
Delay-Tolerant Networking E. Birrane
Internet-Draft Johns Hopkins Applied Physics Laboratory
Intended status: Experimental August 17, 2015
Expires: February 18, 2016

Asynchronous Management Protocol
draft-birrane-dtn-amp-00

Abstract

 This document describes an Asynchronous Management Protocol (AMP)
 conformant with an Asynchronous Management Architecture (AMA). The
 AMP provides monitoring and configuration services between managing
 devices (Managers) and managed devices (Agents), some of which may
 operate on the far side of high-delay or high-disruption links. The
 AMP minimizes the number of transmitted bytes, operates without
 sessions or (concurrent) two-way links, and functions autonomously
 when there is no timely contact with a network operator. The AMP
 accomplishes this without requiring mobile code and generally reduces
 the processor, memory, and storage requirements of implementing
 Managers and Agents.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 18, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Birrane Expires February 18, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft AMP August 2015

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Overview . 3
1.2. Technical Notes . 5
1.3. Scope . 5
1.3.1. Protocol Scope 5
1.3.2. Specification Scope 6

1.4. Requirements Language 6
2. Terminology . 6
3. Data Model . 7
3.1. Basic Types . 7
3.1.1. Standard Numeric Types 7
3.1.2. Self-Delimiting Numeric Value (SDNV) 8
3.1.3. Timestamp (TS) 8

3.2. Compound Types . 9
3.2.1. String (STR) . 9
3.2.2. Binary Large Object (BLOB) 9
3.2.3. Data Collection (DC) 9
3.2.4. Typed Data Collection (TDC) 10

3.3. Naming Structures . 11
3.4. Special Types . 15
3.4.1. MID Collections (MC) 16
3.4.2. Expressions (EXPR) 16
3.4.3. Predicate (PRED) 16
3.4.4. Definition (DEF) 16

4. AMP Structures . 17
4.1. AMA Overview . 17
4.2. Primitive Data . 18
4.2.1. Definition . 19
4.2.2. Processing . 19

4.3. Computed Data . 19
4.3.1. Definition . 20
4.3.2. Processing . 21

4.4. Report . 21
4.4.1. Definition . 21
4.4.2. Processing . 22

4.5. Control . 23
4.5.1. Definition . 23
4.5.2. Processing . 24

4.6. Time-Based Rule (TRL) 24

Birrane Expires February 18, 2016 [Page 2]

Internet-Draft AMP August 2015

4.6.1. Definition . 25
4.6.2. Processing . 25

4.7. State-Based Rule (SRL) 26
4.7.1. Definition . 26
4.7.2. Processing . 27

4.8. Macro . 28
4.8.1. Definition . 28
4.8.2. Processing . 29

4.9. Literal . 29
4.9.1. Definition . 30
4.9.2. Processing . 30

4.10. Operator . 30
4.10.1. Definition . 31
4.10.2. Processing . 31

5. Data Type IDs and Enumerations 31
6. Application Data Model Template 33
6.1. Overview . 33
6.2. Template . 33
6.2.1. ADM Metadata . 33
6.2.2. ADM Information Capture 34

7. The Agent ADM . 35
8. Functional Specification 36
8.1. Message Group Format 36
8.2. Message Format . 36
8.3. Register Agent (0x00) 38
8.4. Data Report (0x12) 38
8.5. Perform Control (0x20) 39

9. IANA Considerations . 39
10. Security Considerations 39
11. References . 40
11.1. Informative References 40
11.2. Normative References 40

 Author's Address . 40

1. Introduction

 This document specifies an Asynchronous Management Protocol (AMP)
 that provides application-layer network management services over
 links where propagation delays or link disruptions prevent timely
 communications between a network operator and a managed device. The
 AMP is conformant to the Asynchronous Management Architecture [AMA].

1.1. Overview

 Network management protocols define the messages that implement
 management functions amongst managed and managing devices in a
 network. These functions include the definition, production, and
 reporting of performance data, the application of administrative

Birrane Expires February 18, 2016 [Page 3]

Internet-Draft AMP August 2015

 policy, and the configuration of behavior based on local time and
 state measurements.

 Networks whose communication links are frequently challenged by
 physical or administrative effects may not provide the guarantee of
 low-latency, duplex data communications necessary to support sessions
 and other synchronous communication. For such networks, an
 asynchronous management protocol is required which provides familiar
 network management services in the absence of sessions and operator-
 in-the-loop control.

 AMP accomplishes the network management function using open-loop,
 intelligent-push, asynchronous mechanisms that better scale as link
 challenges scale. The protocol is designed to support several
 desirable properties outlined in [AMA] and briefly listed below.

 o Intelligent Push of Information - The intelligent push of
 information eliminates the need for round-trip data exchange.
 This is a necessary consequence of operating in an open-loop
 system. AMP is designed to operate even in networks of solely
 uni-directional links.

 o Small Message Sizes - Smaller messages require smaller periods of
 viable transmission for communication, incur less re-transmission
 cost, and consume less resources when persistently stored en-route
 in the network. AMP minimizes the size of a message whenever
 practical, to include packing and unpacking binary data, variable-
 length fields, and pre-configured data definitions.

 o Fine-grained, Flexible Data Identification - Fine-grained
 identification allows data in the system to be explicitly
 addressed while flexible data identification allows users to
 define their own customized, addressed data collections. In both
 cases, the ability to define precisely the data required removes
 the need to query and transmit large data sets only to filter/
 downselect desired data at a receiving device.

 o Stateless Operation - AMP does not rely on session establishment
 or round-trip data exchange to perform network management
 functions. Wherever possible, the AMP is designed to be
 stateless. Where state is required, the AMP provides mechanisms
 to support transactions and graceful degradation when nodes in the
 network fail to synchronize on common definitions.

 o Compatibility with Low-Latency Network Management Protocols - AMP
 adopts an identifier approach compatible with the Managed
 Information Base (MIB) format used by Internet management
 protocols such as the Simple Network Management Protocol (SNMP),

Birrane Expires February 18, 2016 [Page 4]

Internet-Draft AMP August 2015

 thus enabling management interfaces between challenged networks
 and unchallenged networks (such as the Internet).

1.2. Technical Notes

 o Multi-byte values presented in this specification are to be
 transmitted in network-byte order.

 o Bit-fields in this document are specified in Little-Endian format
 with bit position 0 holding the least-significant bit (LSB). When
 illustrated in this document, the LSB appears on the right.

 o Illustrations of byte fields in this specification consist of the
 name of the field, the type of the fields between []'s, and if the
 field is optional, the text "(opt)". An example is shown in
 Figure 1 below. In this illustration two fields (Field 1 and
 Field 2) are shown, with Field 1 of Type 1 and Field 2 of Type 2.
 Field 2 is also listed as being optional. Byte fields are shown
 in order of receipt, from left-to-right. Therefore, when
 transmitted on the wire, Field 1 will appear first, followed by
 Field 2 (if present).

 +----------+----------+
 | Field 1 | Field 2 |
 | [TYPE 1] | [TYPE 2] |
 | | (opt) |
 +----------+----------+

 Figure 1: Byte Field Formatting Example

1.3. Scope

1.3.1. Protocol Scope

 The AMP provides data monitoring, administration, and configuration
 for applications operating above the data link layer of the OSI
 networking model. While the AMP may be configured to support the
 management of network layer protocols, it also uses these protocol
 stacks to encapsulate and communicate its own messages.

 It is assumed that the protocols used to carry AMP messages provide
 addressing, confidentiality, integrity, security, fragmentation
 support and other network/session layer functions. Therefore, these
 items are not discussed in the scope of this document.

