
HTTPbis Working Group M. Bishop
Internet-Draft Microsoft
Expires: November 23, 2014 May 22, 2014

Extension Frames in HTTP/2
draft-bishop-http2-extension-frames-01

Abstract

 This document describes a proposed modification to the HTTP/2
 specification to better support the creation of extensions without
 the need to version the core protocol or invoke additional protocol
 identifiers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 23, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bishop Expires November 23, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Extensions May 2014

Table of Contents

1. Introduction . 2
1.1. Conventions and Terminology 3

2. Problems an extension model must solve 3
3. Extension Functionality 4
3.1. Extension Identification and Negotiation 4
3.2. Extension Negotiation 5
3.3. New Frames and Modifications 5
3.4. Settings . 8

4. IANA Considerations . 9
5. References . 9
Appendix A. Example Extensions 11
A.1. Blocked Flow-Control Announcement Extension 11
A.2. Alternate-Service Announcement 12
A.3. Compressed Data Frames 14

Appendix B. Acknowledgements 18

1. Introduction

 HTTP/2 previously offered an inconsistent story about the use of
 extensions. Following a discussion of the previous version of this
 draft, the working group reached consensus to prohibit all
 extensibility, declaring that any new functionality would constitute
 the creation of a new protocol with a new ALPN identifier. This was
 driven in large part by a desire not to delay the specification while
 an extension model was finalized and implemented.

 In the wake of this decision, a number of new frames and subfeatures
 have been proposed (BLOCKED (Appendix A.1), ALTSVC (Appendix A.2),
 compression of DATA frames (Appendix A.3)), delaying the
 specification and introducing a dependency on a draft
 [I-D.ietf-httpbis-alt-svc] which is not as close to ready for last
 call as the core HTTP/2 specification. Others, such as DRAINING,
 have been suggested on the mailing list though not introduced to the
 specification. Many of these features are optional either to use or
 to process, limiting their broad applicability.

 In the words of Antoine de Saint-Exupery, "Perfection is achieved,
 not when there is nothing more to add, but when there is nothing left
 to take away." Many of these frames represent concerns which, while
 worth addressing, are not fundamental to the goals of HTTP/2. The
 HTTP/2 specification should be the minimal set of features which
 enables two peers to communicate efficiently and achieve the goals
 laid out in the working group charter.

 This working group is empowered by its charter to work on additional
 extensions to HTTP provided that "[t]he Working Group Chairs ...

Bishop Expires November 23, 2014 [Page 2]

Internet-Draft Extensions May 2014

 believe that it will not interfere with the work described above
 [definition of HTTP/2]." The working group is explicitly prohibited
 from defining HTTP/2 extensions until the HTTP/2 work is complete.

 This draft contends that some or all of these late-breaking features
 could be easily recast as extensions, simplifying and unblocking the
 core specification. Existing implementations of these features would
 test the extensibility model in the process of interoperating with
 others who have chosen not to implement them, permitting us to
 finalize HTTP/2 and turn our attention to the set of extensions the
 working group has already reached consensus should be explored.

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 All numeric values are in network byte order. Values are unsigned
 unless otherwise indicated. Literal values are provided in decimal
 or hexadecimal as appropriate. Hexadecimal literals are prefixed
 with "0x" to distinguish them from decimal literals.

2. Problems an extension model must solve

 Possible extensions vary along a number of pivots. Any extension
 model must define how extensions will work along each pivot, which
 may include disallowing certain combinations. Possible variants of
 extensions include:

 o Changes session state, or strictly informative

 o Flow-controlled third-party data or freely-sent control data

 o Hop-by-hop or end-to-end

 There is no way to know whether the peer supports a given extension
 before sending extension-specific information. This can be simply
 addressed by saying that implementations MUST ignore frame types and
 settings values they don't understand. However, this model only
 works for strictly informative frames and/or settings. An extension
 model must define a way to determine whether a peer supports a given
 extension, if non-informative extensions are supported.

 Another concern is that with only 256 frame types, the frame type
 space may be exhausted if many extensions are defined. Different
 extensions could collide with each other in the choice of frame type
 identifiers, since the space is limited. RFC 6709 [RFC6709]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6709
https://datatracker.ietf.org/doc/html/rfc6709

Bishop Expires November 23, 2014 [Page 3]

Internet-Draft Extensions May 2014

 discusses in detail the trade-offs that must be considered by any
 protocol's extension model. One key risk is that a difficult
 registration process will encourage the use of unregistered
 extensions, which leads to collisions, but a small space requires
 rigorous control over the identifier space.

 Another risk that arises when extension is overly constrained is the
 emergence of protocol variations. RFC 6709 [RFC6709] has this to
 say: "Protocol variations -- specifications that look very similar to
 the original but don't interoperate with each other or with the
 original -- are even more harmful to interoperability than
 extensions." Where no extensions are possible, implementers who wish
 to extend HTTP/2 will quickly move to define a new protocol which
 looks remarkably similar to HTTP/2, but is not interoperable.

 Future protocols using the HTTP/2 framing layer will face exactly the
 same problem as extension authors, since they share a frame type and
 setting value space with any extensions. Thus, a new frame
 introduced with, for example, HTTP/3 must avoid collision with any
 HTTP/2 extensions and must deal with space exhaustion. Any means of
 resolving such adoption after the fact complicates forward-porting of
 existing extensions.

