
Workgroup: Delay-Tolerant Networking

Internet-Draft: draft-birrane-dtn-ari-00

Published: 17 December 2021

Intended Status: Standards Track

Expires: 20 June 2022

Authors: E.J. Birrane

JHU/APL

E.A. Annis

Johns Hopkins Applied Physics Laboratory

AMM Resource Identifier

Abstract

This document defines the structure, format, and features of the

naming scheme for the objects defined in the Delay-Tolerant

Networking Autonomous Management Model (AMM), in support of

challenged network management solutions described in the Delay-

Tolerant Networking Autonomous Management Architecture (AMA).

This document defines a new AMM Resource Identifier (ARI), based on

the structure of a common URI, meeting the needs for a concise,

typed, parameterized, and hierarchically organized set of data

elements.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 June 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Scope

2. Requirements Language

3. Terminology

4. ARI Scheme Utility

4.1. Resource Parameterization

4.2. Compressible Structure

4.2.1. Relative Paths

4.2.2. Path Suffixing

4.2.3. Patterning

5. ARI Component Definitions

5.1. Namespaces

5.1.1. Anonymous Namespaces

5.1.2. Regular Namespaces

5.1.2.1. Moderated Namespaces

5.1.2.2. Informal Namespaces

5.2. Object

5.3. Parameters

5.3.1. Formal Parameters

5.3.2. Actual Parameters

5.4. Special Case: Literal Values

6. ARI Scheme Syntax

6.1. Literal String Encoding

6.2. Delimiting Characters

6.2.1. Wildcards

7. Encoding Considerations

8. Scheme Registration Considerations

9. Interoperability Considerations

10. Security Considerations

11. IANA Considerations

11.1. ARI Scheme

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Examples

A.1. Namespace Examples

A.2. Object Examples

Authors' Addresses

¶

1. Introduction

The unique limitations of Delay-Tolerant Networking (DTN) transport

capabilities [RFC4838] necessitate increased reliance on individual

node behavior. These limitations are considered part of the expected

operational environment of the system and, thus, contemporaneous

end-to-end data exchange cannot be considered a requirement for

successful communication.

The primary DTN transport mechanism, Bundle Protocol version 7,

(BPv7) [I-D.ietf-dtn-bpbis], standardizes a store-and-forward

behavior required to communicate effectively between endpoints that

may never co-exist in a single network partition. BPv7 might be

deployed in static environments, but the design and operation of

BPv7 cannot presume that to be the case.

Similarly, the management of any BPv7 protocol agent (BPA) (or any

software reliant upon DTN for its communication) cannot presume to

operate in a resourced, connected network. Just as DTN transport

must be delay-tolerant, DTN network management must also be delay-

tolerant.

The DTN Autonomous Management Architecture (DTN AMA) [I-D.ietf-dtn-

ama] outlines an architecture that achieves this result through the

self-management of a DTN node as configured by one or more remote

managers in an asynchronous and open-loop system. An important part

of this architecture is the definition of a conceptual data schema

for defining resources configured by remote managers and implemented

by the local autonomy of a DTN node.

The DTN Asynchronous Management Model (DTN AMM) [I-D.birrane-dtn-

adm] defines a logical schema that can be used to represent data

types and structures, autonomous controls, and other kinds of

information expected to be required for the local management of a

DTN node. The DTN AMM further describes a physical data model,

called the Application Data Model, that can be defined in the

context of applications to create resources in accordance with the

DTN AMM logical schema. These named resources can be predefined in

moderated publications or custom-defined as part of the operational

management of a network or a node.

Every AMM resource must be uniquely identifiable. To accomplish

this, an expressive naming scheme is required. The AMM Resource

Identifier (ARI) provides this naming scheme. This document defines

an ARI, based on the structure of a URI, meeting the needs for a

concise, typed, parameterized, and hierarchically organized naming

convention.

