
HTTPbis Working Group M. Bishop
Internet-Draft Microsoft
Expires: May 12, 2014 November 08, 2013

Extension Frames in HTTP/2.0
draft-bishop-http2-extension-frames-00

Abstract

 This document describes a proposed modification to the HTTP/2.0
 specification to better support the creation of extensions without
 the need to version the core protocol or invoke additional protocol
 identifiers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 12, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bishop Expires May 12, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Extensions November 2013

Table of Contents

1. Introduction . 2
1.1. Conventions and Terminology 3

2. Extension Functionality 3
2.1. Extension Identification 4
2.2. Extension Frames . 4
2.3. Extension Settings 5
2.4. Intermediary Behavior 6
2.5. Base Specification Behavior 6
2.6. IANA Considerations 7

3. References . 7
Appendix A. Example Extensions 7
A.1. Server Hint . 8
A.1.1. Format . 8
A.1.2. Behavior . 10

Appendix B. Acknowledgements 10

1. Introduction

 HTTP/2.0 currently offers an inconsistent story about the use of
 extensions. As the draft currently stands, extensions have the
 following traits:

 o They may define SETTINGS values, provided they do not modify
 identifiers within the base HTTP/2.0 spec

 o They may define new frame types, provided they do not:

 Conflict with the base HTTP/2.0 frame types

 Modify session state

 Require understanding in order to communicate over the base
 protocol

 This poses a number of problems for such extension frames. To begin
 with, there is no way to know whether the peer supports a given
 extension before sending extension-specific information. This is
 addressed in the current spec by saying that implementations MUST
 ignore frame types and settings values they don't understand, but
 sending information that your peer cannot parse wastes bandwidth.
 Further, it shackles extensions since they are prohibited from
 modifying session state.

 As an additional concern, with only 256 frame types it is conceivable
 that the frame type space may be exhausted if many extensions are
 defined. It more than conceivable that different extensions will

Bishop Expires May 12, 2014 [Page 2]

Internet-Draft Extensions November 2013

 collide with each other in the choice of frame type identifiers,
 since the space is limited. Requiring IANA to register frame type
 identifiers is onerous, since the number and types of the frames has
 changed often during HTTP/2.0 development and there is no reason to
 expect that a complex extension would do otherwise. This should be
 balanced against the goal of defining a simple, single-frame
 extension and being able to quickly allocate this single frame type.

 Future versions of the HTTP/2.0 specification will face exactly the
 same problem as extension authors, since they currently share a frame
 type and setting value space with any extensions. Thus, a new frame
 introduced with HTTP/2.1+ must avoid collision with HTTP/2.0
 extensions and must deal with space exhaustion. Any means of
 resolving such adoption after the fact complicates forward-porting of
 existing extensions.

 This document proposes an alternative method of supporting extension
 frames and settings, with the following goals:

 o Reduce the probability of collision among extensions and between
 extensions and future versions of HTTP

 o Enable peers to completely disable all extensions

 o Enable peers to selectively disable an extension without requiring
 knowledge of the extension they wish to disable

 o Enable peers to quickly discover support for a particular
 extension on the far side

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 All numeric values are in network byte order. Values are unsigned
 unless otherwise indicated. Literal values are provided in decimal
 or hexadecimal as appropriate. Hexadecimal literals are prefixed
 with "0x" to distinguish them from decimal literals.

2. Extension Functionality

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bishop Expires May 12, 2014 [Page 3]

Internet-Draft Extensions November 2013

2.1. Extension Identification

 An extension to HTTP/2.0 is identified by an Extension ID. An
 Extension ID is a 24-bit identifier with two parts: A sixteen-bit
 private enterprise number and an eight-bit enterprise-local extension
 identifier. Private enterprise numbers are issued by IANA, with an
 existing registry [IANA-PEN].

 An organization is free to utilize any method to allocate and track
 the assignment of its organization-local extensions, though expert
 review of proposed extensions is strongly recommended. If all 256
 values have been allocated, the organization may request an
 additional organizational identifier. Extensions allocated by the
 IETF will be tracked by IANA.

 It is suggested that each organization reserve an extension ID (for
 instance, 0x00) for low-volume single-frame extensions, and allocate
 these frame types with a local registry. This avoids consuming an
 entire extension ID for a single new frame type, at the expense of
 being unable to separately disable these single-frame extensions.
 Such extensions MUST NOT modify the state of the base protocol in any
 circumstance, since support for the specific frame cannot be
 detected. Extensions which require several frames or the ability to
 have support separately detected should be allocated a separate ID.

 The private enterprise number 0x000000, allocated to IANA, is
 reserved in this context for IETF RFCs. Extension ID 0x00000000 is
 reserved for values defined in base HTTP specifications and single-
 frame extensions defined by the HTTP working group.

