1.5.2. Literal String Encoding

 The string representation of a Literal ARI is much simpler and
 consists of simply the data type of the Literal followed by the
 value, as follows:

 "(type) value"

5.1.6. Examples

 The ARIs for the following sample AMM objects are encoded in Table 1.
 Note that these examples are for the identifiers of AMM objects, not
 their entire definition.

 o The number of bytes received by an Agent, defined in the N1/N2
 namespace and called num_bytes.

Birrane, et al. Expires January 1, 2019 [Page 12]

Internet-Draft ADM June 2018

 o The number of bytes received through an interface, called
 num_bytes_if, which takes a single string parameter named
 "if_name" with a default value oth "eth0".

 o An anonymous, operator-defined object named "obj1" which takes two
 unsigned integer parameters, n1 and n2, with default values of 3
 and 4, respectively.

 o The typed, Literal value of 4.

Birrane, et al. Expires January 1, 2019 [Page 13]

Internet-Draft ADM June 2018

 +------------------------+--+
 | ARI String | Description |
 +------------------------+--+
"ari:N1/N2/num_bytes"	Unparameterized num_bytes object in the
	N1/N2 namespace.
"num_bytes"	Shortform encoding where the N1/N2
	namespace can be assumed.
"num_bytes_if(String	Formal parameter definition of num_bytes
if_name)"	object that accepts a string interface
	name.
"num_bytes_if(String	Formal parameter definition of num_bytes
if_name=eth0)"	object that accepts a string interface
	name with a default value.
"num_bytes_if()"	Actual parameter using the default value
	of eth0.
"num_bytes_if(eth0)"	Actual parameter of eth0.
"ari:/obj1(Int n1 = 0,	Formal parameter of object obj1 in
Int n2 = 3)"	anonymous namespace taking 2 default
	parameters.
"ari:/obj1(,)"	Actual parameter using the default
	values of 0 for n1 and 3 for n2.
"ari:/obj1(, 4)"	Actual parameter using the default value
	of 0 for n1.
"ari:/obj1(4,)"	Actual parameter using the default value
	of 3 for n2.
"ari:/obj1(4,4)"	Actual parameters provided for all obj1
	parameters.
"ari:/obj1(<input>,4)"	Actual parameters provided for all obj1
	parameters, with the value of the first
	parameter taken from some other
	parameter named "input".
"(UINT) 4"	The Literal value 4 interpreted as a
	32-bit unsigned integer.
 +------------------------+--+

 Table 1

Birrane, et al. Expires January 1, 2019 [Page 14]

Internet-Draft ADM June 2018

5.2. AMM Type Definitions

 This section describes the type definitions used by the AMM.

5.2.1. Primitive Types

 The AMM supports a series of primitive types as outlined in Table 2.

 +--------------------+--+
 | Type | Description |
 +--------------------+--+
BYTE	unsigned byte value
INT	32-bit signed integer in 2's complement
UINT	32-bit unsigned integer in 2's complement
VAST	64-bit signed integer in 2's complement
UVAST	64-bit unsigned integer in 2's complement
REAL32	Single-precision, 32-bit floating point
	value in IEEE-754 format.
REAL64	Double-precision, 64-bit floating point
	value in IEEE-754 format.
STRING	NULL-terminated series of characters in
	UTF-8 format.
BOOL	A Boolean value of FALSE (whose integer
	interpretation is 0) or TRUE (whose integer
	interpretation is not 0).
 +--------------------+--+

 Table 2: Primitive Types

5.2.2. Derived Types

 A derived typed is a primitive type that is interpreted with special
 semantics. The AMM supports the following derived types.

5.2.2.1. Byte String

 A Byte String is a specialization of the String primitive data type
 used to store binary data using base64 encoding as defined in
 [RFC4648].

https://datatracker.ietf.org/doc/html/rfc4648

Birrane, et al. Expires January 1, 2019 [Page 15]

Internet-Draft ADM June 2018

5.2.2.2. Time Values (TV) and Timestamps (TS)

 A Time Value (TV) is a specialization of the String primitive data
 type whose time interpretation is as given in this section. There
 are two "types" of time representations within the AMM: relative
 times and absolute times.

 An absolute time represents an instant in time. It MUST be formatted
 as a date-time in accordance with [RFC3339].

 A relative time is defined as the amount of time after an instant in
 time. A relative time MUST be formatted as a full-time in accordance
 with [RFC3339]. Relative times have advantages over absolute times:
 they do not require time to be synchronized across Agents and
 Managers, and they are more compact in their representation. For
 example, expressing the semantics "run control_one 10 seconds after
 receiving it" or "run control_two 20 seconds after running
 control_one" is more appropriate using relative times than absolute
 times. The initiating event of a relative time MUST be unambiguously
 defined in the context using the time value.

 As a practical matter, encodings of relative times MAY impose a limit
 of no more than 17 years of relative time, which corresponds to
 roughly 29 bits of information and is considered well past an upper
 bound of efficiency for using a relative time versus an absolute
 time.

 An absolute time may be differentiated from a relative time based on
 whether the time specification is a date-time or a full-time.

 For example, "00:00:10Z" is a relative time representing 10 seconds
 after an initiating event. "2019-01-01T08:00:00Z" is an absolute
 time that refers to 8am, Tuesday January 1st, 2019.

 A Timestamp (TS) represents a specific point in time when an event
 occurred. As such, it MUST be represented as an absolute time.

5.2.2.3. Type-Name-Value (TNV)

 A Type-Name-Value (TNV) is a three-tuple of information that
 describes a typed, named value in the AMM. Since the length of a
 data value is a matter of encoding, there is not an explicit length
 field present for the data value; it is assumed that any encoding
 scheme either explicitly encodes length or that the length is self-
 delineating in the encoding.

 o Type - The strong typing for this value. Types MUST be one of
 those defined in Section 5.4.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Birrane, et al. Expires January 1, 2019 [Page 16]

Internet-Draft ADM June 2018

 o Name - A unique identifier for this value.

 o Value - The value of the data item.

5.2.2.4. User-Specified Derived Types

 Individual ADMs and network operators may derive other types that
 specialize the types provided by the AMM. When doing so, AMM data
 types MUST be used to capture the specialization and any user-
 specific verification or validation MUST occur in user-specific
 implementations on Agents and Managers.

5.2.3. Collections

 AMM objects, or parameters associated with those objects, often need
 to represent groups of related information. Since the AMM is
 strongly typed, these groups of related information are represented
 by special data types called collections. AMM collections are
 ordered and may contain duplicate entries.

 The AMM defines three typed collections that capture TNVs, ARIs, and
 mathematical expressions.

5.2.3.1. Type-Name-Value Collection (TNVC)

 A Type-Name-Value Collection (TNVC) is an ordered array where each
 element of the array is a TNV.