¶

¶

¶

¶

¶

¶

1.1. Scope

The ARI scheme is based on the structure of a URI [RFC3986] in

accordance with the practices outlined in [RFC8820].

ARIs are designed to support the identification requirements of the

DTN AMM logical schema. As such, this specification will discuss

these requirements to the extent necessary to explain the structure

and use of the ARI syntax.

This specification does not constrain the syntax or structure of any

existing URI (or part thereof). As such, the ARI scheme does not

impede the ownership of any other URI definition and is therefore

clear of the concerns presented in [RFC7320].

This specification does not discuss the manner in which ARIs might

be generated, populated, and used by applications. The operational

utility and configuration of ARIs in a system are described in other

documents associated with DTN management, to include the AMA and AMM

specifications.

This specification does not describe the way in which path prefixes

associated with an ARI are standardized, moderated, or otherwise

populated. Path suffixes may be specified where they do not lead to

collision or ambiguity.

This specification does not describe the mechanisms for generating

either standardized or custom ARIs in the context of any given

application, protocol, or network.

This specification does not describe the ways in which an ARI could

be encoded into other formats, to include compressed binary formats.

However, the design of the ARI syntax discusses compressibility to

the extent that the design impacts the ability to create such

encodings.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in BCP 14 [RFC2119]

[RFC8174] when, and only when, they appear in all capitals, as shown

here.

3. Terminology

DTN Autonomous Management Model (AMM) - data types and data

structures needed to manage applications in challenged networks.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

AMM Resource Identifier (ARI) - A unique identifier for any AMM

object, syntactically conformant to the Uniform Resource

Identifier (URI) syntax documented in [RFC3986] and using the

scheme name "ari".

AMM Namespace - A moderated, hierarchical taxonomy of namespaces

that describe a set of AMM scopes. Specifically, an individual

AMM namespace is a specific sequence of AMM namespaces, from most

general to most specific, that uniquely and unambiguously

identify the namespace of a particular AMM.

Operational Data Model (ODM) - The operational configuration of

an Agent. This includes the union of all ADM information

supported by the Agent as well as all operational, dynamic

configuration applied to the Agent by Managers in the network.

4. ARI Scheme Utility

AMM resources are referenced in the context of autonomous

applications on an agent. The naming scheme of these resources must

support certain features to inform AMA processing in accordance with

the AMM logical schema.

This section defines the set of unique characteristics of the ARI

scheme, the combination of which provides a unique utility for

naming. While certain other naming schemes might incorporate certain

elements, there are no such schemes that both support needed

features and exclude prohibited features.

4.1. Resource Parameterization

The AMM schema allows for the parameterization of resources to both

reduce the overall data volume communicated between DTN nodes and to

remove the need for any round-trip data negotiation.

Parameterization reduces the communicated data volume when

parameters are used as filter criteria. By associating a parameter

with a data source, data characteristic, or other differentiating

attribute, DTN nodes can locally process parameters to construct the

minimal set of information to either process for local autonomy or

report to remote managers in the network.

Parameterization eliminates the need for round-trip negotiation to

identify where information is located or how it should be accessed.

When parameters define the ability to perform an associative lookup

of a value, the index or location of the data at a particular DTN

node can be resolved locally as part of the local autonomy of the

node and not communicated back to a remote manager.

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

4.2. Compressible Structure

The ability to encode information in very concise formats enables

DTN communications in a variety of ways. Reduced message sizes

increase the likelihood of message delivery, require fewer

processing resources to secure, store, and forward, and require less

resources to transmit.

While the encoding of an ARI is outside of the scope of this

document, the structure of portions of the ARI syntax lend

themselves to better compressibility. For example, DTN AMM encodings

support the ability to identify resources in as few as 3 bytes by

exploiting the compressible structure of the ARI.

The ARI syntax supports three design elements to aid in the creation

of more concise encodings: relative paths, path suffixing, and

patterning.

