
Workgroup: Delay-Tolerant Networking

Internet-Draft: draft-birrane-dtn-ari-01

Published: 12 March 2023

Intended Status: Standards Track

Expires: 13 September 2023

Authors: E.J. Birrane

JHU/APL

E.A. Annis

JHU/APL

B. Sipos

JHU/APL

Asynchronous Resource Identifier

Abstract

This document defines the structure, format, and features of the

naming scheme for the objects defined in the Delay-Tolerant

Networking (DTN) Application Data Model (ADM), in support of

challenged network management solutions described in the Delay-

Tolerant Networking Autonomous Management Architecture (AMA).

This document defines a new Asynchronous Resource Identifier (ARI),

based on the structure of a common URI, meeting the needs for a

concise, typed, parameterized, and hierarchically organized set of

data elements.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Scope

1.2. Use of ABNF

1.3. Use of CDDL

1.4. Terminology

2. ARI Purpose

2.1. Resource Parameterization

2.2. Compressible Structure

2.2.1. Enumerated Path Segments

2.2.2. Relative Paths

2.2.3. Patterning

3. ARI Logical Structure

3.1. Names, Enumerations, Comparisons, and Canonicalizations

3.2. Literals

3.3. Object References

3.3.1. Namespace

3.3.2. Object Type

3.3.3. Object Name

3.3.4. Parameters

4. ARI Text Form

4.1. URIs and Percent Encoding

4.2. Literals

4.3. Object References

4.4. URI References

4.5. Patterns

5. ARI Binary Form

5.1. Intermediate CBOR

5.2. Literals

5.3. Object References

5.4. URI References

5.5. Patterns

6. Transcoding Considerations

7. Interoperability Considerations

8. Security Considerations

9. IANA Considerations

9.1. URI Schemes Registry

9.2. CBOR Tags Registry

9.3. DTN Management Protocol Registry

10. References

10.1. Normative References

10.2. Informative References

¶

Appendix A. Examples

A.1. Typed Literal

A.2. Complex CBOR Literal

A.3. Non-parameterized Object Reference

A.4. Parameterized Object Reference

A.5. Recursive Structure with Percent Encodings

Authors' Addresses

1. Introduction

The unique limitations of Delay-Tolerant Networking transport

capabilities [RFC4838] necessitate increased reliance on individual

node behavior. These limitations are considered part of the expected

operational environment of the system and, thus, contemporaneous

end-to-end data exchange cannot be considered a requirement for

successful communication.

The primary DTN transport mechanism, Bundle Protocol version 7,

(BPv7) [RFC9171], standardizes a store-and-forward behavior required

to communicate effectively between endpoints that may never co-exist

in a single network partition. BPv7 might be deployed in static

environments, but the design and operation of BPv7 cannot presume

that to be the case.

Similarly, the management of any BPv7 protocol agent (BPA) (or any

software reliant upon DTN for its communication) cannot presume to

operate in a resourced, connected network. Just as DTN transport

must be delay-tolerant, DTN network management must also be delay-

tolerant.

The DTN Autonomous Management Architecture (DTN AMA)

[I-D.ietf-dtn-ama] outlines an architecture that achieves this

result through the self-management of a DTN node as configured by

one or more remote managers in an asynchronous and open-loop system.

An important part of this architecture is the definition of a

conceptual data schema for defining resources configured by remote

managers and implemented by the local autonomy of a DTN node.

The DTN Asynchronous Management Model (DTN AMM)

[I-D.birrane-dtn-adm] defines a logical schema that can be used to

represent data types and structures, autonomous controls, and other

kinds of information expected to be required for the local

management of a DTN node. The DTN AMM further describes a physical

data model, called the Application Data Model, that can be defined

in the context of applications to create resources in accordance

with the DTN AMM logical schema. These named resources can be

predefined in moderated publications or custom-defined as part of

the operational management of a network or a node.

¶

¶

¶

¶

¶

Every AMM resource must be uniquely identifiable. To accomplish

this, an expressive naming scheme is required. The AMM Resource

Identifier (ARI) provides this naming scheme. This document defines

an ARI, based on the structure of a URI, meeting the needs for a

concise, typed, parameterized, and hierarchically organized naming

convention.

1.1. Scope

The ARI scheme is based on the structure of a URI [RFC3986] in

accordance with the practices outlined in [RFC8820].

ARIs are designed to support the identification requirements of the

DTN AMM logical schema. As such, this specification will discuss

these requirements to the extent necessary to explain the structure

and use of the ARI syntax.

This specification does not constrain the syntax or structure of any

existing URI (or part thereof). As such, the ARI scheme does not

impede the ownership of any other URI definition and is therefore

clear of the concerns presented in [RFC7320].

This specification does not discuss the manner in which ARIs might

be generated, populated, and used by applications. The operational

utility and configuration of ARIs in a system are described in other

documents associated with DTN management, to include the AMA and AMM

specifications.

This specification does not describe the way in which path prefixes

associated with an ARI are standardized, moderated, or otherwise

populated. Path suffixes may be specified where they do not lead to

collision or ambiguity.

This specification does not describe the mechanisms for generating

either standardized or custom ARIs in the context of any given

application, protocol, or network.

This specification does not describe the ways in which an ARI could

be encoded into other formats, to include compressed binary formats.

However, the design of the ARI syntax discusses compressibility to

the extent that the design impacts the ability to create such

encodings.

1.2. Use of ABNF

This document defines text structure using the Augmented Backus-Naur

Form (ABNF) of [RFC5234]. The entire ABNF structure can be extracted

from the XML version of this document using the XPath expression:

¶

¶

¶

¶

¶

¶

¶

¶

¶

'//sourcecode[@type="abnf"]'¶

Agent:

Manager:

The following initial fragment defines the top-level rules of this

document's ABNF.

From the document [RFC3986] the definitions are taken for pchar,

path-absolute, and path-noscheme. From the document [RFC5234] the

definition is taken for digit.

1.3. Use of CDDL

This document defines Concise Binary Object Representation (CBOR)

structure using the Concise Data Definition Language (CDDL) of

[RFC8610]. The entire CDDL structure can be extracted from the XML

version of this document using the XPath expression:

The following initial fragment defines the top-level symbols of this

document's CDDL, which includes the example CBOR content.