Birrane Expires February 18, 2016 [Page 5]

Internet-Draft AMP August 2015

1.3.2. Specification Scope

 This document describes the format of the AMP messages exchanged
 amongst managing and managed devices in a challenged network. This
 document further describes the rationale behind key design decisions
 to the extent that such a description informs the operational
 deployment and configuration of an AMP implementation. This document
 does not address specific data configurations of AMP-enabled devices,
 nor does it discuss the interface between AMP and other management
 protocols, such as SNMP.

1.4. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Terminology

 Note: The terms "Actor", "Agent", "Application Data Model", "Atomic
 Data", "Computed Data", "Controls", "Macros", "Managers", and
 "Reports" are exactly conformant with those definitions as provided
 in [AMA]. Brief versions of these definitions are provided in this
 document as an aid to the reader, but the AMA specification should be
 read for a complete understanding of these concepts.

 This section identifies those terms critical to understanding the
 proper operation of the AMP. Whenever possible, these terms align in
 both word selection and meaning with their analogs from other
 management protocols and with the AMA.

 o Actor - A software service running on either managed or managing
 devices implementing an end-point in the AMP. Actors may
 implement the "Manager" role, "Agent" role, or both.

 o Agent Role - A role within the AMP, associated with a managed
 device.

 o Application Data Model (ADM) - The set of predefined data
 definitions, reports, literals, operations, and controls given to
 an AMP actor to manage a particular application or protocol. AMP
 actors support multiple ADMs, one for each application/protocol
 being managed.

 o Atomic Data - Globally unique, managed data definitions whose
 definition does not change based on the configuration of an AMP
 Actor.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Birrane Expires February 18, 2016 [Page 6]

Internet-Draft AMP August 2015

 o Computed Data - Data computed dynamically by an AMP Actor.

 o Controls - Operations that may be undertaken by an AMP Actor to
 change the behavior, configuration, or state of a protocol or
 application managed by the AMP.

 o Macros - A named, ordered collection of controls.

 o Managed Item Definition (MID) - A parameterized structure used to
 uniquely identify all data and control definitions within the AMP.
 MIDs are a super-set of Object Identifiers (OIDs) and the
 mechanism by which the AMP maintains data compatibility with other
 management protocols.

 o Manager - A role within the AMP associated with a managing device.
 AMP managers also provide gateways to non-AMP management protocols
 as part of conditioning the data returned from agents. Managers
 interact with one or more agents located on the same device and/or
 on remote devices in the network.

 o Report - A named, ordered collection of data items gathered by one
 or more AMP Agents and provided to one or more AMP Managers.
 Reports may contain atomic data, computed data, and other reports.
 Individual data within a report are not named; the report itself
 is named to reduce the size of the report message.

3. Data Model

 This section identifies the data types used to capture information
 within the AMP. The data model consists of the description of basic
 type definitions, compound type definitions, naming schemes, and type
 enumerations.

3.1. Basic Types

 Basic types are those that are not comprised of any other set of
 types known to the AMP.

3.1.1. Standard Numeric Types

 The AMP supports types for unsigned bytes, 32/64-bit signed and
 unsigned integers, and 32/64-bit floating point values, as outlined
 in Table 1.

Birrane Expires February 18, 2016 [Page 7]

Internet-Draft AMP August 2015

 +------------+------------+---+
 | AMP ID | BitWidth | Description |
 +------------+------------+---+
BYTE	8	unsigned byte value
INT	32	Signed integer in 2's complement
UINT	32	Unsigned integer in 2's complement
VAST	64	Signed integer in 2's complement
UVAST	64	Unsigned integer in 2's complement
REAL32	32	Single-precision, 32-bit floating point
		value in IEEE-754 format.
REAL64	64	Double-precision, 64-bit floating point
		value in IEEE-754 format.
 +------------+------------+---+

 Table 1: Standard Numeric Types

3.1.2. Self-Delimiting Numeric Value (SDNV)

 The data type "SDNV" refers to a Self-Delimiting Numerical Value
 (SDNV) described in [RFC6256]. SDNVs are used in the AMP to capture
 any data items that are expected to be 8 bytes or less in total
 length. AMP Actors MAY reject any value encoded in an SDNV that is
 greater than 8 bytes in length.

 One popular use of ADNVs in the AMP is to compress the representation
 of 32/64-bit integer values. This simplifies the AMP by not having
 to additionally support 8/16-bit versions of integers without
 incurring significant transmission waste when encoding small numbers
 into 32/64-bit representations.

3.1.3. Timestamp (TS)

 Timestamps represent time within the AMP. For compatibility with a
 variety of protocols, the use of UTC time is selected to represent
 all time values in the AMP. However, timestamps in AMP may represent
 either absolute or relative time based on the associated AMP Epoch.

 AMP uses September 9th, 2012 as the timestamp epoch (UTC time
 1348025776). Times less than this value MUST be considered as
 relative times. Values greater than or equal to this epoch MUST be
 considered as absolute times. In all cases, the AMP timestamp is
 encoded as an SDNV to avoid the 32-bit 2038 UTC rollover problem.

https://datatracker.ietf.org/doc/html/rfc6256

Birrane Expires February 18, 2016 [Page 8]

Internet-Draft AMP August 2015

 The absolute time associated with a timestamp can be calculated by an
 AMP Actor with the following pseudocode.

 IF (timestamp < 1348025776) THEN
 absolute_time = current_time + timestamp
 ELSE
 absolute_time = timestamp

3.2. Compound Types

3.2.1. String (STR)

 The AMP supports the string type as an ordered collection of byte
 values assumed terminated by a special NULL-terminator value of 0.
 Within the AMP, the String type is almost always deprecated in favor
 of the BLOB type (which asserts the data value first).

3.2.2. Binary Large Object (BLOB)

 A Binary Large Object (BLOB) is an ordered collection of bytes
 prefaced by the number of bytes making up the BLOB. The format of a
 BLOB is illustrated in Figure 2. BLOBs are used in the AMP to
 capture variable data sets that are too large to efficiently store in
 an SDNV.

 Binary Large Object Format

 +---------+--------+--------+ +--------+
 | # Bytes | BYTE 1 | BYTE 2 | ... | BYTE N |
 | [SDNV] | [BYTE] | [BYTE] | | [BYTE] |
 +---------+--------+--------+ +--------+

 Figure 2: Binary Large Object Format

3.2.3. Data Collection (DC)

 Often, multiple BLOBs must be communicated in the AMP. A Data
 Collection (DC) is an ordered set of BLOBs, prefaced by the number of
 BLOBs making up the collection. The format of a DC is illustrated in
 Figure 3.

Birrane Expires February 18, 2016 [Page 9]

Internet-Draft AMP August 2015

 Data Collection

 +---------+--------+--------+ +--------+
 | # BLOBs | BLOB 1 | BLOB 2 | ... | BLOB N |
 | [SDNV] | [BLOB] | [BLOB] | | [BLOB] |
 +---------+--------+--------+ +--------+

 Figure 3: Data Collection Format

3.2.4. Typed Data Collection (TDC)

 When Data Collections are used to convey parameters for AMP controls,
 or otherwise used to capture the "return" values of controls, the
 data SHOULD be annotated with the associated type for each data in
 the collection. The Typed Data Collection (TDC) provides this
 augmentation. A TDC is a regular DC with one additional BLOB added
 to the collection to capture type information. This "Type BLOB"
 stores the type of each other entry in the DC in a byte.