 TNVCs are often used to capture formal and actual parameters for AMM
 objects.

5.2.3.2. ARI Collection (AC)

 An ARI Collection (AC) is an ordered set of ARIs.

 ACs are often used when there exists a need to refer to multiple AMM
 objects as a single unit. For example, when defining a Report
 Template, the definition may have an AC that defines the ordered ARIs
 whose values constitute that report.

5.2.3.3. Expression (EXPR)

 An Expression (EXPR) is a specialization of an AC where each ARI in
 the collection is either an operand or an operator. These operands
 and operators form a mathematical expression that is used to compute
 a numerical value.

Birrane, et al. Expires January 1, 2019 [Page 17]

Internet-Draft ADM June 2018

 Within an Expression, an operand MUST be an ARI with one of the
 following types: Literal, Constant, Externally Defined Data, or
 Variable. An operator MUST be an ARI of type Operator.

 Since the Expression is an AC, there are no annotative constructs
 such as parenthesis to enforce certain orders of operation. To
 preserve an unambiguous calculation of values, the ARIs that form an
 Expression MUST be represented in postfix order. Postfix notation
 requires no additional symbols to enforce precedence, always results
 in a more efficient encoding, and post-fix engines can be implemented
 efficiently in embedded systems.

 For example, the infix expression A * (B * C) is represented as the
 postfix A B C * *.

 Expressions are often used when assigning values to a Variable or
 when calculating the state of the Agent in the context of a State-
 Based Rule.

5.3. Object Definitions

 This section identifies the AMM Objects that instantiate the AMA
 logical data model and the processing required to support these
 objects at Agents and Managers in the network.

5.3.1. Common Object Metadata

 Every object in the AMM includes a set of metadata providing
 annotative or otherwise user-friendly descriptive information for the
 object. This information may be used as documentation (for example,
 only present in ADMs and on operator consoles) and/or encoded and
 transmitted over the wire as part of a management protocol.

 Metadata is not required to be unique amongst objects and individual
 encodings MAY choose to not encode metadata in cases where the
 information is not needed to uniquely identify objects. The metadata
 supported by the AMM for objects is as follows:

 (STR) Name
 An object name is a string associated with the object, but
 does not constitute the sole identifier for the object.
 Names provide human-readable and/or user-friendly ways to
 refer to objects within a given context.

 (STR) Description
 An object description is a string describing the purpose or
 usage of the object in a human-readable format. The
 description serves as documentation for the object and SHOULD

Birrane, et al. Expires January 1, 2019 [Page 18]

Internet-Draft ADM June 2018

 be the same regardless of how the object might be
 parameterized. For example, the description of a CTRL object
 should document the purpose of the CTRL in a way that is
 independent of the value of any particular parameter value
 passed to that CTRL.

5.3.2. Externally Defined Data (EDD)

 Externally defined data (EDD), as defined in the AMA, represent data
 values that are computed external to the network management system.
 The definition of these values are solely defined in the context of
 an ADM; since their calculation exists outside of the network
 management system, they are not added or removed as part of the
 dynamic configuration of the network management system.

 An EDD consists of an ARI, type, and a description, with the
 following caveats:

 (ARI) Identifier
 This Identifier MUST be of type EDD and MAY be parameterized,
 particularly in cases where the specific computed value can
 be identified by an associative look-up, as discussed in

Section 7.

 (UINT) Type
 The data type of the EDD value MUST be specified as part of
 the EDD definition and this type MUST be one of the primitive
 data types defined in Table 2.

 (STR) Description
 This represents the human-readable description of the EDD.

5.3.3. Constant (CONST)

 Constants represent named basic values. Examples include common
 mathematical values such as PI or well-known Epochs such as the UNIX
 Epoch. Constants are defined solely within the context of ADMs.
 Constants MUST NOT be defined as part of dynamic network
 configuration.

 Allowing network operators to define constants dynamically means that
 a Constant could be defined, removed, and then re-defined at a later
 time with a different value, which defeats the purpose of having
 Constants. Variables MUST be used instead of Constants for the
 purpose of adding new values to the dynamic network configuration.

 A CONST is defined by its ARI, value, and description, with the
 following caveats.

Birrane, et al. Expires January 1, 2019 [Page 19]

Internet-Draft ADM June 2018

 (ARI) Identifier
 This Identifier MUST be of type CONST and MUST NOT be
 parameterized. Parameterizing a Constant implies that its
 value is dependent upon the set of parameters sent to it,
 which defeats the purpose of defining a constant value.

 (TNV) Typed Value
 The value of a constant is the immutable value that should be
 used in lieu of the Constant ARI.

 This value is expressed as a TNV with the following
 requirements.

 * Type MUST be one of the primitive data types defined in
 Table 2.

 * Name MUSt be omitted as the CONST ARI defines the name for
 this value.

 * Value must be present and consistent with the data type
 for this CONST.

 (STR) Description
 This represents the human-readable description of the CONST,
 as a string.

5.3.4. Control (CTRL)

 A Control represents a predefined function that can be run on an
 Agent. Controls are not able to be defined as part of dynamic
 network configuration since their execution is typically part of the
 firmware or other implementation of the Agent outside of the context
 of the network management system.

 Network operators that wish to dynamically execute functions on an
 Agent may use Macros, State-Based Rule, and Time-Based Rule instead.

 Controls are identified by their ARI and their description, with the
 following caveats.

 (ARI) Identifier
 This Identifier MUST be of type CTRL and MAY be parameterized
 in cases where the function executed by that Control takes
 parameters.
 When defined in the context of an ADM, the Control ARI MUST
 match the definition of a Formal Parameter list. This is
 because the ADM defines the Controls that can be invoked, but
 does not define any particular invocation of a Control.

Birrane, et al. Expires January 1, 2019 [Page 20]

Internet-Draft ADM June 2018

 When used as part of network operations, a Control ARI MUST
 match the definition of an Actual Parameter list. This is
 because when used operationally, a parameterized Control
 required parameters to be run.
 In cases where a Control takes no parameters, the definition
 in the ADM document MUST be considered the definition of the
 Control and the presence of the same ARI in the context of an
 operational system MUST be seen as an invocation of that
 Control.

 (STR) Description
 This represents the human-readable description of the
 Control, as a string.

5.3.5. Macro (MAC)

 Macros are ordered collections of Controls or other Macros. When run
 by an Agent, each ARI in the AC is run in order. A Macro may be
 defined as part of an ADM or as part of dynamic network
 configuration.

 In cases where a Macro contains another Macro, implementations MUST
 implement some mechanism for preventing infinite recursions, such as
 defining maximum nesting levels, performing Macro inspection, and/or
 enforcing maximum execution times.

 A Macro is defined by an ARI, a content definition, and a
 description, as follows.

 (ARI) Identifier
 This Identifier MUST be of type MAC and MAY be parameterized
 and, if so, the parameter may be passed-by-name to any
 parameterized elements within the Macro.