This document does not rely on any CDDL symbol names from other

documents.

1.4. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in BCP 14 [RFC2119]

[RFC8174] when, and only when, they appear in all capitals, as shown

here.

Additionally, the following terms are used in this document:

An entity being managed in the AMA as defined in

[I-D.ietf-dtn-ama]. It is expected to be accessible by its

Managers over a DTN.

An entity managing others in the AMA as defined in

[I-D.ietf-dtn-ama]. It is expected to be accessible by its Agents

over a DTN.

¶

start = ari¶

¶

¶

'//sourcecode[@type="cddl"]'¶

¶

start = ari

; Limited sizes to fit the AMP data model

int32 = (int .lt 2147483648) .ge -2147483648

uint32 = uint .lt 4294967296

int64 = (int .lt 9223372036854775808) .ge -9223372036854775808

uint64 = uint .lt 18446744073709551616

¶

¶

¶

¶

¶

¶

Application Data Model (ADM):

Operational Data Model (ODM):

Asynchronous Resource Identifier (ARI):

Namespace

Definitions of pre-planned objects

being managed on remote agents across challenged networks. An ADM

is versioned, but a single version of an ADM cannot change over

time once it is registered. This is similar in function to an SMI

MIB or an YANG module.

The operational configuration of an

Agent, exclusive of the pre-planned objects defined by ADMs.

These objects are dynamic configuration applied at runtime,

either by Managers in the network or by autonomy on the Agent.

An identifier for any ADM

or ODM managed object, as well as ad-hoc managed objects and

literal values. ARIs are syntactically conformant to the Uniform

Resource Identifier (URI) syntax documented in [RFC3986] and

using the scheme name "ari". This is similar in function to an

SMI OID or an YANG XPath expression along with parameters.

A moderated, hierarchical taxonomy of namespaces that

describe a set of ADM scopes. Specifically, an individual ADM

namespace is a specific sequence of ADM namespaces, from most

general to most specific, that uniquely and unambiguously

identify the namespace of a particular ADM.

2. ARI Purpose

ADM resources are referenced in the context of autonomous

applications on an agent. The naming scheme of these resources must

support certain features to inform AMA processing in accordance with

the ADM logical schema.

This section defines the set of unique characteristics of the ARI

scheme, the combination of which provides a unique utility for

naming. While certain other naming schemes might incorporate certain

elements, there are no such schemes that both support needed

features and exclude prohibited features.

2.1. Resource Parameterization

The ADM schema allows for the parameterization of resources to both

reduce the overall data volume communicated between DTN nodes and to

remove the need for any round-trip data negotiation.

Parameterization reduces the communicated data volume when

parameters are used as filter criteria. By associating a parameter

with a data source, data characteristic, or other differentiating

attribute, DTN nodes can locally process parameters to construct the

minimal set of information to either process for local autonomy or

report to remote managers in the network.

¶

¶

¶

¶

¶

¶

¶

¶

Parameterization eliminates the need for round-trip negotiation to

identify where information is located or how it should be accessed.

When parameters define the ability to perform an associative lookup

of a value, the index or location of the data at a particular DTN

node can be resolved locally as part of the local autonomy of the

node and not communicated back to a remote manager.

2.2. Compressible Structure

The ability to encode information in very concise formats enables

DTN communications in a variety of ways. Reduced message sizes

increase the likelihood of message delivery, require fewer

processing resources to secure, store, and forward, and require less

resources to transmit.

While the encoding of an ARI is outside of the scope of this

document, the structure of portions of the ARI syntax lend

themselves to better compressibility. For example, DTN ADM encodings

support the ability to identify resources in as few as 3 bytes by

exploiting the compressible structure of the ARI.

The ARI syntax supports three design elements to aid in the creation

of more concise encodings: enumerated forms of path segments,

relative paths, and patterning.

2.2.1. Enumerated Path Segments

Because the ARI structure includes paths segments with stable

enumerated values, each segment can be represented by either its

text name or its integer enumeration. For human-readability in text

form the text name is preferred, but for binary encoding and for

comparisons the integer form is preferred. It is a translation done

by the entity handling an ARI to switch between preferred

representations (see Section 6); the data model of both forms of the

ARI allows for either.

2.2.2. Relative Paths

Hierarchical structures are well known to support compressible

encodings by strategically enumerating well-known branching points

in a hierarchy. For this reason, the ARI syntax uses the URI path to

implement a naming hierarchy.

Supporting relative paths allow for the ARI namespace to be

shortened relative to a well-known prefix. By eliminating the need

to repeat common path prefixes in ARIs (in any encoding) the size of

any given ARI can be reduced.

¶

¶

¶

¶

¶

¶

¶

This relative prefix might be relative to an existing location, such

as the familiar "../item" or relative to a defined nickname for a

particular path prefix, such as "{root}/item".

2.2.3. Patterning

Patterning in this context refers to the structuring of ARI

information to allow for meaning data selection as a function of

wildcards, regular expressions, and other expressions of a pattern.

Patterns allow for both better compression and fewer ARI

representations by allowing a single ARI pattern to stand-in for a

variety of actual ARIs.

This benefit is best achieved when the structure of the ARI is both

expressive enough to include information that is useful to pattern

match, and regular enough to understand how to create these

patterns.

3. ARI Logical Structure

This section describes the components of the ARI scheme to inform

the discussion of the ARI syntax in Section 4. At the top-level, an

ARI is one of two classes: literal or object reference. Each of

these classes is defined in the following subsections.

3.1. Names, Enumerations, Comparisons, and Canonicalizations

Within the ARI logical model, there are a number of domains in which

items are identified by a combination of text name and integer

enumeration: ADMs, ODMs, literal types, object types, and objects.

In all cases, within a single domain the text name and integer

enumeration SHALL NOT be considered comparable. It is an explicit

activity by any entity processing ARIs to make the translation

between text name and integer enumeration (see Section 6).

Text names SHALL be restricted to begin with an alphabetic character

followed by any number of other characters, as defined in the id-

text ABNF symbol. This excludes a large class of characters,

including non-printing characters. When represented in text form,

the text name for ODMs is prefixed with a "!" character to

disambiguate it from an ADM name (see Section 3.3).