 The TDC format is illustrated in Figure 4

 Typed Data Collection

 +---------+-----------+-------------+ +-------------+
 | # BLOBs | TYPE BLOB | DATA BLOB 1 | ... | DATA BLOB N |
 | [SDNV] | [BLOB] | [BLOB] | | [BLOB] |
 +---------+-----------+-------------+ +-------------+

 Figure 4: Typed Data Collection Format

 For example, consider a Data Collection of 3 BLOBs, with BLOB 1
 having type UINT, BLOB 2 having type VAST, and BLOB 3 having type
 SDNV. The DC structure has no way of capturing this type
 information. The corresponding TDC would have 4 BLOBs. BLOB 1 would
 have length 3 and contain the enumerations for UINT, VAST, and SDNV -
 each encoded in one byte. BLOBs 2, 3, and 4 would be the original
 data. This example is illustrated in Figure 5.

Birrane Expires February 18, 2016 [Page 10]

Internet-Draft AMP August 2015

 Typed Data Collection Example

 DC TDC
 +---------------------+ +--------------------------------+
 | # BLOBs = {3} | | # BLOBs = {4} |
 +---------------------+ +--------------------------------+
 | BLOB 1 = {DATA1,...}|--------+ | TYPE BLOB = {UINT, VAST, SNDV} |
 +---------------------+ | +--------------------------------+
 | BLOB 2 = {DATA2,...}|-----+ +->| DATA BLOB 1 = {DATA1,...} |
 +---------------------+ | +--------------------------------+
 | BLOB 3 = {DATA3,...}|--+ +---->| DATA BLOB 2 = {DATA2,...} |
 +---------------------+ | +--------------------------------+
 +------->| DATA BLOB 3 = {DATA3,...} |
 +--------------------------------+

 Figure 5: Typed Data Collection Example

3.3. Naming Structures

 Application, protocol, and user data defined and exchanged within the
 AMP must be uniquely identifiable both within a network and (when AMP
 is used in an overlay) across networks. This section describes the
 "Managed Identifier" (MID) which is the single data structure used to
 provide unique naming for all AMP data structures. The MID is a
 variable-length structure that encapsulates all of the information
 and annotation necessary to identify an AMP structure.

 The MID consists of a "core" unique identifier and several useful
 annotations to assist with filtering, access control, and
 parameterization. The unique identifier at the core of a MID is
 based on the Object Identifier (OID) and its Basic Encoding Rules
 (BER) as identified in the ITU-T X.690 standard. The specifics of
 the OID encoding are provided below.

 The AMP uses the OID as its fundamental unit of identification to
 allow its Agents and Managers to more easily interface with other
 management schemes (such as SNMP) at management boundaries between
 challenged and un-challenged networks.

 The MID structure is comprised of up to four fields, as illustrated
 in Figure 6.

Birrane Expires February 18, 2016 [Page 11]

Internet-Draft AMP August 2015

 MID format

 +--------+--------+--------+--------+
 | Flags | Issuer | OID | Tag |
 | [BYTE] | [SDNV] |[VARIED]| [SDNV] |
 | | (opt) | | (opt) |
 +--------+--------+--------+--------+

 Figure 6: Managed Identifier Format

 The MID fields are defined as follows.

 Flags
 Flags are used to describe the type of component identified
 by the MID, identify which optional fields in the MID are
 present, and the encoding used to capture the component's
 OID. The layout of the flag byte is illustrated in Figure 7.

 MID Flag Format

 +-----+---+---+-----+------+
 | OID |TAG|ISS| CAT | TYPE |
 +-----+---+---+-----+------+
 | 7 6 | 5 | 4 | 3 2 | 1 0 |
 +-----+---+---+-----+------+
 MSB LSB

 Figure 7

 MID Type (TYPE)
 The type of the component encapsulated by the MID,
 enumerated as data (0), control (1), literal (2), or
 operator (3).

 MID Category (CAT)
 The category of the component encapsulated by the
 MID, enumerated as atomic (0), computed (1), and
 collection (2).

 Issuer Present (ISS)
 Whether the issuer field is present (1) or not (0)
 for this MID. If this flag has a value of 1 then the
 issuer field MUST be present in the MID. Otherwise,
 the issuer field MUST NOT be present in the MID.

 Tag Present (TAG)
 Whether the tag field is present (1) or not (0) for
 this MID. If this flag has a value of 1 then the tag

Birrane Expires February 18, 2016 [Page 12]

Internet-Draft AMP August 2015

 field MUST be present in the MID. Otherwise, the tag
 field MUST NOT be present.

 OID Type (OID)
 Whether the contained OID field represents an full
 OID (0), a parameterized OID (1), a compressed full
 OID (2), or a compressed, parameterized OID (3). OID
 types are described below.

 For example, a MID flag byte of 0x00 indicates an atomic data
 value with no issuer or tag field encapsulating a full OID.
 A MID flag byte of 0x94 indicates a computed data value with
 an issuer field, but no tag field encapsulating a compressed
 OID.

 Issuer
 This is a binary identifier representing a predetermined
 issuer name. The AMP protocol does not parse or validate
 this identifier, using it only as a distinguishing bit
 pattern to assure MID uniqueness. This value, for example,
 may come from a global registry of organizations, an issuing
 node address, or some other network-unique marking.

 OID
 The core of a MID is its encapsulated OID. Aside from the
 flag byte, this is the only other mandatory element within a
 MID. The AMP defines four types of OID references: Full
 OIDs, Parameterized OIDs, Compressed Full OIDs, and
 Compressed Parameterized OIDs.

 Full OID
 This is a binary representation of the full OID
 associated with the named value. The OID is encoded
 using a modified form of the ASN.1 Basic Encoding
 Rules (BER) for Object Identifiers (type value of
 0x06). In the standard ASN.1 encoding, four octet
 sets are defined: identifier octets, length octets,
 contents octets, and end-of-contents octets. An AMP
 Full OID does not use the identifier, length, or end-
 of-contents octets. Instead, an AMP Full OID is
 comprised of two fields: the length in bytes of the
 encoded OID captured in an SDNV followed by the OID
 contents octets. It should be noted that this
 effectively encodes the "OID" as a Data Collection.
 The Full OID format is illustrated in Figure 8.

Birrane Expires February 18, 2016 [Page 13]

Internet-Draft AMP August 2015

 +----------+
 | Full OID |
 | [DC] |
 +----++----+
 ||
 ||
 _____________________/ _________________________
 / \
 +------------+---------+---------+ +---------+
 | OID Length | Octet 1 | Octet 2 | ... | Octet N |
 | [SDNV] | [BYTE] | [BYTE] | | [BYTE] |
 +------------+---------+---------+ +---------+

 Figure 8: Full OID Format

 Parameterized OID
 The parameterized OID is represented as the non-
 parameterized portions of the OID followed by one or
 more parameters. Parameterized OIDs are used to
 templatize the specification of data items and
 otherwise provide parameters to controls without
 requiring potentially unmanageable growth of a Full
 OID namespace. The format of a parameterized OID is
 given in Figure 9.

 +----------+------------+
 | FULL OID | Parameters |
 | [DC] | [DC] |
 +----------+-----++-----+
 ||
 ||
 __________________/ _______________________
 / \
 +----------+--------+--------+ +--------+
 | # Params | Parm 1 | Parm 2 | | Parm N |
 | [SDNV] | [BLOB] | [BLOB] | ... | [BLOB] |
 +----------+--------+--------+ +--------+

 Figure 9: Parameterized OID Format

 Compressed OID
 Since many related OIDs share a common and lengthy
 hierarchy there is opportunity for significant
 message size savings by defining a shorthand for
 commonly-used portions of the OID tree. A partial
 OID is a tuple consisting of a nickname for a pre-
 defined portion of the OID tree (as an SDNV),
 followed by a relative OID. Nicknames are defined in

Birrane Expires February 18, 2016 [Page 14]

Internet-Draft AMP August 2015

 the formal Application Data Models of managed
 applications and protocols. They must be managed to
 ensure there is no collision in the nickname
 namespace. The format of a compressed OID is given
 in Figure 10.