 (AC) Definition
 The Macro definition is modeled as an AC, where each ARI
 within the AC MUST be either a Control or a Macro.

 (STR) Description
 This represents the human-readable description of the Macro,
 as a string.

5.3.6. Operator (OP)

 Operators represent user-defined mathematical functions implemented
 in the firmware of an Agent for the purpose of aiding the evaluation
 of Expressions.

Birrane, et al. Expires January 1, 2019 [Page 21]

Internet-Draft ADM June 2018

 The AMM separates the concepts of Operators and Controls to prevent
 side-effects in Expression evaluation (e.g. to avoid constructs such
 as A = B + GenerateReport()). For this reason, Operators are given
 their own structure type and Controls do not support a return value.

 Because Operators represent custom firmware implemented on the Agent,
 they are not defined dynamically as part of network operations.
 Therefore, they may only be defined in an ADM.

 An Operator is defined by its ARI, its resultant type, the number of
 operands, the type of operands, and a description, as follows.

 (ARI) Identifier
 This Identifier MUST be of type OP and MUST NOT be
 parameterized. Much like Constants, Operators represent
 immutable mathematical functions. The operands of an
 Operator are not considered as "parameters" to the Operator.

 (UINT) Out Type
 This is the return value of the Operator and MAY be different
 than the operand types accepted by the Operator. This type
 MUST be one of the primitive data types defined in Table 2.

 (UINT) Num Operands
 This is the number of operands evaluated by the operator.
 For example, the unary NOT Operator ("!") would operate on a
 single operand. The binary PLUS Operator ("+") would operate
 on two operands. A custom operator to calculate the average
 of the last 10 samples of data would operate on 10 operands.

 (TNVC) In Types
 This is the type information for each operand operated on by
 the Operator, modeled as a TNV Collection (TNVC). There MUST
 be one TNV in the TNVC for each operand, and each TNV MUST
 adhere to the following requirements:

 * The Type field MUST be present and MUST be one of the
 primitive data types defined in Table 2.

 * The Name field MAY be present to capture a semantic name
 for the operand.

 * The Value field MUST NOT be present.

 (STR) Description
 This represents the human-readable description of the
 Operator, as a string.

Birrane, et al. Expires January 1, 2019 [Page 22]

Internet-Draft ADM June 2018

5.3.7. Reports

 A Report is a set of non-tabular, potentially nested data items that
 may be predefined in the context of an ADM, or defined dynamically in
 the context of a deployed network.

 Reports are represented in two ways in the AMM: Report Templates and
 Reports. A Report Template defines the type of information to be
 included in a report, and a Report contains that information.

5.3.7.1. Report Template (RPTT)

 A Report Template (RPTT) is the ordered set of data descriptions that
 describe how values will be represented in a corresponding Report.
 RPTTs can be viewed as a schema that describes how to interpret a
 Report; they contain no values and are either defined in an ADM or
 configured between Managers and Agents during network operations.

 Since a RPTT may contain other RPTTs, implementations MUST implement
 some mechanism to prevent the definition of circular references.

 RPTTs are defined by an ARI, the report template definition, and a
 description, as follows.

 (ARI) Identifier
 This Identifier MUST be of type RPTT and MAY be parameterized
 and, if so, the parameter may be passed-by-name to any
 parameterized elements within the RPTT.

 (AC) Definition
 The Report Definition is modeled as an AC, where each ARI
 within the AC MUST identify either a CONST, LIT, EDD, VAR, or
 other RPTT.

 (STR) Description
 This represents the human-readable description of the Report
 template, as a string.

5.3.7.2. Report (RPT)

 A Report (RPT) is a set of data values populated in conformance to a
 given data definition. Reports do not have an individual identifier
 - rather they are uniquely identified by their definition and the
 timestamp at which their data values were collected.

 RPTs are defined by their associated template, the time at which the
 report was generated, and the individual entries in the report, as
 follows.

Birrane, et al. Expires January 1, 2019 [Page 23]

Internet-Draft ADM June 2018

 (ARI) Template Id
 This is the ARI of the object that defines the format of the
 report data values. This ARI MUST define an AMM object of
 type RPTT, EDD, or VAR, or CTRL.
 If this ARI is parameterized, this ARI MUST include the
 actual parameters used in the generation of the report.

 (TV) Generation Time
 This is the absolute time at which the report was generated
 by the Agent.

 (TNVC) Report Entries
 This is the collection of data values that comprise the
 report. If the template for this report is an EDD, VAR, or
 CTRL then there MUST be one entry for this report. If the
 template is a RPTT, then there MUST be one entry for every
 item defined in the template.
 Entries are modeled as a TNVC, with each TNV representing a
 report entry with the following requiremnts.

 * Type MAY be ommitted in cases where checking type safety
 is not required.

 * Name MAY be omitted in cases where a semantic name for the
 entry can be derived from the template.

 * Value MUST be present and consistent with the type for
 this entry from the associated template item.

5.3.8. State-Based Rule (SBR)

 A State-Based Rule (SBR) specifies that starting at a particular time
 an action should be run by the Agent if some condition evaluates to
 true, until the action has been run a maximum number of times. When
 the SBR is no longer valid it MAY be discarded by the Agent.

 Examples of SBRs include:

 Starting 2 hours from receipt, whenever Variable V1 > 10, produce
 a Report Entry for Report Template R1 no more than 20 times.

 Starting at some future absolute time, whenever Variable V2 !=
 Variable V4, run Macro M1 no more than 36 times.

 SBRs are defined by their ARI, start time, condition, maximum run
 count, action, and description, as follows.

 (ARI) Identifier

Birrane, et al. Expires January 1, 2019 [Page 24]

Internet-Draft ADM June 2018

 This Identifier MUST be of type SBR and MUST NOT be
 parameterized.

 (TV) START
 The time at which the SBR condition should start to be
 evaluated. This will mark the first evaluation of the
 condition associated with the SBR.

 (EXPR) CONDITION
 The Expression which, if true, results in the SBR running the
 associated action. An Expression is considered true if it
 evaluates to a non-zero number.

 (UVAST) COUNT
 The number of times the SBR action can be run. The special
 value of 0 indicates there is no limit on how many times the
 action can be run.

 (AC) ACTION
 The collection of Controls and/or Macros to run as part of
 the action. This is captured as an AC data type with the
 constraint that every ARI within the AC represent a Control
 or Macro.

 (STR) Description
 This represents the human-readable description of the SBR, as
 a string.

5.3.9. Tables

 A Table is a named, typed, collection of tabular data. Columns
 within a table are named and typed. Rows within a table capture
 individual data sets with one value in each row corresponding to one
 column in the table. Tables are represented in two ways in the AMM:
 Table Templates and Table Instances.