4.2.1. Relative Paths

Hierarchical structures are well known to support compressible

encodings by strategically enumerating well-known branching points

in a hierarchy. For this reason, the ARI syntax uses the URI path to

implement a naming hierarchy.

Supporting relative paths allow for the ARI namespace to be

shortened relative to a well-known prefix. By eliminating the need

to repeat common path prefixes in ARIs (in any encoding) the size of

any given ARI can be reduced.

This relative prefix might be relative to an existing location, such

as the familiar "../item" or relative to a defined nickname for a

particular path prefix, such as "{root}/item".

4.2.2. Path Suffixing

Path suffixing refers to specifying how information close to the

"leaf" node of a hierarchy is structured. By codifying this

structure into the ARI syntax, elements of the AMM logical scheme

can be enumerated and compressed in the same way for any physical

data model instantiation of an ARI.

4.2.3. Patterning

Patterning in this context refers to the structuring of ARI

information to allow for meaning data selection as a function of

wildcards, regular expressions, and other expressions of a pattern.

¶

¶

¶

¶

¶

¶

¶

¶

Patterns allow for both better compression and fewer ARI

representations by allowing a single ARI pattern to stand-in for a

variety of actual ARIs.

This benefit is best achieved when the structure of the ARI is both

expressive enough to include information that is useful to pattern

match, and regular enough to understand how to create these

patterns.

5. ARI Component Definitions

This section describes the components of the ARI scheme to inform

the discussion of the ARI syntax in Section Section 6. These

components include ARI Namespaces, Object Names, Parameters, and

Special Representations.

5.1. Namespaces

AMM resources exist within namespaces to eliminate the chance of a

conflicting resource name, aid in the application of patterns, and

improve the compressibility of the ARI. Namespaces MUST NOT be used

as a security mechanism. An Agent or Manager MUST NOT infer security

information or access control based solely on namespace information

in an ARI.

The AMM defines two types of namespaces whose representation within

an ARI is slight different: Regular Namespaces and Anonymous

Namespaces.

5.1.1. Anonymous Namespaces

The ARI syntax supports the definition of AMM resources absent a

containing namespace. In this sense, the resource is considered

"anonymous" in that it is not placeable in a particular hierarchy

and, thus, not able to be located based on relative paths, patterns

over the namespace hierarchy, or other characteristic based on the

namespace.

Anonymous namespaces are most effectively used for the

representation of literal values and constants that have utility and

definition that is not otherwise associated with a single namespace.

For example, the representation of the strongly typed integer value

4 could be representing using the anonymous namespace as:

ari:uint(4)

5.1.2. Regular Namespaces

A regular namespace is simply any namespace other than the empty

namespace reserved for anonymous ARIs.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Namespaces are hierarchical, which allows the grouping of resources

that share common attributes - for example, resources associated

with related protocols may have protocol-specific namespaces that

are grouped under a single encompassing namespace. Namespaces that

are closer to a "root node" in a hierarchy have broader scope than

namespaces closer to "leaf nodes" in the same hierarchy.

In a hierarchical model of namespaces, a particular namespace is

identified as the path to that namespace through the hierarchy. The

ARI encodes this path with the URI path attribute.

The ARI scheme defines two types of namespaces: moderated and

informal.

5.1.2.1. Moderated Namespaces

Moderated namespaces identify AMM resources that have been defined

in a normative, moderated way by some standards organization. These

resources are immutable and can be relied on the be define and used

the same way across multiple networks and multiple implementations.

Because the source of the resource definition in a moderated

namespace represents an authoritative reference to this object,

moderated namespaces always include an authority segment.

5.1.2.2. Informal Namespaces

Informal namespaces represent resources that are only defined in the

context of a specific network, mission, or application or those

resources that might only be defined for a certain period of time.

Unlike moderated namespaces, informal namespaces have no defined

authority associated with them. The path representing these

namespaces may be any valid path.

The general form of an informal namespace is given as: <ISSUER>/

<TAG>.