 +----------+--------------+
 | Nickname | Relative OID |
 | [SDNV] | [DC] |
 +----------+--------------+

 Figure 10: Compressed OID Format

 Compressed Parameterized OID
 A compressed, parameterized OID is similar to a
 compressed OID. In this instance, the tuple
 contained in this field is the nickname for the pre-
 defined portion of the OID tree (as an SDNV) followed
 by a parameterized OID whose hierarchy begins at the
 place identified by the nickname. The format of a
 compressed OID is given in Figure 11.

 Compressed Parameterized OID Format

 +----------+--------------+------------+
 | Nickname | Relative OID | Parameters |
 | [SDNV] | [DC] | [DC] |
 +----------+--------------+------------+

 Figure 11: Compressed Parameterized OID Format

 Tag
 A value used to disambiguate multiple MIDs with the same OID/
 Issuer combination. The definition of the tag is left to the
 discretion of the MID issuer. Proper name objects do not
 require a tag as their OIDs are guaranteed to be globally
 unique. Options for tag values include an issuer-known
 version number or a hashing of the data associated with a
 non-proper-name MIDs. The tag field MUST NOT be present for
 the atomic category.

3.4. Special Types

 In addition to the data types already mentioned, the following
 special data types are also defined.

Birrane Expires February 18, 2016 [Page 15]

Internet-Draft AMP August 2015

3.4.1. MID Collections (MC)

 A MID collection is comprised of a value identifying the number of
 MIDs in the collection, followed by each MID, as illustrated in
 Figure 12.

 +--------+-------+ +-------+
 | # MIDs | MID 1 | ... | MID N |
 | [SDNV] | [MID] | | [MID] |
 +--------+-------+ +-------+

 Figure 12: MID Collection

3.4.2. Expressions (EXPR)

 Expressions apply operations to data and literal values to generate
 new data values. The expression type in AMP is a collection of MIDs
 that represent a postfix notation stack of Data, Literal, and
 Operation types. For example, the infix expression A * (B * C) is
 represented as the sequence A B C * *. The format of an expression is
 illustrated in Figure 13.

 +------------+
 | Expression |
 | [MC] |
 +------------+

 Figure 13

 Expression
 An expression is represented in the AMP as a MID collection,
 where each MID in the ordered collection represents the data,
 literals, and operations that comprise the expression.

3.4.3. Predicate (PRED)

 Predicates are expressions whose values are interpreted as a Boolean.
 The value of zero MUST be considered "false" and all other values
 MUST be considered "true". Similar to an expression, a predicate is
 represented as a MID collection (MC).

3.4.4. Definition (DEF)

 Several data structured within the AMP are defined as a named
 collection of other named entities. For example, a Macro is a named
 collection of Controls; a Report is a named collection of other data
 items; a computed data definition is a named expression which, from

Birrane Expires February 18, 2016 [Page 16]

Internet-Draft AMP August 2015

 above, is a collection of MIDs representing the postfix notation of
 the calculating function.

 The Definition (DEF) type captures instances where the AMP refers to
 a named, typed collection of information. The format of a DEF is
 illustrated in Figure 14.

 +--------+----------+------------+
 | Def ID | Def Type | Definition |
 | [MID] | [BYTE] | [MC] |
 +--------+----------+------------+

 Figure 14: Definition Format

 Def ID
 The name of the item being defined. For example, the
 identifier for the Macro, Report, or Computed Data Item.

 Def Type
 The enumeration representing the type for this definition.

 Definition
 The MC that captures the definition. This will be context-
 sensitive based on the structure being defined.

4. AMP Structures

 This section identifies the basic structures that comprise the data
 items exchanged in the AMP, including the definition of these
 structures based on the aforementioned data model and the behavior of
 AMP Actors when interacting with these structures.

4.1. AMA Overview

 The AMA defines a series of logical components that should be
 included as part of an asynchronous management protocol. These
 components are summarized from the AMA in the following table.

Birrane Expires February 18, 2016 [Page 17]

Internet-Draft AMP August 2015

 +-------------+---+
 | Component | Summary Description |
 +-------------+---+
Primitive	A typed, measured value whose definition does not
Data	change.
Computed	A value computed from primitive data and other
Data	computed data.
Report	Collection of primitive and/or computed data and/or
	other reports.
Control	Parameterized opcode for an action that can be
	taken by an Agent.
Rule	A pre-configured response to a pre-defined state on
	an Agent.
Macro	An ordered collection of controls.
Literal	A constant used when evaluated rules or computing
	data.
Operator	An opcode representing a mathematical function
	known to an Agent.
 +-------------+---+

 AMP Logical Components

 The AMP implements these logical components in largely a one-to-one
 fashion with the exception that the AMP defines two types of
 autonomous rules: time-based and state-based. This section describes
 the format of these data structures in the context of the
 aforementioned AMP data types. NOTE: The expression of these
 structures is only to describe how these structures appear in
 messages exchanged between and amongst Agents and Managers in a
 challenged network. Individual software applications may choose
 their own most efficient internal representation of these structures.

4.2. Primitive Data

 Primitive Data are pre-defined as part of ADMs for various
 applications and protocols. These represent values that are directly
 measured by firmware on Agents rather than computed as a function of
 other data in the system.

Birrane Expires February 18, 2016 [Page 18]

Internet-Draft AMP August 2015

4.2.1. Definition

 The representation of these data is simply their identifying MIDs.
 The representation of a primitive data item is illustrated in
 Figure 15.

 +-------+
 | ID |
 | [MID] |
 +-------+

 Figure 15: Primitive Data Format

 ID
 This is the MID identifying the primitive data. Since
 primitive data are always defined solely in the context of an
 ADM, this MID MUST NOT have either an ISSUER field or a TAG
 field. This ID MUST NOT encapsulate a parameterized OID.
 The low nibble of the MID flag byte for primitive data is
 always 0x0.

4.2.2. Processing

 Managers

 o Store the MID for each known Primitive Data definition.

 o Associate a data type to each known Primitive Data definition.

 o Encode Primitive Data MIDs in Controls to Agents, as appropriate.

 Agents

 o Store the MID for each known Primitive Data definition.

 o Associate a data type to each known Primitive Data definition.

 o Calculate the value of a Primitive Data definition when required,
 such as when generating a Report or evaluating an Expression.

4.3. Computed Data

 Computed data are either as defined in an ADM or tactically by
 operators in a particular network. Computed data differ from
 Primitive Data in that they are completely described by other known
 data in the system (either other Computed Data, or other Primitive
 Data). For example, letting P# be a Primitive Data item and C# be a

Birrane Expires February 18, 2016 [Page 19]

Internet-Draft AMP August 2015

 Computed Data item, the following are examples of Computed Data
 definitions.

 C1 = P1 * P2

 C2 = C1 + P3

4.3.1. Definition

 Computed data are defined by the triplet (TYPE, ID, EXPR) as
 illustrated in Figure 16. Note that this format is identical to the
 DEFINITION data type. As such, a computed data definition is
 captured in a DEF.