For text names, comparison and uniqueness SHALL be based on case-

insensitive logic. The canonical form of text names SHALL be the

lower case representation.

Integer enumerations for ADMs and ODMs SHALL be restricted to a

magnitude less than 2**63 to allow them to fit within a signed 64-

bit storage. The ADM registration in Table 5 reserves high-valued

¶

¶

¶

¶

¶

¶

¶

¶

code points for private and experimental ADMs, while the entire

domain of ODM code points (negative integers) is considered private

use. Integer enumerations for primitive types and object types SHALL

be restricted to a magnitude less than 2**31 to allow them to fit

within a signed 32-bit storage. The registrations in Table 3 and

Table 4 respectively Integer enumerations for objects (within an ADM

or ODM) SHALL be restricted to a magnitude less than 2**31 to allow

them to fit within a signed 32-bit storage, although negative-value

object enumerations are disallowed.

For integer enumerations, comparison and uniqueness SHALL be based

on numeric values not on encoded forms. The canonical form of

integer enumerations in text form SHALL be the shortest length

decimal representation.

3.2. Literals

Literals represent a special class of ARI which are not associated

with any particular ADM or ODM. A literal has no other name other

than its value, but literals may be explicitly typed in order to

force the receiver to handle it in a specific way.

Because literals will be based on the CBOR data model [RFC8949] and

its extended diagnostic notation, a literal has an intrinsic

representable data type as well as an AMP data type. The CBOR

primitive types are named CDDL symbols as defined in Section 3.3 of

[RFC8610].

When converting from AMP primitive types, the chosen CBOR type SHALL

be determined by the mapping in Table 1. Additionally, when handling

typed literal ARIs any combination of AMP primitive type and CBOR

primitive type not in Table 1 SHALL be considered invalid. This

restriction is enforced by the CDDL defined in Section 5.

Additionally, when handling a literal of AMP type CBOR the well-

formed-ness of the CBOR contained SHOULD be verified before the

literal is treated as valid.

AMP Primitive Type Used CBOR Primitive Type

BOOL bool

BYTE uint

INT int

UINT uint

VAST int

UVAST uint

REAL32 float

REAL64 float

TV int

TS int

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8610#section-3.3

Text form:

AMP Primitive Type Used CBOR Primitive Type

STR tstr

LABEL tstr

BYTESTR bstr

CBOR bstr

Table 1: Literal Types to CBOR Primitives

When interpreting an untyped literal ARI, the implied AMP primitive

type SHALL be determined by the mapping in Table 2.

CBOR Primitive Type Implied AMP Primitive Type

bool BOOL

uint UVAST

nint VAST

float16, float32 FLOAT32

float64 FLOAT64

bstr BYTESTR

tstr STR

Table 2: Literal Implied and Allowed Types

3.3. Object References

Object references are composed of two parts: object identity and

optional parameters. The object identity can be dereferenced to a

specific object in the ADM/ODM, while the parameters provide

additional information for certain types of object and only when

allowed by the parameter "signature" from the ADM/ODM.

The object identity itself contains the components, described in the

following subsections: namespace, object type, and object name. When

encoded in text form (see Section 4), the identity components

correspond to the URI path segments.

3.3.1. Namespace

ADM resources exist within namespaces to eliminate the possibility

of a conflicting resource name, aid in the application of patterns,

and improve the compressibility of the ARI. Namespaces SHALL NOT be

used as a security mechanism to manage access. An Agent or Manager

SHALL NOT infer security information or access control based solely

on namespace information in an ARI.

Namespaces have two possible forms; one more human-friendly and one

more compressible:

This form corresponds with a human-readable identifier

for either an ADM or a ODM namespace. The text form is not

compressible and needs to be converted to a numeric namespace

¶

¶

¶

¶

¶

Numeric form:

ADM namespace:

ODM namespace:

based on a local registry. A text form namespace SHALL contain

only URI path segment characters.

This form corresponds with a compressible value

suitable for on-the-wire encoding between Manager and Agent.

Sorting and matching numeric namespaces is also faster than text

form. A numeric form namespaces SHALL be small enough to be

represented as a 64-bit signed integer.

Independent to the form of the namespace is the issuer of the

namespace, which is one of:

When a namespace is associated with an ADM, its text

form SHALL begin with an alphabetic character and its numeric

form SHALL be a positive integer. All ADM namespaces are

universally unique and, except for private or experimental use,

SHOULD be registered with IANA (see Table 5).

When a namespace is not associated with an ADM, its

text form SHALL begin with a bang character "!" and its numeric

form SHALL be a negative integer. These namespaces do not have

universal registration and SHALL be considered to be private use.

It is expected that runtime ODM namespaces will be allocated and

managed per-user and per-mission.

3.3.2. Object Type

Due to the flat structure of an ADM, as defined in

[I-D.birrane-dtn-adm], all managed objects are of a specific and

unchanging type from a set of available managed object types. The

preferred form for object types in text ARIs is the text name, while

in binary form it is the integer enumeration (see Section 6).

The following subsection explains the form of those object

identifiers.

3.3.3. Object Name

An object is any one of a number of data elements defined for the

management of a given application or protocol that conforms to the

ADM logical schema.

Within a single ADM or runtime namespace and a single object type,

all managed objects have similar characteristics and all objects are

identified by a single text name or integer enumeration. The

preferred form for object names in text ARIs is the text name, while

in binary form it is the integer enumeration. Any ADM-defined object

will have both name and enumeration, while a runtime-defined object

can have either but not both. Conversion between the two forms

¶

¶

¶

¶

¶

¶

¶

¶

Formal Parameters:

Actual Parameters:

Parameter-By-Value:

Parameter-By-Name:

requires access to the original ADM, and its specific revision, in

which the object was defined.

3.3.4. Parameters

The ADM logical schema allows many object types to be parameterized

when defined in the context of an application or a protocol.

If two instances of an ADM resource have the same namespace and same

object type and object name but have different parameter values,

then those instances are unique and the ARIs for those instances

MUST also be unique. Therefore, parameters are considered part of

the ARI syntax.

The ADM logical schema defines two types of parameters: Formal and

Actual. The terms formal parameter and actual parameter follow

common computer programming vernacular for discussing function

declarations and function calls, respectively.