An Issuer is any string that identifies the organization that is

defining an AMM object. This value may come from a global registry

of organizations, an issuing node address, a signed known value, or

some other network-unique marking. Issuers MUST NOT conflict with

known moderated namespaces, and AMA Agents and Managers should not

process Issuers that conflict with existing moderated namespaces.

A Tag is any (optional) string used to disambiguate AMM Objects for

an Issuer. The contents of the tag are left to the discretion of the

Issuer. Examples of potential tag values include an issuer-known

version number or a (signed) hashing of the data item associated

with the reference identifier.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.2. Object

An object is any one of a number of data elements defined for the

management of a given application or protocol that conforms to the

AMM logical schema.

Objects are identified in the ARI scheme by the catenation of their

AMM logical schema type and a string name. Additionally, objects may

be further differentiated by any parameters defined for that object.

5.3. Parameters

The AMM logical schema allows many object types to be parameterized

when defined in the context of an application or a protocol.

If two instances of an AMM resource have the same namespace and same

object type and object name but have different parameter values,

then those instances are unique and the ARIs for those instances

MUST also be unique. Therefore, parameters are considered part of

the ARI syntax.

The AMM logical schema defines two types of parameters: Formal and

Actual. The terms formal parameter and actual parameter follow

common computer programming vernacular for discussing function

declarations and function calls, respectively.

5.3.1. Formal Parameters

Formal parameters define the type, name, and order of the

information that customizes an ARI. They represent the unchanging

"definition" of the parameterized object.

Formal parameters MUST include type and name information and MAY

include an optional default value. If specified, a default value

will be used whenever a set of actual parameters fails to provide a

value for this formal parameter.

5.3.2. Actual Parameters

Actual parameters represent the data values used to distinguish

different instances of a parameterized object.

An actual parameter MUST specify a value and MAY specify a type. If

a type is provided it MUST match the type provided by the formal

parameter. An actual parameter MUST NOT include NAME information.

Including type information in an actual parameters allows for

explicit type checking of a value, which might otherwise be

implicitely cast.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Parameter-By-Value

Parameter-By-Name

Namespaces

There are two ways in which the value of an actual parameter can be

specified: parameter-by-value and parameter-by-name.

This method involves directly supplying the value as part of the

actual parameter. It is the default method for supplying values.

This method involves specifying the name of some other parameter

and using that other parameter's value for the value of this

parameter. This method is useful when a parameterized ARI

contains another parameterized ARI. The contained object's actual

parameter can be given as the name of the containing ARI's

parameter. In that way, a containing ARI's parameters can be

"flowed down" to all of the objects it contains.

NOTE: In cases where a formal parameter contains a default value,

the associated actual parameter may be omitted. Default values in

formal parameters (and, thus, optional actual parameters) are

encouraged as they reduce the size of data items communicated

amongst Managers and Agents in a network.

5.4. Special Case: Literal Values

A literal value is one whose value and name are equivalent. The name

is, literally, the value. For example, the literal "4" serves as

both a name and a value. When literal values are represented, the

object name MUST be omitted and the literal value substituted as a

parameterization of the object.

Further, because the value of a Literal serves as its name, there is

no need for regular namespaces. All literals exist in the anonymous

namespace.

6. ARI Scheme Syntax

There are three components to the ARI: namespaces, objects, and

parameters. This section defines the syntactic representation of

each of these components, and discusses special cases.

The scheme name of the ARI is "ari". The scheme-specific part of the

"ari" scheme follows the format: ari:/<Namespace>/

<Object><(Parameters)> The string representation of each component

is given as follows.

¶

¶

¶

¶

¶

¶

¶

¶

Objects

Parameters

Namespaces are represented as "/" separated lists, with

individual namespace types represented as follows:

Moderated namespaces are listed using a URI authority

representing the normative moderator for the resource

followed by a URI path relative to that moderator.