5.3.9.1. Table Template (TBLT)

 A table template identifies the strongly-typed column template that
 will be followed by any instance of this table available in the
 network. Table templates appear statically in ADMs and may not be
 created dynamically within the network by Managers. Changing a table
 template within an asynchronously managed network would result in
 confusion if differing template definitions for the same table
 identifier were to be active in the network at one time.

 TBLTs are defined by an ARI, a set of column descriptions, and table
 metadata, as follows.

Birrane, et al. Expires January 1, 2019 [Page 25]

Internet-Draft ADM June 2018

 (ARI) Identifier
 This Identifier MUST be of type TBLT and MUST be of type
 TBLT, and MUST NOT contain parameters.

 (TNVC) Columns
 A TBLT is defined by its ordered set of columns descriptions
 captured as a TNVC with each TNV in the collection describing
 a table column with the following requirements.

 * Type MUST be present and MUST be one of the primitive
 types defined in Table 2.

 * Name MAY be omitted in cases where a semantic name for the
 column can be derived from the template.

 * Value MUST NOT be present as a column does not contain
 data values.

 (STR) Description
 This represents the human-readable description of the TBLT,
 as a string.

5.3.9.2. Table (TBL)

 Tables are collections of data that MUST be constructed in accordance
 with an associated Table Template. Tables MUST NOT appear in the ADM
 for an application; they are only instantiated dynamically as part of
 the operation of a network.

 TBLs are defined by their Table Template, the number of rows in the
 table, and the associated set of data values for each row.

 (ARI) Template Id
 This is the ARI of the Table Template holding the column
 definitions for this table. This ARI MUST be of type TBLT
 and match a known Table Template.

 (UINT) Number of Rows
 This is the number of rows in the table. A Table MAY have
 zero rows.

 (TNVC) Rows Information
 Each row in a TBL is represented by a TNVC, with each TNV in
 the collection representing the value for a specific column
 with the following requirements.

 * Type MAY be present, when necessary to verify that
 elements in the row match the types of table columns.

Birrane, et al. Expires January 1, 2019 [Page 26]

Internet-Draft ADM June 2018

 * Name MUST NOT be present.

 * Value MUST be present and compatible with the type of the
 associated column.
 The number of TNVs in the collection MUST be equal to the
 number of columns defined for the Table Template.

5.3.10. Time-Based Rule (TBR)

 A Time-Based Rule (TBR) specifies that starting at a particular start
 time, and for every period seconds thereafter, an action should be
 run by the Agent until the action has been run for count times. When
 the TBR is no longer valid it MAY be discarded by the Agent.

 Examples of TBRs include:

 Starting 2 hours from receipt, produce a Report for Report
 Template R1 every 10 hours ending after 20 times.

 Starting at the given absolute time, run Macro M1 every 24 hours
 ending after 365 times.

 TBRs are defined by their ARI, start time, period, maximum run count,
 action, and description, as follows.

 (ARI) Identifier
 This Identifier MUST be of type TBR and MUST NOT be
 parameterized.

 (TV) Start
 The time at which the TBR should start to be evaluated. This
 will mark the first running of the action associated with the
 TBR.

 (TV) Period
 The time to wait between running the action associated with
 the TBR. This value MUST be a relative time value.

 (UVAST) Count
 The number of times the TBR action may be run. The special
 value of 0 indicates the TBR should continue running the
 action indefinitely.

 (AC) Action
 The collection of Controls and/or Macros to run by the TBR.
 This is captured as a AC with the constraint that every ARI
 within the AC represent a Control or Macro.

Birrane, et al. Expires January 1, 2019 [Page 27]

Internet-Draft ADM June 2018

 (STR) Description
 This represents the human-readable description of the TBR, as
 a string.

5.3.11. Variable (VAR)

 Variables (VAR) may be statically defined in an ADM or dynamically by
 Managers in a network deployment. VARs differ from EDDs in that they
 are completely described by other known data in the system (either
 other VARs or other EDDs). For example, letting E# be a EDD item and
 V# be a VAR item, the following are examples of VAR definitions.

 V1 = E1 * E2

 V2 = V1 + E3

 VARs are defined by an ARI, a type, an initializing expression, and a
 description, as follows.

 (ARI) Identifier
 The type of this ARI MUST be type VAR, and the ARI MUST NOT
 contain parameters.

 (UINT) Type
 This is the type of the VAR, and acts as a static cast for
 the result of the initializing EXPR. This type MUST be one
 of the data types defined in Table 2.
 Note, it is possible to specify a type different than the
 resultant type of the initializing EXPR. For example, if an
 EXPR adds two single-precision floating point numbers, the
 VAR MAY have an integer type associated with it.

 (EXPR) Initializer
 The initial value of the VAR is given by an initializing
 EXPR. In the case where the type of the VAR itself is EXPR,
 the initializer is used as the value of the VAR. In the case
 where the type of the VAR is anything other than EXPR, then
 the initializer EXPR will be evaluated and the result of that
 evaluation will be the initial value of the VAR.

 (STR) Description
 This represents the human-readable description of the VAR, as
 a string.

Birrane, et al. Expires January 1, 2019 [Page 28]

Internet-Draft ADM June 2018

5.3.12. Common Object Processing

 This section describes the handling and exchange of AMM objects
 between Agents and Managers in a network.

 Managers must:

 o Store the ARI and definitions for both network-specific and ADM-
 defined AMM Objects.

 o Send requests to Agents to add, list, describe, and remove custom
 AMM object definitions.

 o Verify and interpret reports against report templates and tables
 against table templates when receiving these objects from an
 Agent.

 o Encode ARIs in Objects to Agents, and decode ARIs from Agents.

 o Provide actual parameters when sending parameterized objects to an
 Agent.

 Agents must:

 o Store the ARI for all ADM-defined AMM objects.

 o Calculate the value of an AMM object when required, such as when
 generating a Report or evaluating an Expression.

 o Implement Controls in firmware and run Controls and Macros with
 appropriate parameters when necessary in the context of Manager
 direction and Rule execution.

 o Communicate "return" values from Controls back to Managers as
 Reports where appropriate.

 o Persist custom AMM object definitions.

 o Add, remove, list, and describe custom AMM objects as requested by
 Managers.

 o Calculate the value of applying an Operator to a given set of
 operands, such as when evaluating an Expression.

 o Populate Reports and Tables for transmission to Managers when
 required.

Birrane, et al. Expires January 1, 2019 [Page 29]

Internet-Draft ADM June 2018

 o Run the actions associated with SBRs and TBRs in accordance with
 their definitions.

 o Calculate the value of VARs when required, such as during Rule
 evaluation, calculating other VAR values, and generating Reports.

5.4. Data Type Mnemonics and Enumerations

 While the AMM does not specify any encoding of data model elements, a
 common set of enumerations help to ensure that various encoding
 standards can interoperate.