2.2. Extension Frames

 The EXTENSION frame (0xFF) carries content which is specific to an
 extension. The EXTENSION frame contains a sub-header of the
 following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Extension ID (24) | Ext. Type (8) |
 +---+
 | Extension-specific payload ...
 +---+

 Extension Payload Format

Bishop Expires May 12, 2014 [Page 4]

Internet-Draft Extensions November 2013

 The payload of an EXTENSION frame includes the Extension ID of the
 extension which should be used to process the frame, as well as an
 extension-local frame type, permitting any extension up to 256
 distinct frame types which it has complete freedom to define.

 EXTENSION frames may be sent on any stream which is half-open in the
 sender's direction (that is, a stream on which the sender could send
 a DATA frame) or on stream zero.

 The semantics of EXTENSION frames are defined by their respective
 extensions, with the following restrictions:

 o An extension frame on stream zero with semantics which modify the
 state of the base protocol MUST NOT be sent until the remote peer
 has indicated support for the extension.

 o An extension frame on a non-zero stream MUST NOT modify the state
 of the base protocol.

2.3. Extension Settings

 An implementation which does not intend to interpret or relay any
 extension frames or setting values SHOULD send the setting value
 BASE_SPECIFICATION_ONLY (0xFF) set to a non-zero value. Upon receipt
 of this setting value, an implementation MUST NOT send any setting
 value or frame not defined in the specification of the negotiated
 protocol.

 In order to minimize round-trips, it is advisable to exchange any
 necessary initial state as early as possible. This means that
 critical information should be included in the initial SETTINGS
 frame, in order to benefit from the transmission of this frame in
 advance of any other frames. However, to avoid bloating this initial
 frame, extensions are encouraged to send only the minimum amount of
 information necessary for the extension to be useful in the initial
 SETTINGS frame. Information which is not critical for bootstrapping
 SHOULD be sent in a subsequent SETTINGS frame, or in an extension-
 specific frame type.

 This draft updates the definition of a setting value as follows:

Bishop Expires May 12, 2014 [Page 5]

Internet-Draft Extensions November 2013

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Extension Identifier (24) | Ext. Setting |
 +---------------+---+
 | Value (32) |
 +---+

 Modified Setting Value Format

 The Extension Setting field with a value equal to zero is reserved
 for extension identification. An implementation which wishes to
 inform a peer that it will be employing a certain extension MAY set
 this to any non-zero value. Interpretation of the non-zero value is
 extension-dependent, and may communicate some initial state or
 preferences. An implementation which wishes to explicitly inform a
 peer that it does not understand, does not wish to use, or will not
 relay a certain extension MAY set this value to zero.

 The semantics of all other values of Extension Setting are defined by
 the extension. These semantics MUST NOT modify the state the base
 protocol. (If this is needed, define an extension-specific frame to
 carry settings.) These setting values MUST NOT be sent for an
 extension the sender does not implement, and MUST be ignored upon
 receipt if not understood.

2.4. Intermediary Behavior

 EXTENSION frames sent on stream zero are explicitly hop-by-hop and
 MUST be ignored by intermediaries which do not understand the
 specified Extension ID. In order to ensure consistent state, an
 intermediary which is not terminating the HTTP request MUST provide
 one of the following behaviors to each stream other than zero:

 o Forward all extension frames on this stream

 o Discard all extension frames on this stream

 Because distinct streams on a given connection may be related to
 different backend servers or different clients, these behaviors MAY
 vary from stream to stream without notification to the peer on either
 side. An intermediary which intends to discard all extension frames
 on all streams SHOULD set the BASE_SPECIFICATION_ONLY (Section 2.3,
 Paragraph 1) setting to avoid wasted effort on a peer's part.

2.5. Base Specification Behavior

Bishop Expires May 12, 2014 [Page 6]

Internet-Draft Extensions November 2013

 Since extensions now have a segregated frame and settings space, the
 receipt of any non-EXTENSION frame type not defined in the negotiated
 protocol is a session error of (new) type INVALID_FRAME_TYPE.

2.6. IANA Considerations

 This draft employs the Private Enterprise Number registry, already
 maintained by IANA, to avoid creating a nearly duplicate registry
 specific to HTTP/2.0. However, due to the number of bytes available,
 it restricts this registry from 32 bits to 16 bits. This still
 allows enough space for the current number of registrations to
 double, but it does sharply increase the possibility of eventual
 exhaustion.

 One possible mitigation would be to expand the Extension ID from 24
 to 32 bits, expanding the space for the PEN to 24 bits. This would
 require removing the extension frame sub-type and setting value space
 for extensions, constraining extensions to a single 32-bit setting
 value; extensions which require more than 32 bits for settings would
 need to define an equivalent to the SETTINGS frame. In the same way,
 extensions which require multiple frame types would need to define a
 frame type field inside their payload.

 The proper resolution here remains an open issue, and discussion is
 one goal of this draft.

3. References

 [HPACK] Ruellan, H. and R. Peon, "HPACK - Header Compression for
 HTTP/2.0", draft-ietf-httpbis-header-compression-04 (work
 in progress), October 2013.