For example: "ari://sdo/ietf/dtn/adm/bp/".

Anonymous namespaces are empty and are represented as the

lack of a starting / or //.

For example: "ari:type.name(parm)".

Informal namespaces are URI paths without a URI authority

present.

For example: "ari:/myproject/dtn/bp/dynamic".

The object name is represented as the two-tuple of the object

type and the object name, joined with the '.' character.

For example: "uint.num_bundles".

If present, parameters are represented as a comma-separated

string enclosed in parenthesis. Different types of parameters are

represented as follows.

Formal parameters follow the pattern <type> <name> and if

there is a default value, it is represented by the

substring "= <value>".

Actual Parameters-By-Value are represented as the string

encoding of their value.

Actual Parameters-By-Name are represented as the name of

the parameter enclosed in angle brackets.

Note: If an actual parameter is missing for a formal parameter

that has a default value, then the ARI MUST have a blank space

where the actual parameter would have been. This missing

parameter will also have a comma, separating it from other actual

parameters in the ARI string.

¶

*

¶

¶

*

¶

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

6.1. Literal String Encoding

The string representation of a Literal ARI is much simpler and

consists of simply the data type of the Literal followed by the

value, as follows:

"ari:/type(value)"

6.2. Delimiting Characters

For the scheme specific parts, there is no authority to be defined

for the ARI URI. The scheme is separated from the path using a ":"

and the path components are separated and terminated using a "/".

The path is comprised of the namespaces which hierarchally organize

the AMM objects. The object is defined by both its AMM object type

(such as EDD, VAR, RPTT, etc.) and the object name, each separated

by a ".". The object parameters are separated using reserved

characters "{", "}", "[", "]", "(", ")" described below. Finally the

"#" sign is used at the end of the ARI only in cases where custom

issuer specific objects are defined. Example = ari:/top-a/mid-c/low-

b/edd.dtnObject([int dtnObjParam1], [str dtnObjParam2])#custom-

issuer-1

6.2.1. Wildcards

TBD

7. Encoding Considerations

ARIs might be represented in a variety of different formats, to

include human-readable strings, structured language representations

(such as XML or JSON), and binary encodings (such as CBOR). An ARI

scheme must support the mechanical translation amongst this

diversity of representations.

An ARI scheme should represent, and differentiate, different kinds

of information using a standard format. Such standard formats should

rely on delimiters and other structural components and not informal

naming conventions.

8. Scheme Registration Considerations

This section contains fields required for the URI scheme

registration, following the guidelines in [RFC7595]

TODO: Define characters used for globs, wildcards, expression

matching, etc.

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-dtn-bpbis]

9. Interoperability Considerations

DTN challenged networks might interface with better resourced

networks that are managed using non-DTN management protocols. When

this occurs, the federated network architecture might need to define

management gateways that translate between DTN and non-DTN

management approaches.

NOTE: It is also possible for DTN management be used end-to-end

because this approach can also operate in less challenged networks.

The opposite is not true; non-DTN management approaches should not

be assumed to work in DTN challenged networks.

Where possible, ARIs should be translatable to other, non-DTN

management naming schemes. This translation might not be 1-1, as the

features of the AMM may differ from features in other management

naming schemes. Therefore, it is unlikely that a single naming

scheme can be used for both DTN and non-DTN management.

10. Security Considerations

Policy decisions as to whether anonymous namespaces are allowed in

the system should be determined before network deployment. The use

of an anonymous namespace greatly increases the chances of naming

collisions.

Because informal namespaces are defined by any entity, no security

or permission meaning can be inferred simply from the expression of

namespace.

11. IANA Considerations

This section provides guidance to the Internet Assigned Numbers

Authority (IANA) regarding registration of schema and namespaces

related to the AMM Resource Identifier (ARI), in accordance with BCP

26 [RFC1155].