 +---------------+
 | Computed Data |
 | [DEF] |
 +-------++------+
 ||
 ||
 ____________/ _______________
 / \
 +-------+--------+------------+
 | ID | TYPE | Definition |
 | [MID] | [BYTE] | [EXPR] |
 +-------+--------+------------+

 Figure 16: Computed Data Format

 ID
 This is the MID identifying the computed data. When a
 computed data item is defined in an ADM this MID MUST NOT
 have either an ISSUER field or a TAG field. When the
 computed data is defined outside of an ADM, the MID MUST have
 an ISSUE field and, optionally, a TAG field. This ID MUST
 NOT encapsulate a parameterized OID. The low nibble of the
 MID flag byte for computed data is always 0x4.

 TYPE
 This is the resultant type of the computed data, and acts as
 a static cast for the result of the expression. Note, it is
 possible to specify a type different then the resultant type
 of an expression. For example, if an expression adds two
 single-precision floating point numbers, the computed data
 may have an integer type associated with it. This byte is
 populated with the enumeration of the associated type and
 MUST be defined as one of the numeric data types, as outlined
 in Section 5.

Birrane Expires February 18, 2016 [Page 20]

Internet-Draft AMP August 2015

 Definition
 The computed data value is computed by an expression.
 Notably, an EXPR is simply a MC with the restriction that the
 MIDs represent a series of primitive data, computed data,
 literals, and operations that form a postfix expression.

4.3.2. Processing

 Managers

 o Store the MID for each ADM-defined Computed Data definition.

 o Send requests to Agents to add, list, describe, and remove custom
 Computed Data definitions.

 o Remember custom Computed Data definitions.

 o Encode Computed Data MIDs in Controls to Agents, as appropriate.

 Agents

 o Store the MID for each ADM-defined Computed Data definition.

 o Calculate the value of Computed Data when required, such as during
 rule evaluation, calculating other Computed Data values, and
 generating Reports.

 o Add, Remove, List, and Describe custom Computed Data definitions.

4.4. Report

 Reports capture information generated by Agents and transmitted to
 Managers in the AMP. Since the AMP is an asynchronous protocol there
 is no explicit association between the contents of a report and a
 generating action by either a Manager or an Agent.

 Note that reports in the AMP are NOT key-value pairs. The definition
 of the report is assumed known by the Agent producing the report and
 the Manager receiving the report. Similarly, when a report captured
 the return of a control, the format of the return value is assumed
 known to the Agent and Manager. This approach results in a
 significant space saving when communicating reports in the network.

4.4.1. Definition

 A report is a named, typed data collection. Each BLOB within the
 typed data collection is referred to as a report entry. Reports are
 generated in one of three scenarios: (1) when a report is explicitly

Birrane Expires February 18, 2016 [Page 21]

Internet-Draft AMP August 2015

 requested, (2) when a rule determines that a report should be
 generated, and (3) when a control runs and generates a return value
 that is sent as a report.

 When a report is generated by command or by rule, then the report is
 given a unique identifier either by the ADM defining the report, or
 by an operator defining a report as part of network configuration.
 When a report is generated ad-hoc to capture the return value of a
 control, the report identifier is the same as the identifier of the
 control whose return value it captures.

 The definition of a report is illustrated in Figure 17.

 +-------+---------+
 | ID | Entries |
 | [MID] | [TDC] |
 +-------+---++----+
 ||
 ||
 ___________________________/ __________________________________
 / \
 +-----------+-------------+---------+---------+ +---------+
 | # Entries | Entry Types | Entry 1 | Entry 2 | | Entry N |
 | [SDNV] | [BLOB] | [BLOB] | [BLOB] | ... | [BLOB] |
 +-----------+-------------+---------+---------+ +---------+

 Figure 17: Report Format

 ID
 This is the MID identifying the report. When a report is
 defined in an ADM this MID MUST NOT have either an ISSUER
 field or a TAG field. When the report is defined outside of
 an ADM, the MID MUST have an ISSUE field and, optionally, a
 TAG field. This ID MUST NOT encapsulate a parameterized OID.
 The low nibble of the MID flag byte for computed data is
 always 0x8.

 Entries
 This is the typed data collection containing all of the
 report entries that comprise the report.

4.4.2. Processing

 Managers

 o Store the MID for each ADM-defined Report definition.

Birrane Expires February 18, 2016 [Page 22]

Internet-Draft AMP August 2015

 o Send requests to Agents to add, list, describe, and remove custom
 Report definitions.

 o Remember custom Report definitions when processing reports
 received by Agents.

 o Encode Report MIDs in Controls to Agents, as appropriate.

 Agents

 o Store the MID for each ADM-defined Report definition.

 o Populate Reports for transmission to Managers when appropriate,
 such as when providing a result of running a control or when
 directed to generate a report by a control or rule.

 o Add, Remove, List, and Describe custom Report definitions.

 o Agents SHOULD collect multiple Report entries into a single Report
 for transmission to a Manager rather than sending multiple,
 individual Reports to a Manager.

4.5. Control

 A Control represents a pre-defined (possibly parameterized) opcode
 that can be run on an Agent. Controls in the AMP are always defined
 in the context of an ADM. There is no concept of an operator-defined
 control, as controls represent the opcodes of actions taken directly
 by the firmware. Since Controls are pre-configured in Agents and
 Managers as part of ADM support, their representation is simply the
 MID that identifies them, similar to Primitive Data.

 One difference between the definition of Controls and Primitive Data
 is that Controls may accept parameters. This is accomplished by
 using a parameterized OID in the MID identifying the Control.

4.5.1. Definition

 The format of a Control is illustrated in Figure 18.

 +-------+
 | ID |
 | [MID] |
 +-------+

 Figure 18: Control Format

 ID

Birrane Expires February 18, 2016 [Page 23]

Internet-Draft AMP August 2015

 This is the MID identifying the Control. Since Controls are
 always defined solely in the context of an ADM, this MID MUST
 NOT have either an ISSUER field or a TAG field. The low
 nibble of the MID flag byte for Controls is always 0x1.

4.5.2. Processing

 Managers

 o Store the MID for each ADM-defined Control definition.

 o Store the number of parameters and each parameter type for
 parameterized controls.

 o Encode Control MIDs in other Controls to Agents, as appropriate.

 Agents

 o Store the MID for each ADM-defined Control definition.

 o Implement Controls in firmware and run Controls with appropriate
 parameters when necessary in the context of control messages and
 autonomous rule execution.

 o Communicate "return" values from Controls back to Managers in a
 report where such return values are defined for a Control.

4.6. Time-Based Rule (TRL)

 A Time-Based Rule (TRL) specifies that a particular action should be
 taken by an Agent based on some time interval. A TRL specifies that
 starting at a particular START time, and for every PERIOD seconds
 thereafter, an ACTION should be run by the Agent until the ACTION has
 been run for COUNT times. When the TRL is no longer valid it MAY BE
 discarded by the Agent.

 Examples of TRLs include:

 Starting 2 hours from receipt, produce Report R1 every 10 hours
 ending after 20 times.

 Starting at the given absolute time, run Macro M1 every 24 hours
 ending after 365 times.

Birrane Expires February 18, 2016 [Page 24]

Internet-Draft AMP August 2015

4.6.1. Definition

 The format of a TRL is illustrated in Figure 19.

 +-------+-------+--------+--------+--------+
 | ID | START | PERIOD | COUNT | ACTION |
 | [MID] | [TS] | [SDNV] | [SDNV] | [MC] |
 +-------+-------+--------+--------+--------+

 Figure 19: Time-Based Rule Format

 ID
 This is the MID identifying the TRL. When a report is
 defined in an ADM this MID MUST NOT have either an ISSUER
 field or a TAG field. When the report is defined outside of
 an ADM, the MID MUST have an ISSUE field and, optionally, a
 TAG field. This ID MUST NOT encapsulate a parameterized OID.
 The low nibble of the MID flag byte for computed data is
 always 0x5.