 [IANA-PEN]
 , "Private Enterprise Numbers", .

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels ", BCP 14, RFC 2119, March 1997.

 [SnellExtensions]
 Snell, J., "HTTP Extensions", draft-snell-httpbis-ext-

frames-00 (work in progress), May 2013.

 [URI] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax ", STD 66, RFC

3986, January 2005.

Appendix A. Example Extensions

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-04
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-snell-httpbis-ext-frames-00
https://datatracker.ietf.org/doc/html/draft-snell-httpbis-ext-frames-00
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Bishop Expires May 12, 2014 [Page 7]

Internet-Draft Extensions November 2013

 This section describes how certain extensions might leverage the
 EXTENSION frame. It is explicitly not an attempt to define the
 specific extension at this time, though the ideas have been discussed
 and should be explored in the future.

 Other sample extensions can be found in another Internet Draft
 [SnellExtensions] submitted to this working group.

A.1. Server Hint

 Server Push has many attractive features, because it can eliminate
 both the RTT needed to send a request and the DOM processing time to
 realize a resource will be needed. However, it suffers from several
 drawbacks as well:

 o The server cannot know what the client has in its cache, leading
 to wasted data transmission

 o The server cannot push resources for other origins, specifically
 resources which may be hosted on CDNs of which the server is aware

 o The server must fully specify the client request, which it will do
 inaccurately

 Server Hint defines a mechanism which sacrifices the RTT savings, but
 retains the ability to initiate requests before DOM parsing (or even
 document transfer) has completed and overcomes the stated drawbacks
 of server push. While not intended as a replacement for Server Push,
 it may be a useful complement or replacement when a PUSH_PROMISE is
 not appropriate.

A.1.1. Format

 The format of the Server Hint frame is as follows:

 +-+
 | Target Authority (varies) |
 +---+
 | ResCount (8+) | Resource Records ...
 +---+

 Server Hint Extension Frame

 Target Authority specifies the scheme and authority components of the
 URI, which apply all resources in this frame. (Resources which
 should be retrieved from a different authority or using a different

Bishop Expires May 12, 2014 [Page 8]

Internet-Draft Extensions November 2013

 scheme MUST be sent in a separate frame.) This URI fragment is
 formatted as a length-prefixed Huffman-encoded string, as defined in
 HPACK [HPACK].

 ResCount is an 8-bit-prefix variable-length integer, also as defined
 in HPACK [HPACK]. It defines how many Resource Records for the
 specified authority follow.

 The format of each Resource Record is as follows:

 +-+
 | Length (8+) | Attributes (8)| Path (varies) |
 +---+
 | ETag (optional) ...
 +---+
 | Last Modified Date (optional) ...
 +---+
 | Size (optional) ...
 +---+
 | Reserved (optional) ...
 +---+

 Server Hint Extension Frame

 Length: An 8-bit prefix integer giving the number of bytes in the
 resource record

 Attributes: A bitmask specifying which optional pieces of
 information the server has opted to include:

 * 0x80: Set if ETag is present

 * 0x40: Set if Last-Modified Date is present

 * 0x20: Set if Size is present

 The remaining bits are reserved.

 Path: A length-prefixed Huffman-encoded string as specified in HPACK
 [HPACK] containing the path (and optional query) component(s) of
 the resource URI [URI].

 ETag: A length-prefixed Huffman-encoded string as specified in HPACK
 [HPACK], containing the ETag as specified in RFC 2616.

https://datatracker.ietf.org/doc/html/rfc2616

Bishop Expires May 12, 2014 [Page 9]

Internet-Draft Extensions November 2013

 Last-Modified Date: Last-Modified Date is the HTTP Date converted
 into the number of seconds since 1970-01-01 0:00 UTC formatted as
 an 8-bit prefix variable-length integer.

 Size: The content length, formatted as an 8-bit prefix variable-
 length integer.

 Reserved: MUST be zero-length when sent, and unknown fields in the
 Reserved space MUST be ignored.

A.1.2. Behavior

 A server MAY send a Server Hint frame multiple times on a stream. It
 may be sent only in a circumstance where a PUSH_PROMISE frame would
 have been permissible, except for the value of PUSH_ENABLED. A
 single frame contains a list of resources accessible under a single
 authority, but multiple instances of the frame MAY be sent to refer
 clients to resources available from multiple authorities.

 Upon receipt of a Server Hint frame, a client MUST check its cache
 for a corresponding resource. If the resource is not available in
 the cache, it SHOULD open connections to the specified authority and
 request the resource.

 When processing a Server Hint frame containing no resources or in
 which all resources are already available from cache, a client MAY
 prepare to make other requests in various ways, such as beginning DNS
 resolution, connection establishment, etc.

Appendix B. Acknowledgements

 This document includes input from Martin Thompson and Gabriel
 Montenegro.

Author's Address

 Mike Bishop
 Microsoft

 EMail: michbish@microsoft.com

Bishop Expires May 12, 2014 [Page 10]