Formal parameters define the type, name, and order of the

information that customizes an ARI. They represent the unchanging

"definition" of the parameterized object. Because ARIs represent

a use of an object and not its definition, formal parameters are

not present in an ARI.

Actual parameters represent the data values used to distinguish

different instances of a parameterized object.

An actual parameter MUST specify a value and MAY specify a type.

If a type is provided it MUST match the type provided by the

formal parameter. An actual parameter MUST NOT include NAME

information.

Including type information in an actual parameters allows for

explicit type checking of a value, which might otherwise be

implicitly cast.

There are two ways in which the value of an actual parameter can

be specified: parameter-by-value and parameter-by-name.

This method involves directly supplying the

value as part of the actual parameter. It is the default

method for supplying values.

This method involves specifying the name of

some other parameter and using that other parameter's value

for the value of this parameter. This method is useful when a

parameterized ARI contains another parameterized ARI. The

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

contained object's actual parameter can be given as the name

of the containing ARI's parameter. In that way, a containing

ARI's parameters can be "flowed down" to all of the objects it

contains.

4. ARI Text Form

This section defines how the data model explained in Section 3 is

encoded as text conforming to the URI syntax of [RFC3986]. The most

straightforward text form of ARI uses an explicit scheme and an

absolute path (starting with an initial slash "/"), which requires

no additional context to interpret its structure.

When used within the context of a base ARI, the URI Reference form

of Section 4.4 can be used. In all other cases an ARI must be an

absolute-path form and contain a scheme.

While this text description is normative, the ABNF schema in this

section provides a more explicit and machine-parsable text schema.

The scheme name of the ARI is "ari" and the scheme-specific part of

the ARI follows one of the two forms corresponding to the literal-

value ARI and the object-reference ARI.

4.1. URIs and Percent Encoding

Due to the intrinsic structure of the URI, on which the text form of

ARI is based, there are limitations on the syntax available to the

scheme-specific-part [RFC7595]. One of these limitations is that

each path segment can contain only characters in the pchar ABNF

symbol defined in [RFC3986]. For most parts of the ARI this

restriction is upheld by the values themselves: ADM/ODM names, type

names, and object names have a limited character set as well. For

literals and nested parameters though, the percent encoding of

Section 2.4 of [RFC3986] is needed.

In the ARI text examples in this document the URIs have been

percent-decoded for clarity, as might be done in an ARI display and

editing tool. But the actual encoded form of the human-friendly ARI

ari:"text" is ari:%22text%22. Outside of literals, the safe

¶

¶

¶

¶

ari = absolute-ari / relative-ari

absolute-ari = "ari:" ari-ssp

ari-ssp = ari-ssp-literal / ari-ssp-objref

; A text name must start with an alphabetic character

id-text = ALPHA *pchar

; An integer enumeration must contain only digits

id-num = 1*DIGIT

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-2.4

characters which are not be percent-encoded are the structural

delimiters /()[], used for parameters and ARI collections.

One other aspect of convenience for human editing of text-form ARIs

is linear white space. The current ABNF pattern, staying within the

URI pattern, do not allow for whitespace to separate list items or

otherwise. A human editing an ARI could find it convenient to

include whitespace following commas between list items, or to

separate large lists across lines. Any tool that allows this kind of

convenience of editing SHALL collapse any white space within a

single ARI before encoding its contents.

4.2. Literals

Based on the structure of Section 3.2, the text form of the literal

ARI contains only a URI path with an optional AMP primitive type. A

literal has no concept of a namespace or context, so the path is

always absolute. When the path has two segments, the first is the

AMP primitive type and the second is the encoded literal value. When

the path has a single segment it is the encoded literal value. As a

shortcut, an ARI with only a single path segment is necessarily an

untyped literal so the leading slash can be elided.

An ARI encoder or decoder SHALL handle both text name and integer

enumeration forms of the primitive type. When present and able to be

looked up, the primitive type SHOULD be a text name.

The literal value SHALL be the percent encoded form of the CBOR

extended diagnostic notation text of Appendix G of [RFC8610]. When

untyped, the decoded literal value SHALL be one of the primitive

types named by the lit-notype CDDL symbol of Section 5.2. When

typed, the decoded literal value MAY be any valid CBOR item

conforming to the AMP primitive type definition.

Some example of the forms for a literals are below. These first are

untyped primitive values:

And these are typed values:

The literal-value ARI has a corresponding ABNF definition of:

¶

¶

¶

¶

¶

¶

ari:true

ari:"text"

ari:10

¶

¶

ari:/UINT/10

ari:/LABEL/"name"

ari:/CBOR/<<10>>

¶

¶

https://rfc-editor.org/rfc/rfc8610#appendix-G

4.3. Object References

Based on the structure of Section 3.3, the text form of the object

reference ARI contains a URI with three path segments corresponding

to the namespace-id, object-type, and object-id. Those three

segments (excluding parameters as defined below) are referred to as

the object identity.

An ARI encoder or decoder SHALL handle both text name and integer

enumeration forms of the namespace-id, object-type, and object-id.

The final segment containing the object-id MAY contain parameters

enclosed by parentheses "(" and ")". There is no semantic

distinction between the absence of parameters and the empty

parameter list. The parameter list SHALL be separated by comma

characters ",". Each parameter item SHALL be either an ARI or an ARI

collection. Within a parameter item, ARI collections SHALL be

indicated by enclosing square brackets "[" and "]". The ARI

collection list SHALL be separated by comma characters ",". Each

parameter item is handled recursively as the text form of ARI.

The parameters as a whole SHALL be the percent encoded form of the

constituent ARIs, excluding the structural delimiters /()[],.

Implementations are advised to be careful about the percent encoded

vs. decoded cases of each of the nested ARIs within parameters to

avoid duplicate encoding or decoding. It is recommended to dissect

the parameters and ARI collections in their encoded form first, and

then to dissect and percent decode each separately and recursively.