 START
 The time at which the TRL should start to be evaluated. This
 will mark the first running of the action associated with the
 TRL.

 PERIOD
 The number of seconds to wait between running the action
 associated with the TRL.

 COUNT
 The number of times the TRL action will be run. The special
 value of 0 indicates the TRL should continue running the
 action indefinitely.

 ACTION
 The Macro representing the collection of controls to run as
 part of the action. This is captured as a MC data type with
 the constraint that every MID within the MC represent a
 control or another Macro.

4.6.2. Processing

 Managers

 o Send requests to Agents to add, list, describe, and remove custom
 TRL definitions.

Birrane Expires February 18, 2016 [Page 25]

Internet-Draft AMP August 2015

 o Remember custom TRL definitions when processing reports received
 by Agents.

 o Encode TRL MIDs in Controls to Agents, as appropriate.

 Agents

 o Run the actions associated with TRLs in accordance with their
 start time and period.

 o Add, Remove, List, and Describe custom TRL definitions.

4.7. State-Based Rule (SRL)

 A State-Based Rule (SRL) specifies that a particular action should be
 taken by an Agent based on some evaluation of the internal state of
 the Agent. A SRL specifies that starting at a particular START time,
 and for every PERIOD seconds thereafter, an ACTION should be run by
 the Agent if some CONDITION evaluates to true, until the CONDITION
 has been evaluated COUNT times. When the SRL is no longer valid it
 MAY BE discarded by the Agent.

 Examples of SRLs include:

 Starting 2 hours from receipt, whenever Computed Data C1 > 10,
 produce Report R1 no more than 20 times.

 Starting at the given absolute time, whenever C2 + (P1 * C3) !=
 C4, run Macro M1 no more than 36 times.

4.7.1. Definition

 The format of a SRL is illustrated in Figure 20.

 +-------+-------+-----------+--------+--------+
 | ID | START | CONDITION | COUNT | ACTION |
 | [MID] | [TS] | [PRED] | [SDNV] | [MC] |
 +-------+-------+-----------+--------+--------+

 Figure 20: State-Based Rule Format

 ID
 This is the MID identifying the SRL. When a report is
 defined in an ADM this MID MUST NOT have either an ISSUER
 field or a TAG field. When the report is defined outside of
 an ADM, the MID MUST have an ISSUE field and, optionally, a
 TAG field. This ID MUST NOT encapsulate a parameterized OID.

Birrane Expires February 18, 2016 [Page 26]

Internet-Draft AMP August 2015

 The low nibble of the MID flag byte for computed data is
 always 0x5.

 START
 The time at which the SRL condition should start to be
 evaluated. This will mark the first evaluation of the
 condition associated with the SRL.

 CONDITION
 The predicate capturing the internal Agent state evaluation
 which, if true, results in the SRL running the associated
 action. The predicate is an EXPR which evaluates to "false"
 if the expression result is 0 and evaluates to "true" in any
 other case. An expression, itself, is simply a MC
 representing a series of Primitive Data, Computed Data,
 Literal, and/or Operator MIDs that are ordered to create a
 valid postfix expression.

 COUNT
 The number of times the SRL condition will be run. The
 special value of 0 indicates the SRL should continue
 evaluating the condition indefinitely.

 ACTION
 The Macro representing the collection of controls to run as
 part of the action. This is captured as a MC data type with
 the constraint that every MID within the MC represent a
 control or another Macro.

4.7.2. Processing

 Managers

 o Send requests to Agents to add, list, describe, and remove custom
 SRL definitions.

 o Remember custom SRL definitions when processing reports received
 by Agents.

 o Encode SRL MIDs in Controls to Agents, as appropriate.

 Agents

 o Run the actions associated with SRLs in accordance with their
 start time and evaluation of their predicate.

 o Add, Remove, List, and Describe custom SRL definitions.

Birrane Expires February 18, 2016 [Page 27]

Internet-Draft AMP August 2015

4.8. Macro

 Macros in the AMP are simply ordered collections of MIDs (an MC) that
 describe Controls or other Macros. When run by an Agent, each MID in
 the MC is run in order. Similar to a Computed Data definition, a
 Macro is a named collection of MIDs and is represented by a DEF
 structure.

 While the MIDs representing any given control may be parameterized,
 the MID associated with a Macro MAY NOT be parameterized.

4.8.1. Definition

 The format of a Macro is illustrated in Figure 21.

 +-------+
 | Macro |
 | [DEF] |
 +---++--+
 ||
 ||
 ____________/ _______________
 / \
 +-------+--------+------------+
 | ID | TYPE | Definition |
 | [MID] | [BYTE] | [MC] |
 +-------+--------+------------+

 Figure 21: Macro Format

 ID
 This is the MID identifying the Macro. When a Macro item is
 defined in an ADM this MID MUST NOT have either an ISSUER
 field or a TAG field. When the computed data is defined
 outside of an ADM, the MID MUST have an ISSUE field and,
 optionally, a TAG field. This ID MUST NOT encapsulate a
 parameterized OID. The low nibble of the MID flag byte for
 Macro is always 0x9.

 TYPE
 The data type for a Macro is always the special type for
 Macro as defined in Section 5. Macros do not have a specific
 return type otherwise.

 Definition
 This is the ordered collection of MIDs that identify the
 Controls and other Macros that should be run as part of
 running this Macro.

Birrane Expires February 18, 2016 [Page 28]

Internet-Draft AMP August 2015

4.8.2. Processing

 Managers

 o Store the MID for each ADM-defined Macro definition.

 o Send requests to Agents to add, list, describe, and remove custom
 Macro definitions.

 o Encode Macro MIDs in Controls to Agents, as appropriate.

 Agents

 o Store the MID for each ADM-defined Macro definition.

 o Remember custom Macro definitions and run Macros when appropriate,
 such as when responding to a run-macro command or when executing
 the action of a TRL or SRL.

 o Add, Remove, List, and Describe custom Macro definitions.

4.9. Literal

 Literals in the AMP represent constants either as defined in an ADM
 or as specified by a user. Examples of constants that could be
 defined in an ADM include common mathematical values such as PI or
 well-known Epochs such as the UNIX Epoch. Examples of constants that
 could be user-defined as part of expressions include simple numerical
 values, such as 5 in the expression (A > 5). In both cases, Literals
 MUST ALWAYS be defined in an ADM, with user-definable Literal values
 being provided through the MID parameterization mechanism as follows.

 The ADM definition of a Literal MUST include the type of the Literal
 value. Since ADM definitions are preconfigured on Agents and
 Managers in an AMA the type information for a given Literal is
 therefore known by all Actors in the system.

 If the MID identifying the Literal encapsulates a non-parameterized
 OID, then the value is given in the ADM and Agents and Managers can
 lookup this value in their set of pre-configured data.

 If the MID identifying the Literal encapsulates a parameterized OID,
 then the parameters to the OID define the value of the Literal.
 Users wishing to create a new Literal will create a MID with whatever
 parameters are necessary to create the value. The documentation of
 the ADM defining the Literal MUST describe how parameters result in
 the calculation of the Literal value.

Birrane Expires February 18, 2016 [Page 29]

Internet-Draft AMP August 2015

4.9.1. Definition

 The format of a Literal is illustrated in Figure 22.

 +-------+
 | ID |
 | [MID] |
 +-------+

 Figure 22: Control Format

 ID
 This is the MID identifying the Literal. When a Literal item
 is defined in an ADM this MID MUST NOT have either an ISSUER
 field or a TAG field. When the Literal is defined outside of
 an ADM, the MID MUST have an ISSUE field and, optionally, a
 TAG field. This ID MUST NOT encapsulate a parameterized OID.
 The low nibble of the MID flag byte for a literal is always
 0x2.