 This section defines string (mnemonic) and integer (enumeration)
 mechanisms for referring to AMM data and object types. Data types
 are separated into 4 major categories:

 Category Range
 ------------------ ------------
 AMM Objects Types 0x00 - 0x0F

 Primitive Types 0x10 - 0x1F

 Compound Types 0x20 - 0x2F

 Reserved 0x30 - 0xFF

 Type Categories and Ranges

 Within each category, the type of information, it's mnemonic, unique
 enumeration value, and whether it is considered a numeric value for
 expression evaluation are listed.

5.4.1. AMM Objects

 AMM Objects include the set of objects identifiable using the ARI
 construct. The type field of the ARI MUST be one of these values.
 AMM Objects MUST be identified as follows.

Birrane, et al. Expires January 1, 2019 [Page 30]

Internet-Draft ADM June 2018

 Structure Mnemonic Enumeration Numeric
 ------------------------------- -------------- ----------- ----------
 Constant CONST 0 No

 Control CTRL 1 No

 Externally Defined Data EDD 2 No

 Literal LIT 3 No

 Macro MAC 4 No

 Operator OPER 5 No

 Report RPT 6 No

 Report Template RPTT 7 No

 State-Based Rule SBR 8 No

 Table TBL 9 No

 Table Template TBLT 10 No

 Time-Based Rule TBR 11 No

 Variable VAR 12 No

 Reserved 13-15 No

5.4.2. Primitive Data Types

 Primitive data include the basic set of objects that must be encoded
 to transfer AMM objects. All AMM objects are built from combinations
 of these primitive types. Primitive types MUST be identified as
 follows.

Birrane, et al. Expires January 1, 2019 [Page 31]

Internet-Draft ADM June 2018

 Basic Data Type Mnemonic Enumeration Numeric
 ------------------------------- -------------- ----------- ----------
 Boolean BOOL 16 No

 BYTE BYTE 17 No

 Character String STR 18 No

 Signed 32-bit Integer INT 19 Yes

 Unsigned 32-bit Integer UINT 20 Yes

 Signed 64-bit Integer VAST 21 Yes

 Unsigned 64-bit Integer UVAST 22 Yes

 Single-Precision Floating Point REAL32 23 Yes

 Double-Precision Floating Point REAL64 24 Yes

 Reserved 25-31 No

5.4.3. Compound Data Types

 Compound data include combinations of primitive data types, to
 include collections. Compound types MUST be identified as follows.

 Compound/Special Data Type Mnemonic Enumeration Numeric
 ------------------------------- -------------- ----------- ----------
 Time Value TV 32 No

 Timestamp TS 33 No

 Type-Name-Value TNV 34 No

 Type-Name-Value Collection TNVC 35 No

 AMM Resource Identifier ARI 36 No

 ARI Collection AC 37 No

 Expression EXPR 38 No

 Byte String BYTESTR 39 No

 Reserved - Protocol 40-47 No

Birrane, et al. Expires January 1, 2019 [Page 32]

Internet-Draft ADM June 2018

5.4.4. Numeric Promotions

 When attempting to evaluate operators of different types, an Agent
 may need to promote operands until they are of the correct type. For
 example, if an Operator is given both an INT and a REAL32, the INT
 should be promoted to a REAL32 before the Operator is applied.

 Listing legal promotion rules is mandatory for ensuring that behavior
 is similar across multiple implementations of Agents and Managers.
 The listing of legal promotions in the AMM are listed in Figure 2.
 In this Figure, operands are listed across the top row and down the
 first column. The resultant type of the promotion is listed in the
 table at their intersection.

 INT UINT VAST UVAST REAL32 REAL64
 +--------+--------+--------+--------+--------+--------+
 INT | INT | INT | VAST | UNK | REAL32 | REAL64 |
 UINT | INT | UINT | VAST | UVAST | REAL32 | REAL64 |
 VAST | VAST | VAST | VAST | VAST | REAL32 | REAL64 |
 UVAST | UNK | UVAST | VAST | UVAST | REAL32 | REAL64 |
 REAL32 | REAL32 | REAL32 | REAL32 | REAL32 | REAL32 | REAL64 |
 REAL64 | REAL64 | REAL64 | REAL64 | REAL64 | REAL64 | REAL64 |
 +--------+--------+--------+--------+--------+--------+

 Figure 2: Numeric Promotions

 The AMM does not permit promotions between non-numeric types, and
 numeric promotions not listed in this section are not allowed. Any
 attempt to perform an illegal promotion SHOULD result in an error.

5.4.5. Numeric Conversions

 Variables, Expressions, and Predicates are typed values. When
 attempting to assign a value of a different type, a numeric
 conversion must be performed. Any numeric type may be converted to
 any other numeric type in accordance with the C rules for arithmetic
 type conversions.

6. JSON ADM Template

 This section provides an ADM template in the form of a JSON document
 and describes the JSON representation of AMM objects that MUST be
 used to populate this JSON ADM template.

 It is not required that these JSON encodings be used to encode the
 transmission of AMM information over the wire in the context of a
 network deployment. It is also not required that only these JSON
 encodings be used to document ADMs and other AMM information. Since

Birrane, et al. Expires January 1, 2019 [Page 33]

Internet-Draft ADM June 2018

 the AMM is designed to allow for multiple encodings, the expression
 of ADMs in the provided JSON format is intended to support
 translation to other encodings without loss of information.

6.1. ADM Inclusion

 ADMs expressed in conformance with this template are captured as
 individual JSON files. AMM Objects defined in one ADM template MAY
 refer to objects defined in another ADM template file. To enable
 type checking of these cross-ADM references, the ADM template
 supports the "uses" keyword to identify other ADM files that contain
 objects referenced in the current ADM file.

 The syntax of the uses statement is as follows.

 "uses":["file1","file2",...,"fileN"]

 Where file_# represents a JSON-formatted ADM file defining a
 namespace used in this ADM file.

6.2. ADMT Object Collections

 The JSON ADM Template is defined as a JSON object containing a series
 of arrays - one for each type of information specified in the
 template. There are arrays for:

 o metadata constants

 o EDD definitions

 o VAR definitions

 o RPTT definitions

 o TBLT definitions

 o CTRL definitions

 o CONST definitions

 o MAC definitions

 o OP definitions

 Where each array is named after the mnemonic for the particular AMM
 object, as defined in Section 5.4.1, with the exception of the
 metadata (MDAT) array which is unique to the ADM template itself.

Birrane, et al. Expires January 1, 2019 [Page 34]

Internet-Draft ADM June 2018

 In particular, the template does not provide definitions for RPT,
 TBL, SBR, or TBR objects as these are defined dynamically in the
 context of a network deployment.

 The general format of the JSON ADM Template is as follows.