The object-reference ARI has a corresponding ABNF definition of:

; The primitive type name is optional

ari-ssp-literal = ["/" lit-type] ["/"] lit-value

; Type is restricted to valid AMP primitive types

lit-type = id-text / id-num

; The value is percent-encoded CBOR Diagnostic syntax

lit-value = *pchar

¶

¶

¶

¶

¶

ari:/adm-a/EDD/someobj

ari:/adm-a/CTRL/otherobj(true,3)

ari:/adm-a/CTRL/otherobj("a param",/UINT/10)

ari:/41/-1/0

¶

¶

4.4. URI References

The text form of ARI can contain a URI Reference, as defined in

Section 3 of [RFC3986], which can only be resolved using a base URI

using the algorithm defined in Section 5 of [RFC3986]. When

resolving nested ARI content, the base URI of any interior

resolution is the next-outer ARI in the nested structure. The

outermost ARI SHALL NOT be a URI Reference because it will have no

base URI to resolve with.

Because a relative-path ARI with no path separators is considered to

be an untyped literal, an ARI reference SHALL contain at least one

path separator. For the case where the ARI reference is to a sibling

object from the base URI the relative path SHOULD be of the form

"./" to include the path separator.

When resolving nested ARI content, the parameters of the URI

reference SHALL be preserved in the resolved ARI. This behavior is

equivalent to the query parameter portion when resolving a generic

URI reference.

4.5. Patterns

Because each of the text form use path segments to delimit the

components of the absolute ARI, and due to the restrictions of the

ARI path segment content, it is possible for URI reserved characters

ari-ssp-objref = obj-ident [paramlist]

; The object identity can be used separately than parameters

obj-ident = "/" ns-id "/" obj-type "/" obj-id

; A comma-separated list of parameters with enclosure

paramlist = "(" param *("," param) ")"

param = ari / ac

ns-id = ns-adm / ns-odm

ns-adm = id-text / id-num

ns-odm = ("!" id-text) / ("-" id-num)

; Type is restricted to valid AMP primitive types

obj-type = id-text / ("-" id-num)

obj-id = id-text / id-num

; A comma-separated list of any form of ARI with enclosure

ac = "[" ari *("," ari) "]"

¶

¶

¶

¶

; Relative ARI must be resolved before interpreting

relative-ari = path-nonempty [paramlist]

; Non-empty absolute or relative path

path-nonempty = path-absolute / path-noscheme

¶

https://rfc-editor.org/rfc/rfc3986#section-3
https://rfc-editor.org/rfc/rfc3986#section-5

to be able to provide wildcard-type patterns. Although the form is

similar, an ARI Pattern is not itself an ARI and they cannot be used

interchangeably. The context used to interpret and match an ARI

Pattern SHALL be explicit and separate from that used to interpret

and dereference an ARI.

The ARI Pattern SHALL NOT ever take the form of a URI Reference;

only as an absolute URI. An ARI Pattern SHALL NOT ever contain

parameters, only identity.

An ARI Pattern has no optional path segments. When used as a literal

ARI pattern the path SHALL have two segments. When used as an

object-reference ARI pattern the path SHALL have three segments.

The single-wildcard is the only defined segment pattern and a

segment can either be a real ID or a single wildcard.

5. ARI Binary Form

This section defines how the data model explained in Section 3 is

encoded as a binary sequence conforming to the CBOR syntax of

[RFC8949]. Within this section the term "item" is used to mean the

CBOR-decoded data item which follows the logical model of CDDL

[RFC8610].

The binary form of the URI is intended to be used for machine-to-

machine interchange so it is missing some of the human-friendly

shortcut features of the ARI text form from Section 4. It still

follows the same logical data model so it has a one-for-one

representation of all of the styles of text-form ARI.

A new CBOR tag TBD999999 has been registered to indicate that an

outer CBOR item is a binary-form ARI. This is similar in both syntax

and semantics to the "ari" URI scheme in that for a nested ARI

structure, only the outer-most ARI need be tagged. The inner ARIs

are necessarily interpreted as such based on the nested ARI schema

of this section.

While this text description is normative, the CDDL schema in this

section provides a more explicit and machine-parsable binary schema.

¶

¶

¶

¶

ari-pat = "ari:" ari-pat-ssp

ari-pat-ssp = ari-pat-literal / ari-pat-objref

ari-pat-literal = "/" id-pat "/" id-pat

ari-pat-objref = "/" id-pat "/" id-pat "/" id-pat

; The non-wildcard symbol is the same as ARI syntax

id-pat = wildcard / (*pchar)

wildcard = "*"

¶

¶

¶

¶

¶

5.1. Intermediate CBOR

The CBOR item form is used as an intermediate encoding between the

ARI data and the ultimate binary encoding. When decoding a binary

form ARI, the CBOR must be both "well-formed" according to [RFC8949]

and "valid" according to the CDDL model of this specification.

Implementations are encouraged, but not required, to use a streaming

form of CBOR encoder/decoder to reduce memory consumption of an ARI

handler. For simple implementations or diagnostic purposes, a two

stage conversion between ARI--CBOR and CBOR--binary can be more

easily understood and tested.

5.2. Literals

Based on the structure of Section 3.2, the binary form of the

literal ARI contains a data item along with an optional AMP

primitive type. In order to keep the encoding as short as possible,

the untyped literal is encoded as the simple value itself. Because

the typed literal and the object-reference forms uses CBOR array

framing, this framing is used to disambiguate from the pure-value

encoding of the lit-notype CDDL symbol.

When present, the primitive type SHALL be an integer enumeration.

When untyped, the decoded literal value SHALL be one of the

primitive types named by the lit-notype CDDL symbol. When typed, the

decoded literal value MAY be any valid CBOR item conforming to the

AMP primitive type definition.

Some example of the forms for a literal are below. These first are

untyped primitive values:

And these are typed values:

The literal-value ARI has a corresponding CDDL definition of:

; An ARI can be tagged if helpful

ari = ari-notag / #6.999999(ari-notag)

ari-notag = lit-ari / ari-objref

¶

¶

¶

¶

¶

true¶

"text"¶

10¶

¶

[4, 10]¶

[15, <<10>>]¶

¶

5.3. Object References

Based on the structure of Section 3.3, the binary form of the object

reference ARI is a CBOR-encoded item. An ARI SHALL be encoded as a

CBOR array with at least three items corresponding to the namespace-

id, object-type, and object-id. Those three items are referred to as

the object identity. The optional fourth item of the array is the

parameter list.

The namespace-id SHALL be present only as an integer enumeration.