4.9.2. Processing

 Managers

 o Store the MID for each ADM-defined Literal definition.

 o Encode Literal MIDs in Controls to Agents, as appropriate.

 Agents

 o Store the MID for each ADM-defined Literal definition.

 o Calculate the value of Literals where appropriate, such as when
 generating a Report or when evaluating an Expression.

4.10. Operator

 Operators in the AMP are always defined in the context of an ADM.
 There is no concept of a user-defined operator, as operators
 represent mathematical functions implemented by the firmware on an
 Agent. Since Operators are pre-configured in Agents and Managers as
 part of ADM support, their representation is simply the MID that
 identifies them, similar to Primitive Data and Controls.

 The ADM definition of an Operator MUST specify how many parameters
 are expected. For example, the unary NOT Operator ("!") would accept
 one parameter. The binary PLUS Operator ("+") would accept two

Birrane Expires February 18, 2016 [Page 30]

Internet-Draft AMP August 2015

 parameters. A custom function to calculate the average of the last
 10 samples of a data item would accept 10 parameters.

4.10.1. Definition

 Operators are always evaluated in the context of an Expression. The
 format of an Operator is illustrated in Figure 23.

 +-------+
 | ID |
 | [MID] |
 +-------+

 Figure 23: Operator Format

 ID
 This is the MID identifying the Operator. Since Operators
 are always defined solely in the context of an ADM, this MID
 MUST NOT have either an ISSUER field or a TAG field. The low
 nibble of the MID flag byte for Operators is always 0x3.

4.10.2. Processing

 Managers

 o Store the MID for each ADM-defined Operator definition.

 o Encode Operator MIDs in Controls to Agents, as appropriate.

 Agents

 o Store the MID for each ADM-defined Operator definition.

 o Store the number of parameters expected for each Operator.

 o Calculate the value of applying an Operator to a given set of
 parameters, such as when evaluating an Expression.

5. Data Type IDs and Enumerations

 This section lists the data type IDs and enumerations for the data
 types outlined in this section. IDs are the text abbreviations used
 in this specification and in ADMs to identify data types.
 Enumerations associate data types with an unsigned integer value.
 These enumerations MUST be used whenever a data type is represented
 as a numerical representation, such as the case with the TYPE BLOB of
 a TDC.

Birrane Expires February 18, 2016 [Page 31]

Internet-Draft AMP August 2015

 +----------------------------------+--------+-------------+---------+
 | Data Type | ID | Enumeration | Numeric |
 +----------------------------------+--------+-------------+---------+
BYTE	BYTE	0	No
Signed 32-bit Integer	INT	1	Yes
Unsigned 32-bit Integer	UINT	2	Yes
Signed 64-bit Integer	VAST	3	Yes
Unsigned 64-bit Integer	UVAST	4	Yes
Single-Precision Floating Point	REAL32	5	Yes
Double-Precision Floating Point	REAL64	6	Yes
Character String	STR	7	No
Binary Large Object	BLOB	8	No
Self-Delineating Numerical Value	SDNV	9	No
Timestamp	TS	10	No
Data Collection	DC	11	No
Managed Identifier	MID	12	No
Managed Identifier Collection	MC	13	No
Expression	EXPR	14	No
Definition	DEF	15	No
Time-Based Rule	TRL	16	No
State-Based Rule	SRL	17	No
Typed Data Collection	TDC	18	No
Report	RPT	19	No
Macro	MACRO	20	No
Unknown Type	UNK	21	No
 +----------------------------------+--------+-------------+---------+

Birrane Expires February 18, 2016 [Page 32]

Internet-Draft AMP August 2015

 AMP Data Type IDs and Enumerations

6. Application Data Model Template

6.1. Overview

 An application data model (ADM) specifies the set of AMP components
 associated with a particular application/protocol. The purpose of
 the ADM is to provide a guaranteed interface for the management of an
 application or protocol over AMP that is independent of the nuances
 of its software implementation. In this respect, the ADM is
 conceptually similar to the Managed Information Base (MIB) used by
 SNMP, but contains additional information relating to command opcodes
 and more expressive syntax for automated behavior.

 Currently, the ADM is an organizing document and not used to
 automatically generate software. As such, the ADM template lists the
 kind of information that must be present in an ADM definition but
 does not address mechanisms for automating implementations.

 Each ADM specifies the globally unique identifiers and descriptions
 for all data, controls, literals, and operators associated with the
 application or protocol managed by the ADM. Any implementation
 claiming compliance with a given ADM must compute all identified
 data, perform identified controls, and understand identified literals
 and operators.

6.2. Template

 ADM definitions specify the metadata, data, controls, literals, and
 operators associated with a managed application or protocol.

6.2.1. ADM Metadata

 ADM metadata consist of the items necessary to uniquely identify the
 ADM itself. The required metadata items include the following.

Birrane Expires February 18, 2016 [Page 33]

Internet-Draft AMP August 2015

 +-------------+--------+-------------------------------------+------+
 | Item | Type | Description | Req. |
 +-------------+--------+-------------------------------------+------+
Name	STR	The human-readable name of the ADM.	Y
Version	STR	Version of the ADM encoded as a	Y
		string.	
OID	OID	ADMs provide an ordered list of	N
Nickname N		nicknames that can be used by other	
		MIDs in the ADM definition to	
		defined compressed OIDs. There can	
		an arbitrary number of nicknames	
		defined for an ADM.	
 +-------------+--------+-------------------------------------+------+

 Table 2: ADM Terminology

6.2.2. ADM Information Capture

 The ADM Data Section consist of all components in the "data" category
 associated with the managed application or protocol. The information
 that must be provided for each of these items is as follows.

 Name
 Every component in an ADM MUST be given a human-readable,
 consistent name that uniquely identifies the component in the
 context of the application or protocol. These names will be used
 by human-computer interfaces for manipulating components.

 MID
 The managed identifier that describes this data item. MIDs in
 components identified by an ADM MUST NOT contain an issuer or a
 tag value. In cases where a partial OID is specified, the ADM OID
 prefix is presumed as the base. In cases where the OID is
 parameterized, the parameter values are not included in the MID
 definition in the ADM as parameters are provided at runtime by
 implementations.

 OID
 A human-readable version of the OID encapsulated in the MID for
 the component (e.g., 1.2.3.4). When a nickname is used to
 represent an compressed OID, the nickname enumeration is included
 in this field enclosed by square brackets. For example, if OID
 nickname 0 refers to the OID prefix 1.2.3.4.5, then the OID
 1.2.3.4.5.6 may be listed more compactly as [0].6

 Description

Birrane Expires February 18, 2016 [Page 34]

Internet-Draft AMP August 2015

 Every component in an ADM MUST be given a human-readable,
 consistent description that provides a potential user with a
 compact, effective summary of the component.

 Type
 For components that evaluate to a data value, the data type for
 that value must be represented.

 # Parameters
 For components with a parameterized OID, the ADM MUST provide the
 expected number of parameters. A value of 0 indicates that the
 OID has no parameters and MUST NOT be used for any MID which has a
 parameterized OID. When omitted, the number of parameters is
 considered 0.

 Parameter N Name
 Each parameter of a parameterized component must be given a name.

 Parameter N Description
 Each parameter of a parameterized component must be given a
 summary that describes how the parameter will be used by the
 application or protocol.

 Parameter N Type
 Each parameter of a parameterized component must be given a type
 that describes the structure capturing the parameter value.
 Notably, while parameters in the OID form something similar to a
 function prototype, there is no sense of function call or stack
 and therefore all parameters should be considered as pass-by-
 value.