 {
 "Mdat" : [],
 "Edd" : [],
 "Var" : [],
 "Rptt" : [],
 "Tblt" : [],
 "Ctrl" : [],
 "Const : [],
 "Mac" : [],
 "Oper" : []
 }

6.3. ADM Metadata

 The metadata array contains CONST objects that provide information
 about the ADM itself.

 (STR) name
 This is the human-readable name of the ADM that should appear
 in message logs, user-interfaces, and other human-facing
 applications.

 (STR) namespace
 This is the Moderated Namespace of the ADM, as defined in

Section 5.1.1 and string-encoded in accordance with
Section 5.1.5.1.

 (STR) version
 This is a string representation of the version of the ADM.
 ADM version representations are formated at the discretion of
 the publishing organization.

 (STR) organization
 This is the name of the issuing organization for this ADM.

 Metadata objects are encoded in the same way as CONST objects, in
 accordance with Section 6.6.2.

Birrane, et al. Expires January 1, 2019 [Page 35]

Internet-Draft ADM June 2018

6.4. Type Encodings

 This section describes the JSON encoding of AMM data types defined in
Section 5.2.

6.4.1. Primitive Type Encoding

 JSON data types generally have direct support for the AMM primitive
 data types. The mapping of AMM primitive types to JSON data types is
 provided in Table 3.

 +----------+------------------------+
 | AMM Type | JSON Encoding |
 +----------+------------------------+
 | BYTE | number (0 <= # <= 256) |
 | | |
 | INT | number |
 | | |
 | UINT | number |
 | | |
 | VAST | number |
 | | |
 | UVAST | number |
 | | |
 | REAL32 | number |
 | | |
 | REAL64 | number |
 | | |
 | STRING | string |
 | | |
 | BOOL | boolean |
 +----------+------------------------+

 Table 3: Primitive Type Encoding

6.4.2. Derived Type Encoding

 In cases where an AMM derived type is simply a special interpretation
 of a primitive type, the JSON encoding of the derived type will be
 the same as the JSON encoding of the primitive type from which it
 derives.

6.4.2.1. Type-Name-Value

 A TNV is encoded as a JSON object with three elements: "type",
 "name", and "value". For each item in a TNV, there are three
 acceptable formulations that can be used to represent the item, as

Birrane, et al. Expires January 1, 2019 [Page 36]

Internet-Draft ADM June 2018

 illustrated in the following table. For the examples in this table,
 consider the REAL32 value of PI as 3.14159.

 +---------------------+---+
 | Desc | Example |
 +---------------------+---+
Full	{"type":"REAL32", "name":"PI",
	"value":3.14159}
Named Type	{"type":"REAL32", "name":"PI",
	"value":null}
Anonymous Type	{"type":"REAL32", "name":null,
	"value":null}
Anonymous Type	{"type":"REAL32", "name":null,
Value	"value":3.14159}
Anonymous Value	{"type":null, "name":null, "value":3.14159}
 +---------------------+---+

 Table 4: TNV Formulations

6.4.3. Collection Encoding

 The TNVC and AC collections are encoded as JSON arrays, with each
 object in the array represented in accordance with the JSON encoding
 for that object type (TNV or ARI, respectively).

 An Expression is encoded as a JSON object with two elements: a type
 and a postfix-expr. The description of these elements is as follows.

 (UINT) type
 The data type of the evaluation of the initializer
 expression.

 (AC) postfix-expr
 A JSON array of elements where each element is an JSON
 encoding of an ARI in conformance to Section 6.5.

 The following is an example of a JSON encoding of an EXPR object.

 "type": "UINT",
 "postfix-expr": ["Edd.item1","Edd.item2","Oper.+UINT"]

Birrane, et al. Expires January 1, 2019 [Page 37]

Internet-Draft ADM June 2018

6.5. ARI Encoding

 An ARI may be encoded as either a string or as a JSON object, with
 the two representations being unambiguously interchangeable.
 Additionally, there exists a long-form and short-form encoding of the
 ARI.

 String encodings provide a more compact and human-readable
 representation of the ARI. When an ARI is represented as a string in
 a JSON object, it MUST be encoded in accordance with Section 5.1.5.1.
 If the ARI references an object that is defined in the current ADM,
 then the shortform string encoding may be used, as described in

Section 5.1.5.1.1. The object name to be used in the string encoding
 is the same as the "nm" value for the JSON object encoding, as
 described below.

 JSON object encoding of the ARI provides additional structure that
 makes ARI information verification easier. An ARI is encoded as a
 JSON object with three keys: namespace, object name, and parameters,
 encoded as follows.

 ns
 This element identifies the namespace within which the ARI
 has been defined, and encoded as a string in accordance with

Section 5.1.5.1. In cases where the ARI identifies an object
 defined in the ADM in which it is used, the ADM's namespace
 may be assumed as the namespace of the ADM and this element
 can be omitted from the ARI JSON object.

 nm
 The name of an object defined in an ADM is a string defined
 as the concatenation of the ADMT collection defining the
 object, the "." separator, and the string name of the object
 itself. For example, an EDD defined in the Edd array and
 named edd1 would have the string name "Edd.edd1".

 fp
 ARI formal parameters, if present, are defined as an array
 with each element in the array representing the JSON TNV
 encoding of the parameter. If a default value is not defined
 for the parameter, then the value of the TNV MUST be omitted.

 The fp element is not used when AMM objects are defined in
 the context of an ADM, as the ADM template for defining
 objects already includes parameter information. This element
 is used when AMM objects are defined in accordance with the
 JSON ADM syntax, but by network operators as part of network-
 specific configuration.

Birrane, et al. Expires January 1, 2019 [Page 38]

Internet-Draft ADM June 2018

 If the ARI JSON object has the fp element, then it MUST NOT
 have the ap element. An ARI MUST NOT define both formal and
 actual parameters in the same object instance.

 ap
 ARI actual parameters, if present, are defined as an array
 with each element of the array representing the JSON TNV
 encoding of the parameter. In cases where an optional
 parameter is not present, an empty TNV object will be used in
 its place for that parameter. The name element of the TNV
 MUST NOT be present for actual parameters.

 In cases where the actual parameter is by value, then the TNV
 value key will hold the JSON encoding of the value of the
 parameter.

 In cases where the actual parameter is by name, then the TNV
 MUST have the type "ParmName" and the value MUST be the
 string name of the parameter whose value should be used to
 populate the value of this actual parameter, as described in

Section 5.1.3.2.

 If the ARI JSON object has the fp element, then it MUST NOT
 have the ap element. An ARI MUST NOT define both formal and
 actual parameters in the same object instance.

 The following are examples of JSON encoded ARI objects.