The object-type SHALL be present only as an integer enumeration. The

object-id SHALL be present as either a text name or an integer

enumeration. The processing of text name object identity components

by an Agent is optional and SHALL be communicated to any associated

Manager prior to encoding any ARIs for that Agent.

When present, the parameter list SHALL be a CBOR array containing

either ARI or ARI collection items. The CBOR tag 41 (meaning a

homogeneous array per [IANA-CBOR]) SHALL be used to indicate that a

parameter item is an ARI collection. All other, untagged parameter

items SHALL be handled as an ARI.

An example object reference without parameters is:

lit-ari = lit-typeval / lit-notype

lit-notype = bool / int / float / tstr / bstr

lit-typeval = $lit-typeval .within lit-typeval-struct

lit-typeval-struct = [

 lit-type: (int32 .ge 0),

 lit-value: any

]

; FIXME: will expand with assigned types

$lit-typeval /= [1, bool]

$lit-typeval /= [2, uint .size 1] ; 1-byte

$lit-typeval /= [4, int32] ; 4-byte

$lit-typeval /= [5, uint32] ; 4-byte

$lit-typeval /= [6, uint64] ; 8-byte

$lit-typeval /= [7, int64] ; 8-byte

$lit-typeval /= [8, float16 / float32]

$lit-typeval /= [9, float64]

$lit-typeval /= [10, tstr]

$lit-typeval /= [11, bstr]

$lit-typeval /= [12, int]

$lit-typeval /= [13, int]

$lit-typeval /= [14, tstr .regexp "[A-Za-z].*"]

$lit-typeval /= [15, bstr .cbor any]

¶

¶

¶

¶

¶

Another example object reference with parameters is:

The object-reference ARI has a corresponding CDDL definition of:

5.4. URI References

TBD

5.5. Patterns

TBD

6. Transcoding Considerations

When translating literal types into text form and code point lookup

tables are available, the primitive type SHOULD be converted to its

text name. When translating literal types from text form and code

point lookup tables are available, the primitive type SHOULD be

converted from its text name. The conversion between AMP primitive

type name and enumeration requires a lookup table based on the

registrations in Table 3.

When translating literal values into text form, it is necessary to

canonicalize the CBOR extended diagnostic notation of the item. The

following applies to generating text form from CBOR items:

The canonical text form of CBOR bool values SHALL be the forms

identified in Section 8 of [RFC8949].

[41, -1, 0]¶

¶

[41, -2, 3, ["a param", [4, 10]]]¶

¶

ari-objref = [obj-ident, ?params]

obj-ident = (

 ns-id,

 obj-type,

 obj-id,

)

ns-id = int64

obj-type = $obj-type-reg .within (int32 .lt 0)

obj-id = (int32 .ge 0) / tstr

params = [*ari-or-ac]

ari-or-ac = ari / ac

ac = #6.41([*ari])

; FIXME: will expand with assigned types

$obj-type-reg = nint

¶

¶

¶

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc8949#section-8

The canonical text form of CBOR int and float values SHALL be the

decimal form defined in Section 8 of [RFC8949].

The canonical text form of CBOR tstr values SHALL be the

definite-length, non-concatenated form defined in Section 8 of

[RFC8949].

The canonical text form of CBOR bstr values SHALL be the

definite-length, base16 ("h" prefix), non-concatenated form

defined in Section 8 of [RFC8949].

When presenting the AMP primitive type of CBOR the values SHALL

be the embedded CBOR form defined in Appendix G.3 of [RFC8610].

When translating object references into text form and code point

lookup tables are available, any enumerated item SHOULD be converted

to its text name. When translating object references from text form

and code point lookup tables are available, any enumerated item

SHOULD be converted from its text name. The conversion between AMP

object-type name and enumeration requires a lookup table based on

the registrations in Table 4. The conversion between name and

enumeration for either namespace-id or object-id require lookup

tables based on ADMs and ODMs known to the processing entity.

7. Interoperability Considerations

DTN challenged networks might interface with better resourced

networks that are managed using non-DTN management protocols. When

this occurs, the federated network architecture might need to define

management gateways that translate between DTN and non-DTN

management approaches.

NOTE: It is also possible for DTN management be used end-to-end

because this approach can also operate in less challenged networks.

The opposite is not true; non-DTN management approaches should not

be assumed to work in DTN challenged networks.

Where possible, ARIs should be translatable to other, non-DTN

management naming schemes. This translation might not be 1-1, as the

features of the ADM may differ from features in other management

naming schemes. Therefore, it is unlikely that a single naming

scheme can be used for both DTN and non-DTN management.

8. Security Considerations

Because ADM and ODM namespaces are defined by any entity, no

security or permission meaning can be inferred simply from the

expression of namespace.

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-8
https://rfc-editor.org/rfc/rfc8949#section-8
https://rfc-editor.org/rfc/rfc8949#section-8
https://rfc-editor.org/rfc/rfc8610#appendix-G.3

Scheme name:

Status:

Applications/protocols that use this scheme name:

Contact:

Change controller:

Reference:

Tag:

Data Item:

Semantics:

Reference:

9. IANA Considerations

This section provides guidance to the Internet Assigned Numbers

Authority (IANA) regarding registration of schema and namespaces

related to the ADM Resource Identifier (ARI), in accordance with BCP

26 [RFC1155].

9.1. URI Schemes Registry

This document defines a new URI scheme "ari" in Section 4. A new

entry has been added to the "URI Schemes" registry [IANA-URI] with

the following parameters.

ari

Permanent

The scheme is used by AMP Managers and Agents to identify managed

objects.

IETF Chair <chair@ietf.org>

IESG <iesg@ietf.org>

Section 4 of [This document].

9.2. CBOR Tags Registry

This document defines a new CBOR tag TBD999999 in Section 5. A new

entry has been added to the "CBOR Tags" registry [IANA-CBOR] with

the following parameters.

TBD999999

multiple

Used to tag a binary-form DTNMP ARI

Section 5 of [This document].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

9.3. DTN Management Protocol Registry

This document defines a new sub-registry "Primitive Types" within

the "DTN Management Protocol" registry [IANA-DTNMP] containing the

following initial entries. Enumerations in this sub-registry are

non-negative integers representable as CBOR uint type with an

argument shorter than 4-bytes. The registration procedure for this

sub-registry is Specification Required.