11.1. ARI Scheme

This document defines a new URI scheme, "ari", as defined in Section

6. This scheme to be registered by IANA here: https://www.iana.org/

assignments/uri-schemes/uri-schemes.xhtml

12. References

12.1. Normative References

Burleigh, S., Fall, K., and E. Birrane, "Bundle

Protocol Version 7", Work in Progress, Internet-Draft,

draft-ietf-dtn-bpbis-31, 25 January 2021, <https://

¶

¶

¶

¶

¶

¶

¶

https://www.ietf.org/internet-drafts/draft-ietf-dtn-bpbis-31.txt

[RFC2119]

[RFC3986]

[RFC7595]

[RFC8174]

[I-D.birrane-dtn-adm]

[I-D.ietf-dtn-ama]

[RFC1155]

[RFC4838]

[RFC7320]

www.ietf.org/internet-drafts/draft-ietf-dtn-

bpbis-31.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines

and Registration Procedures for URI Schemes", BCP 35, RFC

7595, DOI 10.17487/RFC7595, June 2015, <https://www.rfc-

editor.org/info/rfc7595>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

Birrane, E., DiPietro, E., and D. Linko, "AMA

Application Data Model", Work in Progress, Internet-

Draft, draft-birrane-dtn-adm-03, 2 July 2018, <http://

www.ietf.org/internet-drafts/draft-birrane-dtn-

adm-03.txt>.

Birrane, E. J., Annis, J. E., and S. Heiner,

"Asynchronous Management Architecture", Work in Progress,

Internet-Draft, draft-ietf-dtn-ama-03, 25 October 2021,

<https://www.ietf.org/archive/id/draft-ietf-dtn-

ama-03.txt>.

Rose, M. and K. McCloghrie, "Structure and identification

of management information for TCP/IP-based internets",

STD 16, RFC 1155, DOI 10.17487/RFC1155, May 1990,

<https://www.rfc-editor.org/info/rfc1155>.

Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,

R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant

Networking Architecture", RFC 4838, DOI 10.17487/RFC4838,

April 2007, <https://www.rfc-editor.org/info/rfc4838>.

Nottingham, M., "URI Design and Ownership", RFC 7320, DOI

10.17487/RFC7320, July 2014, <https://www.rfc-editor.org/

info/rfc7320>.

https://www.ietf.org/internet-drafts/draft-ietf-dtn-bpbis-31.txt
https://www.ietf.org/internet-drafts/draft-ietf-dtn-bpbis-31.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc8174
http://www.ietf.org/internet-drafts/draft-birrane-dtn-adm-03.txt
http://www.ietf.org/internet-drafts/draft-birrane-dtn-adm-03.txt
http://www.ietf.org/internet-drafts/draft-birrane-dtn-adm-03.txt
https://www.ietf.org/archive/id/draft-ietf-dtn-ama-03.txt
https://www.ietf.org/archive/id/draft-ietf-dtn-ama-03.txt
https://www.rfc-editor.org/info/rfc1155
https://www.rfc-editor.org/info/rfc4838
https://www.rfc-editor.org/info/rfc7320
https://www.rfc-editor.org/info/rfc7320

[RFC8820]
Nottingham, M., "URI Design and Ownership", BCP 190, RFC

8820, DOI 10.17487/RFC8820, June 2020, <https://www.rfc-

editor.org/info/rfc8820>.

Appendix A. Examples

A.1. Namespace Examples

For example, consider the namespaces in Figure 1.

ARI Namespace Hierarchy

Figure 1

Given this hierarchy, the following are all valid namespace

representations.

ari://sdo/ietf/

ari://sdo/ietf/app-1/

ari://sdo/ietf/app-3/

ari:/vendor/

ari:/vendor/prod1/

ari:/vendor/prod2/app-5

ari:/

¶

¶

 +-------+ +--------+

 | SDO | | VENDOR |

 +---+---+ +---+----+

 | _____|_____

 | | |

 +-------+ +-------+ +-------+

 | IETF | | PROD1 | | PROD2 |

 +-------+ +-------+ +-------+

 _________|_________ | |

 | | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| APP-1 | | APP-2 | | APP-3 | | APP-4 | | APP-5 |

+-------+ +-------+ +-------+ +-------+ +-------+

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8820
https://www.rfc-editor.org/info/rfc8820

A.2. Object Examples

The ARIs for the following sample AMM objects are encoded in Table

1. Note that these examples are for the identifiers of AMM objects,

not their entire definition.