Birrane, et al. Expires January 1, 2019 [Page 39]

Internet-Draft ADM June 2018

 +---------------------------+---------------------------------------+
 | String Encoding | JSON Encoding |
 +---------------------------+---------------------------------------+
"N1/N2/Edd.edd1"	{"ns":"N1/N2", "nm":"Edd.edd1"}
"N1/N2/Edd.edd2(UINT	{"ns":"N1/N2", "nm":"Edd.edd2",
num=3)"	"fp":[{"type":"UINT", "name"="num",
	value":3}]}
"N1/N2/Edd.edd2()"	{"ns":"N1/N2", "nm":"Edd.edd2",
	"ap":[{}]}
"N1/N2/Edd.edd2(4)"	{"ns":"N1/N2", "nm":"Edd.edd2",
	"ap":[{"type":"UINT", "value":4}]}
"N1/N2/Edd.edd3(<input>)"	{"ns":"N1/N2", "nm":"Edd.edd3",
	"ap":[{"type":"ParmName",
	"value":"input"}]}
 +---------------------------+---------------------------------------+

 Table 5: Formal Parameter Encoding

6.6. ADM Structures

6.6.1. General Notes

 The following guidelines apply to the JSON encoding of AMM objects.

 Identification
 Objects do not include an ARI object as part of their
 definition. All of the contents of an ARI are derivable in
 the context of the ADM and adding an ARI encoding as part of
 the AMM object definition would be redundant and require
 maintaining naming information in two places in the ADM
 document.

 Common Elements
 Every JSON encoding of an AMM object MUST have the following
 elements:

 * Name
 The identifier of the AMM Object. This MUST be unique
 across all name elements defined in the ADM collection of
 these types of objects.

 * Description
 A string description of the kind of data represented by
 this data item.

Birrane, et al. Expires January 1, 2019 [Page 40]

Internet-Draft ADM June 2018

 Formal Parameters
 If an AMM object may be parameterized, then an element MUST
 be present in the JSON object named "parmspec" which is
 defined as a JSON-encoded TNVC. Each element in the TNVC
 representing the JSON TNV encoding of the formal parameter.
 If a default value is not defined for the parameter, then the
 value of the TNV MUST be omitted.

6.6.2. Constant (CONST) Encoding

 The CONST JSON object is comprised of four elements: "name", "type",
 "value, and "description". The description of these elements is as
 follows:

 Name
 The identifier of the constant. This MUST be unique across
 all name elements for CONSTs in the ADM.

 Type
 The strong typing of this data value. Types MUST be one of
 those defined in Section 5.4.

 Value
 The value of the constant, expressed in the JSON encoding of
 the data type.

 Description
 A string description of the kind of data represented by this
 data item.

 The following is an example of a JSON encoding of a CONST object.

 "name": "PI",
 "type": "REAL64",
 "value": 3.14159,
 "description": "The value of PI."

6.6.3. Control (CTRL) Encoding

 The CTRL JSON object is comprised of three elements: "name",
 "parmspec", and "description". The description of these elements is
 as follows:

 Name
 The identifier of the control. This MUST be unique across
 all name elements for CTRLs in the ADM.

 ParmSpec

Birrane, et al. Expires January 1, 2019 [Page 41]

Internet-Draft ADM June 2018

 This optional item describes parameters for this control.
 This is encoded as an array where each element in the array
 is encoded as a formal parameter in accordance with
 Paragraph 3.

 Description
 A string description of the kind of data represented by this
 data item.

 The following is an example of a JSON encoding of an CTRL object.

 "name": "reset_src_cnts",
 "parmspec": [{"type":"STR","name":"src"}],
 "description": "This control resets counts for the given source."

6.6.4. Externally Defined Data (EDD) Encoding

 The EDD JSON object is comprised of four elements: "name", "type",
 "parmspec", and "description". The description of these elements is
 as follows:

 Name
 The identifier of the EDD data item. This MUST be unique
 across all name elements for EDDs in the ADM.

 Type
 The strong typing of this data value. Types MUST be one of
 those defined in Section 5.4.

 ParmSpec
 The optional array of formal parameters encoded in accordance
 with Paragraph 3.

 Description
 A string description of the kind of data represented by this
 data item.

 The following is an example of a JSON encoding of an EDD object.

 "name": "num_good_tx_bcb_blks_src",
 "type": "UINT",
 "parmspec": [{"type":"STR","name":"Src"}],
 "description": "Successfully Tx BCB blocks from SRC"

Birrane, et al. Expires January 1, 2019 [Page 42]

Internet-Draft ADM June 2018

6.6.5. Macro Encoding

 The Macro JSON object is comprised of three elements: "name",
 "definition", and "description". The description of these elements
 is as follows:

 Name
 The identifier of the macro. This MUST be unique across all
 name elements for MACs in the ADM.

 Definition
 This is a JSON array whose elements are shorthand references
 are in accordance with Section 6.5 and are of the type CTRL
 or MAC.

 Description
 A string description of the kind of data represented by this
 data item.

 The following is an example of a JSON encoding of an MAC object.

 "name": "user_list",
 "definition": [{
 "nm":"Ctrl.list_vars",
 "ap": []
 },
 {
 "nm":Ctrl.list_rptts"
 "ap": []
 }],
 "description": "List user defined data."

6.6.6. Operator (OP) Encoding

 The OP JSON object is comprised of four elements: "name", "result-
 type", "in-type", and "description". The description of these
 elements is as follows.

 Name
 The identifier of the operator. This MUST be unique across
 all name elements for OPs in the ADM.

 Result-Type
 The numeric result of applying the operator to the series of
 operands. This must be one of the encodings for Table 2.

 In-Type

Birrane, et al. Expires January 1, 2019 [Page 43]

Internet-Draft ADM June 2018

 This is an ordered JSON array of operands for the operator.
 Each operand is a data type encoded in accordance with
 Table 2.

 Description
 A string description of the kind of data represented by this
 data item.

 The following is an example of a JSON encoding of an OP object.

 "name": "plusINT",
 "result-type": "INT",
 "in-type": ["INT", "INT"],
 "description": "Int32 addition"

6.6.7. Table Template (TBLT) Encoding

 The TBLT JSON object is comprised of four elements: "name",
 "columns", and "description". The description of these elements is
 as follows:

 Name
 The identifier of the table template data item. This MUST be
 unique across all name elements for TBLTs in the ADM.

 Columns
 This is a JSON array of elements, with each element
 representing the definition of the type of information
 represented in each column. Each column is described using
 the same encoding as a TNV described in Table 4.

 Description
 A string description of the kind of data represented by this
 data item.

 The following is an example of a JSON encoding of an TBLT object.

 "name":"keys",
 "columns": [{"type":"STR","name":"ciphersuite_names"}],
 "description": "This table lists supported cipher suites."

6.6.8. Report Template Encoding

 The RPTT JSON object is comprised of four elements: "name",
 "parmspec", "definition", and "description". The description of
 these elements is as follows:

 Name

Birrane, et al. Expires January 1, 2019 [Page 44]

Internet-Draft ADM June 2018

 The identifier of the report template. This MUST be unique
 across all name elements for RPTTs in the ADM.