Enumeration Name Reference Description

TBD1 BOOL
[This

document]
A native boolean value.

TBD2 BYTE
[This

document]
An 8-bit unsigned integer.

TBD4 INT
[This

document]
A 32-bit signed integer.

TBD5 UINT
[This

document]
A 32-bit unsigned integer.

TBD6 VAST
[This

document]
A 64-bit signed integer.

TBD7 UVAST
[This

document]
A 64-bit unsigned integer.

TBD8 REAL32
[This

document]

A 32-bit [IEEE.754-2019] floating

point number.

TBD9 REAL64
[This

document]

A 64-bit [IEEE.754-2019] floating

point number.

TBD10 STR
[This

document]

A text string composed of

characters.

TBD11 BYTESTR
[This

document]

A byte string composed of 8-bit

values.

TBD12 TV
[This

document]

TBD13 TS
[This

document]

TBD14 LABEL
[This

document]

A text label of a parent object

parameter. This is only valid in a

nested parameterized ARI.

TBD15 CBOR
[This

document]

A byte string containing an

encoded CBOR item. The structure

is opaque to the Agent but

guaranteed well-formed for the ADM

using it.

TBD16 to

65279
Unassigned

65280 to

2147483647

[This

document]

Enumerations that are 2**16-2**8

and larger are reserved for

private or experimental use.

¶

Table 3: Primitive Types

This document defines a new sub-registry "Managed Object Types"

within the "DTN Management Protocol" registry [IANA-DTNMP]

containing the following initial entries. Enumerations in this sub-

registry are negative integers representable as CBOR nint type with

an argument shorter than 4-bytes. The registration procedure for

this sub-registry is Specification Required.

Enumeration Name Reference Description

-TBD1 MDAT
[This

document]
ADM Metadata

-TBD2 CONST
[This

document]
Constant

-TBD3 CTRL
[This

document]
Control

-TBD4 EDD
[This

document]
Externally Defined Data

-TBD5 MAC
[This

document]
Macro

-TBD6 OPER
[This

document]
Operator

-TBD7 RPTT
[This

document]
Report Template

-TBD8 SBR
[This

document]
State-Based Rule

-TBD9 TBLT
[This

document]
Table Template

-TBD10 TBR
[This

document]
Time-Based Rule

-TBD11 VAR
[This

document]
Variable

TBD12 to

65279
Unassigned

65280 to

2147483647

[This

document]

Enumerations that are 2**16-2**8

and larger are reserved for

private or experimental use.

Table 4: Managed Object Types

This document defines a new sub-registry "Application Data Models"

within the "DTN Management Protocol" registry [IANA-DTNMP]

containing the following initial entries. Enumerations in this sub-

registry are non-negative integers representable as CBOR uint type

with an argument shorter than 8-bytes. The registration procedure

for this sub-registry is Specification Required.

¶

¶

[IANA-CBOR]

[IANA-DTNMP]

[IANA-URI]

[IEEE.754-2019]

[RFC2119]

[RFC3986]

[RFC5234]

[RFC7595]

Enumeration Name Reference Notes

0
[This

document]
Value zero is reserved.

1 to

4294967296
Unassigned

4294967296 and

larger

[This

document]

Enumerations that are larger than

32-bit are reserved for private or

experimental use.

Table 5: Application Data Models

The Operational Data Models code points are all private use, so do

not need to have an IANA registry defined.

10. References

10.1. Normative References

IANA, "Concise Binary Object Representation (CBOR)

Tags", <https://www.iana.org/assignments/cbor-tags/>.

IANA, "Delay-Tolerant Networking (DTN) Management

Protocol", <https://www.iana.org/assignments/TBD/>.

IANA, "Uniform Resource Identifier (URI) Schemes",

<https://www.iana.org/assignments/uri-schemes/>.

IEEE, "IEEE Standard for Floating-Point Arithmetic",

IEEE IEEE 754-2019, DOI 10.1109/IEEESTD.2019.8766229, 18

July 2019, <https://ieeexplore.ieee.org/document/

8766229>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines

and Registration Procedures for URI Schemes", BCP 35, RFC

7595, DOI 10.17487/RFC7595, June 2015, <https://www.rfc-

editor.org/info/rfc7595>.

¶

https://www.iana.org/assignments/cbor-tags/
https://www.iana.org/assignments/TBD/
https://www.iana.org/assignments/uri-schemes/
https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7595

[RFC8174]

[RFC8949]

[RFC9171]

[RFC1155]

[RFC4838]

[RFC7320]

[RFC8610]

[RFC8820]

[I-D.ietf-dtn-ama]

[I-D.birrane-dtn-adm]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

Burleigh, S., Fall, K., and E. Birrane, III, "Bundle

Protocol Version 7", RFC 9171, DOI 10.17487/RFC9171,

January 2022, <https://www.rfc-editor.org/info/rfc9171>.

10.2. Informative References

Rose, M. and K. McCloghrie, "Structure and identification

of management information for TCP/IP-based internets",

STD 16, RFC 1155, DOI 10.17487/RFC1155, May 1990,

<https://www.rfc-editor.org/info/rfc1155>.

Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,

R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant

Networking Architecture", RFC 4838, DOI 10.17487/RFC4838,

April 2007, <https://www.rfc-editor.org/info/rfc4838>.

Nottingham, M., "URI Design and Ownership", RFC 7320, DOI

10.17487/RFC7320, July 2014, <https://www.rfc-editor.org/

info/rfc7320>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Nottingham, M., "URI Design and Ownership", BCP 190, RFC

8820, DOI 10.17487/RFC8820, June 2020, <https://www.rfc-

editor.org/info/rfc8820>.

Birrane, E. J., Annis, E., and S. Heiner,

"Asynchronous Management Architecture", Work in Progress,

Internet-Draft, draft-ietf-dtn-ama-03, 25 October 2021,

<https://datatracker.ietf.org/doc/html/draft-ietf-dtn-

ama-03>.

Birrane, E. J., DiPietro, E., and D. Linko,

"AMA Application Data Model", Work in Progress, Internet-

Draft, draft-birrane-dtn-adm-03, 2 July 2018, <https://

datatracker.ietf.org/doc/html/draft-birrane-dtn-adm-03>.