7. The Agent ADM

 The full set of Primitive Data, Computed Data, Reports, Controls,
 Rules, Macros, Literals, and Operators that can be understood by an
 AMP Agent have been separated into an AMP Agent ADM. Just as the AMP
 uses ADMs to manage applications and protocols, the ADM model is also
 used to implement the functionality of the Agent. As such, the AMP
 message specification is limited to three basic communications:

 - Adding an Agent to the list of managed devices known to a
 Manager.

 - Sending a Macro of one or more Controls to an Agent.

 - Receiving a Report of one or more Report Entries from an Agent.

 as outlined in Section 8.

Birrane Expires February 18, 2016 [Page 35]

Internet-Draft AMP August 2015

 The entire management of a network can be performed using these three
 messages and the configurations from associated ADMs.

8. Functional Specification

 This section describes the format of the messages that comprise the
 AMP protocol. When discussing the format/types of data that comprise
 message fields, the following conventions are used.

8.1. Message Group Format

 Individual messages within the AMP are combined into a single group
 for communication with another AMP Actor. Messages within a group
 MUST be received and applied as an atomic unit. The format of a
 message group is illustrated in Figure 24. These message groups are
 assumed communicated amongst Agents and Managers as the payloads of
 encapsulating protocols which MAY provide additional security and
 data integrity features.

 +--------+-----------+-----------+ +-----------+
 | # Msgs | Timestamp | Message 1 | ... | Message N |
 | [SDNV] | [TS] | [VAR] | | [VAR] |
 +--------+-----------+-----------+ +-----------+

 Figure 24: AMP Message Group Format

 # Msgs
 The number of messages that are together in this message
 group.

 Timestamp
 The creation time for this messaging group. This timestamp
 MUST be an absolute time. Individual messages may have their
 own creation timestamps based on their type, but the group
 timestamp also serves as the default creation timestamp for
 every message in the group.

 Message N
 The Nth message in the group.

8.2. Message Format

 Each message identified in the AMP specification adheres to a common
 message format, illustrated in Figure 25, consisting of a message
 header, a message body, and an optional trailer.

Birrane Expires February 18, 2016 [Page 36]

Internet-Draft AMP August 2015

 +--------+-------+---------+
 | Header | Body | Trailer |
 | [BYTE] | [VAR] | [VAR] |
 | | | (opt.) |
 +--------+-------+---------+

 Figure 25: AMP Message Format

 Header
 The message header byte is shown in Figure 26. The header
 identifies a message context and opcode as well as flags that
 control whether a report should be generated on message
 success (Ack) and whether a report should be generated on
 message failure (Nack).

 +--------+----+---+---------+-------+
 |ACL Used|Nack|Ack| Context |Opcode |
 +--------+----+---+---------+-------+
 | 7 | 6 | 5 | 4 3 | 2 1 0 |
 +--------+----+---+---------+-------+
 MSB LSB

 Figure 26: AMP Common Message Header

 Opcode
 The opcode field identifies the opcode of the
 message, within the associated message context.

 ACK Flag
 The ACK flag describes whether successful application
 of the message must generate an acknowledgement back
 to the message sender. If this flag is set (1) then
 the receiving actor MUST generate a report
 communicating this status. Otherwise, the actor MAY
 generate such a report based on other criteria.

 NACK Flag
 The NACK flag describes whether a failure applying
 the message must generate an error notice back to the
 message sender. If this flag is set (1) then the
 receiving Actor MUST generate a report communicating
 this status. Otherwise, the Actor MAY generate such
 a report based on other criteria.

 ACL Used Flag
 The ACL used flag indicates whether the message has a
 trailer associated with it that specifies the list of
 AMP actors that may participate in the Actions or

Birrane Expires February 18, 2016 [Page 37]

Internet-Draft AMP August 2015

 definitions associated with the message. This area
 is still under development.

 Body
 The message body contains the information associated with the
 given message.

 Trailer
 An OPTIONAL access control list (ACL) may be appended as a
 trailer to a message. When present, the ACL for a message
 identifiers the agents and managers that can be affected by
 the definitions and actions contained within the message.
 The explicit impact of an ACL is described in the context of
 each message below. When an ACL trailer is not present, the
 message results may be visible to any AMP Actor in the
 network, pursuant to other security protocol implementations.

8.3. Register Agent (0x00)

 The Register Agent message is used to inform a AMP manager of the
 presence of another agent in the network.

 +----------+
 | Agent ID |
 | [SDNV] |
 +----------+

 Figure 27: Register Agent Message Body

 Agent ID
 The Agent ID MUST represent the unique address of the Agent
 in whatever protocol is used to communicate with the Agent.

8.4. Data Report (0x12)

 Data reports include a listing of one or more data items collected
 from a managed device. These reports may include atomic data,
 computed data, or any report definition known to the generating
 device. Each message is a concatenation of ID/Data definitions with
 the overall message length assumed to be captured in the underlying
 transport container.

 +------+----------+-------+-------+ +-------+
 | Time | Num Rpts | RPT 1 | RPT 2 | | RPT N |
 | [TS] | [SDNV] | [RPT] | [RPT] | ... | [RPT] |
 +------+----------+-------+-------+ +-------+

 Figure 28: Data Report Message Body

Birrane Expires February 18, 2016 [Page 38]

Internet-Draft AMP August 2015

 Time
 The time at which the report was generated by the AMP Actor.

 Num Rpts
 The number of reports in the data report message.

 RPT N
 The Nth report.

8.5. Perform Control (0x20)

 The perform control method causes the receiving AMP Actor to apply
 one or more pre-configured controls provided in the form of a Macro.

 +-------+-----------+
 | Start | Controls |
 | [TS] | [MC] |
 +-------+-----------+

 Figure 29: Perform Control Message Body

 Start
 The time at which the Macro should be run.

 Controls
 The collection of controls (Macro) to be run by the AMP
 Actor. The MID identifying a control will contain the
 parameters for the control (if any) through the use of a
 parameterized OID captured within the MIDs in the MC.

9. IANA Considerations

 At this time, this protocol has no fields registered by IANA.

10. Security Considerations

 Security within the AMP exists in two layers: transport layer
 security and access control.

 Transport-layer security addresses the questions of authentication,
 integrity, and confidentiality associated with the transport of
 messages between and amongst Managers and Agents. This security is
 applied before any particular Actor in the system receives data and,
 therefore, is outside of the scope of this document.

 Finer grain application security is done via ACLs provided in the AMP
 message headers.

Birrane Expires February 18, 2016 [Page 39]

Internet-Draft AMP August 2015

11. References

11.1. Informative References

 [AMA] Birrane, E., "Asynchronous Management Architecture",
draft-birrane-dtn-ama-00 (work in progress), August 2015.

 [I-D.irtf-dtnrg-dtnmp]
 Birrane, E. and V. Ramachandran, "Delay Tolerant Network
 Management Protocol", draft-irtf-dtnrg-dtnmp-01 (work in
 progress), December 2014.

11.2. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6256] Eddy, W. and E. Davies, "Using Self-Delimiting Numeric
 Values in Protocols", RFC 6256, DOI 10.17487/RFC6256, May
 2011, <http://www.rfc-editor.org/info/rfc6256>.

Author's Address

 Edward J. Birrane
 Johns Hopkins Applied Physics Laboratory

 Email: Edward.Birrane@jhuapl.edu

https://datatracker.ietf.org/doc/html/draft-birrane-dtn-ama-00
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-dtnmp-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6256
http://www.rfc-editor.org/info/rfc6256

Birrane Expires February 18, 2016 [Page 40]