 ParmSpec
 This optional item describes parameters for this report.
 This is encoded as an array where each element in the array
 is encoded as a formal parameter in accordance with
 Paragraph 3.

 Definition
 This is an array of data elements that represent the ordered
 set of information associated with the report. Each element
 in the array is encoded as a data item shorthand in
 accordance with Section 6.5.
 Report item elements MAY use reference parameters in their
 definition. In those cases, the reference parameters in the
 definition list MUST match report entry parameter names from
 the ParmSpec element in the report template definition.

 Description
 A string description of the kind of data represented by this
 data item.

 The following is an example of a JSON encoding of an RPTT object.

Birrane, et al. Expires January 1, 2019 [Page 45]

Internet-Draft ADM June 2018

 {
 "name": "default_report",
 "parmspec": [{
 "type": "STR",
 "name": "endpoint_id"
 }],
 "definition": [
 {
 "ns": "DTN:bp",
 "nm": "Edd.edd_using_a_parm",
 "ap": [{
 "type": "PARMNAME",
 "value": "endpoint_id"
 }]
 },
 {
 "ns": "DTN:bp",
 "nm": "Edd.edd_with_default ",
 "ap": [{
 "type": "INT",
 "value": ""}
]},
 { "ns": "DTN:bp",
 "nm": "Edd.edd_with_no_parms ",
 "ap": []
 }
]
 "description": "A default report."
 }

6.6.9. Variables Encoding

 The VAR JSON object is comprised of four elements: "name", "type",
 "initializer", and "description". The description of these elements
 is as follows:

 Name
 The identifier of the variable data item. This MUST be
 unique across all name elements for VARs in the ADM.

 Type
 The strong typing of this data value. Types MUST be one of
 those defined in Section 5.4.

 Initializer
 The expression used to establish the initial value of the
 variable. This initializer is an expression encoded in
 conformance with Section 6.4.3.

Birrane, et al. Expires January 1, 2019 [Page 46]

Internet-Draft ADM June 2018

 Description
 A string description of the kind of data represented by this
 data item.

 The following is an example of a JSON encoding of an VAR object.

 {
 "name": "total_bad_tx_blks",
 "type": "UINT",
 "initializer": {
 "type": "UINT",
 "postfix-expr": [{
 "nm": "Edd.item1",
 "ap": [{
 "type": "UINT",
 "value": 0
 }]
 }, {
 "nm":"Edd.item2",
 "ap":[{
 "type":"UINT",
 "value": 1
]}
 }, {
 "nm": "Oper.plusUINT",
 "ap":[]
 }]

 },
 "description": "# total items (# item1 + # item2)."
 }

6.6.10. Exemptions

 Certain AMM objects are not intended to be statically defined in the
 context of an ADM document. Literals, Reports, Tables, State-Based
 Rules, and Time-Based Rules all only have meaning in the context of
 an operational network. These objects are defined by network
 operators as part of network-specific configuration and therefore not
 present in the ADM Template.

7. ADM Author Considerations

 The AMM model provides multiple ways to represent certain types of
 data. This section provides informative guidance on how to express
 application management constructs efficiently when authoring an ADM
 document.

Birrane, et al. Expires January 1, 2019 [Page 47]

Internet-Draft ADM June 2018

 Use Parameters for Dynamic Information.
 Parameters provide a powerful mechanism for expressing
 associative look-ups of EDD data. EDDs SHOULD be parameterized
 when the definition of the EDD is dependent upon run-time
 information. For example, if requesting the number of bytes
 through a specific endpoint, the construct
 num_bytes("endpoint_name") is simpler to understand and more
 robust to new endpoint additions than attempting to enumerate the
 number and name of potential endpoints when defining the ADM.

 Do Not Use Parameters for Static Information.
 Parameters incur bandwidth and processing costs (such as type
 checking) and should only be used where necessary. If an EDD
 object can be parameterized, but the set of parameters is known
 and unchanging it may be more efficient to define multiple
 unparameterized EDD objects instead. For example, consider a
 single parameterized EDD object reporting the number of bytes of
 data received for a specific, known set of priorities and a
 request to report on those bytes for the "low", "med", and "high"
 priorities. Below are two ways to represent these data: using
 parameters and not using parameters.

 +------------------------+------------------------+
 | Parameterized EDDs | Non-Parameterized EDDs |
 +------------------------+------------------------+
 | num_bytes_by_pri(low) | num_bytes_by_low_pri |
 | num_bytes_by_pri(med) | num_bytes_by_med_pri |
 | num_bytes_by_pri(high) | num_bytes_by_high_pri |
 +------------------------+------------------------+

 The use of parameters in this case only incurs the overhead of
 type checking, parameter encoding/decoding, and associative
 lookups. This situation should be avoided when deciding when to
 parameterize AMM objects.

 Use Tables for Related Data.
 In cases where multiple EDD or VAR values are likely to be
 evaluated together, then that information SHOULD be placed in a
 Table Template rather than defining multiple EDD and VAR objects.
 By making a Table Template, the relationships amongst various
 data values are preserved. Otherwise, Managers would need to
 remember to query multiple EDD and/or VAR objects together which
 is burdensome, but also results in high bandwidth and processor
 utilization.

Birrane, et al. Expires January 1, 2019 [Page 48]

Internet-Draft ADM June 2018

8. IANA Considerations

 This document defines a moderated namespace registry in
Section 5.1.1.1. This registry is envisioned to be moderated by

 IANA. Entries in this registry are to be made through Expert Review.

 This document defines a new URI scheme, "ari", as defined in
Section 5.1.5.

9. Security Considerations

 This document does not describe any on-the-wire encoding or other
 messaging syntax. It is assumed that the exchange of AMM objects
 between Agents and Managers occurs within the context of an
 appropriate network environment.

 This AMM model may be extended to include the concept of Access
 Control Lists (ACLs) to enforce roles and responsibilities amongst
 Managers in the network. This access control would be implemented
 separately from network security mechanisms.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

10.2. Informative References

 [I-D.birrane-dtn-ama]
 Birrane, E., "Asynchronous Management Architecture",

draft-birrane-dtn-ama-06 (work in progress), October 2017.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/draft-birrane-dtn-ama-06

Birrane, et al. Expires January 1, 2019 [Page 49]

Internet-Draft ADM June 2018

Authors' Addresses

 Edward J. Birrane
 Johns Hopkins Applied Physics Laboratory

 Email: Edward.Birrane@jhuapl.edu

 Evana DiPietro
 Johns Hopkins Applied Physics Laboratory

 Email: Evana.DiPietro@jhuapl.edu

 David Linko
 Johns Hopkins Applied Physics Laboratory

 Email: David.Linko@jhuapl.edu

Birrane, et al. Expires January 1, 2019 [Page 50]