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc9171
https://www.rfc-editor.org/info/rfc1155
https://www.rfc-editor.org/info/rfc4838
https://www.rfc-editor.org/info/rfc7320
https://www.rfc-editor.org/info/rfc7320
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8820
https://www.rfc-editor.org/info/rfc8820
https://datatracker.ietf.org/doc/html/draft-ietf-dtn-ama-03
https://datatracker.ietf.org/doc/html/draft-ietf-dtn-ama-03
https://datatracker.ietf.org/doc/html/draft-birrane-dtn-adm-03
https://datatracker.ietf.org/doc/html/draft-birrane-dtn-adm-03

Appendix A. Examples

The examples in this section rely on the ADM and ODM definitions in

Table 6 and Table 7 respectively.

Enumeration Name

10 adm10

20 adm20

Table 6: Example

ADMs

Enumeration Name

-10 odm10

Table 7: Example

ODMs

Given those namespaces, the example objects are listed in Table 6

where the Namespace column uses the ARI text form convention.

Namespace
Object

Type
Enumeration Name Signature

adm10 EDD 3 num_bytes ()

adm10 CTRL 2 do_thing
(AC targets, UINT

count)

adm10 RPTT 1 rpt_with_param
(ARI var, STR

text)

!odm10 VAR 1 my_counter ()

Table 8: Example Objects

Each of the following examples illustrate the comparison of ARI

forms in different situations, covering the gamut of what can be

expressed by an ARI.

A.1. Typed Literal

This is the literal value 4 interpreted as a 32-bit unsigned

integer. The ARI text (which is identical to its percent-encoded

form) is:

which is translated to enumerated form:

and converted to CBOR item:

¶

¶

¶

¶

ari:/UINT/4¶

¶

ari:/5/4¶

¶

and finally to the binary string of:

A.2. Complex CBOR Literal

This is a literal value embedding a complex CBOR structure. The CBOR

diagnostic expression being encoded is

which is CBOR-encoded to a byte string and percent-encoded to the

URL path:

which is translated to enumerated form:

and converted to CBOR item (note the byte string is no longer text-

encoded):

and finally to the binary string of:

A.3. Non-parameterized Object Reference

This is a non-parameterized num_bytes object in the ADM namespace.

The ARI text (which is identical to its percent-encoded form) is:

which is translated to enumerated form:

and converted to CBOR item:

and finally to the binary string of:

[5, 4]¶

¶

0x820504¶

¶

{"test": [3, 4.5]}¶

¶

ari:/CBOR/h%27A164746573748203F94480%27¶

¶

ari:/15/h%27A164746573748203F94480%27¶

¶

[15, h'A164746573748203F94480']¶

¶

0x820F4BA164746573748203F94480¶

¶

ari:/adm10/edd/num_bytes¶

¶

ari:/10/-4/3¶

¶

[10, -4, 3]¶

¶

0x830A2303¶

A.4. Parameterized Object Reference

This is an parameterized do_thing object in the ADM namespace.

Additionally, the parameters include two relative-path ARI

References to other objects in the same ADM, which are resolved

after text-decoding. The ARI text (which is identical to its

percent-encoded form) is:

which is translated to enumerated and resolved form:

and converted to CBOR item:

and finally to the binary string of:

A.5. Recursive Structure with Percent Encodings

This is a complex example having nested ARIs, some with percent-

encoding needed. The human-friendly (but not valid URI) text for

this case is:

which is percent encoded to the real URI:

which is translated to enumerated form:

and converted to CBOR item:

and finally to the binary string of:

¶

ari:/adm10/ctrl/do_thing([../edd/num_bytes,/!odm10/var/my_counter],3)¶

¶

ari:/10/-3/2([/10/-4/3,/-10/-11/1],3)¶

¶

[10, -3, 2, [

 41([

 [10, -4, 3],

 [10, -11, 1]

]),

 3

]]

¶

¶

0x840A220282D82982830A2303830A2A0103¶

¶

ari:/adm10/rptt/rpt_with_param("text")¶

¶

ari:/adm10/rptt/rpt_with_param(%22text%22)¶

¶

ari:/10/-7/1(%22text%22)¶

¶

[10, -7, 1, ["text"]]¶

¶

Authors' Addresses

Edward J. Birrane, III

The Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Rd.

Laurel, MD 20723

United States of America

Phone: +1 443 778 7423

Email: Edward.Birrane@jhuapl.edu

Emery Annis

The Johns Hopkins University Applied Physics Laboratory

Email: Emery.Annis@jhuapl.edu

Brian Sipos

The Johns Hopkins University Applied Physics Laboratory

Email: brian.sipos+ietf@gmail.com

0x840A2601816474657874¶

tel:+1%20443%20778%207423
mailto:Edward.Birrane@jhuapl.edu
mailto:Emery.Annis@jhuapl.edu
mailto:brian.sipos+ietf@gmail.com

	Asynchronous Resource Identifier
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Use of ABNF
	1.3. Use of CDDL
	1.4. Terminology

	2. ARI Purpose
	2.1. Resource Parameterization
	2.2. Compressible Structure
	2.2.1. Enumerated Path Segments
	2.2.2. Relative Paths
	2.2.3. Patterning

	3. ARI Logical Structure
	3.1. Names, Enumerations, Comparisons, and Canonicalizations
	3.2. Literals
	3.3. Object References
	3.3.1. Namespace
	3.3.2. Object Type
	3.3.3. Object Name
	3.3.4. Parameters

	4. ARI Text Form
	4.1. URIs and Percent Encoding
	4.2. Literals
	4.3. Object References
	4.4. URI References
	4.5. Patterns

	5. ARI Binary Form
	5.1. Intermediate CBOR
	5.2. Literals
	5.3. Object References
	5.4. URI References
	5.5. Patterns

	6. Transcoding Considerations
	7. Interoperability Considerations
	8. Security Considerations
	9. IANA Considerations
	9.1. URI Schemes Registry
	9.2. CBOR Tags Registry
	9.3. DTN Management Protocol Registry

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Examples
	A.1. Typed Literal
	A.2. Complex CBOR Literal
	A.3. Non-parameterized Object Reference
	A.4. Parameterized Object Reference
	A.5. Recursive Structure with Percent Encodings

	Authors' Addresses