The number of bytes received by an Agent, defined in the N1/N2

namespace and called num_bytes.

The number of bytes received through an interface, called

num_bytes_if, which takes a single string parameter named

"if_name" with a default value oth "eth0".

An anonymous, operator-defined object named "obj1" which takes

two unsigned integer parameters, n1 and n2, with default values

of 3 and 4, respectively.

The typed, Literal value of 4.

ARI String Description

"ari:/N1/N2/num_bytes"
Unparameterized num_bytes object in the N1/

N2 informal namespace.

"num_bytes"
Shortform encoding where the N1/N2 namespace

can be assumed.

"num_bytes_if(String

if_name)"

Formal parameter definition of num_bytes

object that accepts a string interface name.

"num_bytes_if(String

if_name=eth0)"

Formal parameter definition of num_bytes

object that accepts a string interface name

with a default value.

"num_bytes_if()"
Actual parameter using the default value of

eth0.

"num_bytes_if(eth0)" Actual parameter of eth0.

"ari:/obj1(Int n1 = 0,

Int n2 = 3)"

Formal parameter of object obj1 in anonymous

namespace taking 2 default parameters.

"ari:/obj1(,)"
Actual parameter using the default values of

0 for n1 and 3 for n2.

"ari:/obj1(, 4)"
Actual parameter using the default value of

0 for n1.

"ari:/obj1(4,)"
Actual parameter using the default value of

3 for n2.

"ari:/obj1(4,4)"
Actual parameters provided for all obj1

parameters.

"ari:/obj1(<input>,4)"

Actual parameters provided for all obj1

parameters, with the value of the first

parameter taken from some other parameter

named "input".

"ari:uint(4)"
The Literal value 4 interpreted as a 32-bit

unsigned integer.

Table 1

¶

*

¶

*

¶

*

¶

* ¶

Authors' Addresses

Edward J. Birrane, III

The Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Rd.

Laurel, MD 20723

United States of America

Phone: +1 443 778 7423

Email: Edward.Birrane@jhuapl.edu

Emery Annis

Johns Hopkins Applied Physics Laboratory

Email: Emery.Annis@jhuapl.edu

tel:+1%20443%20778%207423
mailto:Edward.Birrane@jhuapl.edu
mailto:Emery.Annis@jhuapl.edu

	AMM Resource Identifier
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Scope

	2. Requirements Language
	3. Terminology
	4. ARI Scheme Utility
	4.1. Resource Parameterization
	4.2. Compressible Structure
	4.2.1. Relative Paths
	4.2.2. Path Suffixing
	4.2.3. Patterning

	5. ARI Component Definitions
	5.1. Namespaces
	5.1.1. Anonymous Namespaces
	5.1.2. Regular Namespaces
	5.1.2.1. Moderated Namespaces
	5.1.2.2. Informal Namespaces

	5.2. Object
	5.3. Parameters
	5.3.1. Formal Parameters
	5.3.2. Actual Parameters

	5.4. Special Case: Literal Values

	6. ARI Scheme Syntax
	6.1. Literal String Encoding
	6.2. Delimiting Characters
	6.2.1. Wildcards

	7. Encoding Considerations
	8. Scheme Registration Considerations
	9. Interoperability Considerations
	10. Security Considerations
	11. IANA Considerations
	11.1. ARI Scheme

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Examples
	A.1. Namespace Examples
	A.2. Object Examples

	Authors' Addresses