 This document proposes an alternative method of supporting extension
 frames and settings, with the following goals:

 o Reduce the probability of collision among extensions and between
 extensions and future versions of HTTP

 o Enable peers to quickly discover support for a particular
 extension on the far side

 o Enable extension implementers to interoperate with minimal
 procedural overhead

3. Extension Functionality

3.1. Extension Identification and Negotiation

 An extension to HTTP/2 is identified by an Extension ID. An
 Extension ID is a 32-bit identifier registered with IANA. Extension
 identifiers above 0xFFFF0000 are reserved for experimental use, as
 described below (Section 3.1.1).

https://datatracker.ietf.org/doc/html/rfc6709
https://datatracker.ietf.org/doc/html/rfc6709

Bishop Expires November 23, 2014 [Page 4]

Internet-Draft Extensions May 2014

3.1.1. Experimental Extensions

 The designer of an extension MAY self-allocate an extension ID in the
 experimental range defined above without interaction with IANA. Such
 an extension MUST use only frame numbers and setting IDs from the
 experimental range. These extensions MUST NOT be generally deployed
 until a non-experimental extension ID has been allocated.

 As a further guard against accidental collisions, an experimental
 extension SHOULD define a random 32-bit number, and include this
 number as the first four bytes of each frame used by the extension.
 Received frames which do not include this identifier MUST be treated
 as an unrecognized frame type.

3.2. Extension Negotiation

 An implementation which supports extensions SHOULD send an EXTENSIONS
 (Section 3.3.2) frame immediately following its SETTINGS frame at
 connection establishment, listing all extensions that it wishes to
 use during the lifetime of the connection. After receiving a
 corresponding EXTENSIONS frame, any extensions which were present in
 both frames are considered to be in effect for the lifetime of the
 connection. The EXTENSIONS frame may be sent only once per
 connection.

 An empty EXTENSIONS frame declares that the sender does not wish to
 employ any hop-by-hop extensions beyond the negotiated protocol.

 Extension-defined hop-by-hop frames and settings which modify stream
 or session state (including flow control) MUST NOT be sent until the
 EXTENSIONS frame has been received from the remote endpoint declaring
 support for the associated extension ID. Extension-defined frames
 and settings which are strictly informative MAY be sent between
 sending the EXTENSIONS frame and before receiving the peer's
 EXTENSIONS frame. Implementations SHOULD NOT send informative frames
 or settings from any extension after receiving an EXTENSIONS frame
 which does not list support for that extension, since the receiver
 likely will not understand the extra information.

3.3. New Frames and Modifications

3.3.1. Definition of Frames

Bishop Expires November 23, 2014 [Page 5]

Internet-Draft Extensions May 2014

 To support the notion of end-to-end extension frames, one Reserved
 bit from the Frame Header is given a defined meaning:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | R | Length (14) | Type (8) | Flags (8) |
 +-+-+-----------+---------------+-------------------------------+
 |E| Stream Identifier (31) |
 +-+---+
 | Frame Payload (0...) ...
 +---+

 Frame Header

 The newly-added "E" field marks whether a frame is intended for end-
 to-end transmission or hop-by-hop transmission. End-to-end frames
 MUST be relayed by intermediaries, even if the frame type is unknown.
 Such frames do not imply any changes to stream or session state.
 End-to-end frames are always subject to flow control.

 An end-to-end frame on stream zero is meaningless, and MUST be
 discarded upon receipt.

 Of the frames defined in the base HTTP/2 spec, DATA frames MUST set
 the E bit; all other control frames (WINDOW_UPDATE, PUSH_PROMISE,
 HEADERS, etc.) MUST NOT set the E bit. Receipt of a base HTTP/2
 frame with the E bit set improperly indicates a fundamental error in
 the remote implementation, and MUST trigger a connection error of
 type PROTOCOL_ERROR.

3.3.2. EXTENSIONS Frame

 The EXTENSIONS frame (number TBD) carries a list of zero or more
 extensions supported by the sender:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Extension ID (32) |
 +---+
 | Extension-specific data (32) |
 +---+

 EXTENSIONS format

Bishop Expires November 23, 2014 [Page 6]

Internet-Draft Extensions May 2014

 For each extension, the sender includes 32 bits of inital state. The
 semantics of this value are completely defined by the extension.

3.3.3. EXPANDED Frame

 The EXPANDED frame (number 0xFF) expands the space of frame types by
 supplying additional bits for the frame type:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Expanded Frame Type (31) |
 +---+
 | Frame Payload (0...) ...
 +---+

 EXPANDED Format

 In order to mitigate the concern that 256 frame types are too few to
 allow free access to extensions, the EXPANDED frame defines an
 additional 31 bits that can be used for the frame type space. Frame
 types numbered 256 or greater are encoded within an EXPANDED frame,
 and the Expanded Frame Type field set to the desired frame type value
 minus 256. This increases the maximum frame type to 0x80000100
 without increasing the frame size for common frame types.

 Implementations which have no knowledge of frame types greater than
 255 MAY ignore any EXPANDED frames upon receipt, though
 intermediaries MUST still relay end-to-end EXPANDED frames.

3.3.4. Extension-Defined Frames

 An extension MAY define new frame types, which are registered with
 IANA. Frame types greater than 0x80000000 will not be allocated by
 IANA and are reserved for use by experimental extensions. Frame
 types less than 256 are reserved for assignment by standards-track
 RFCs.

 As part of the definition of the extension and frame type, the
 extension MUST specify whether the frames it defines modify session
 state in any way, including being flow-controlled. (Any frame which
 modifies session state MUST NOT be sent prior to receipt of an
 EXTENSIONS frame declaring support for the specified extension.)

 Only frames which do not change stream or session state may be marked
 as end-to-end, since intermediaries which do not understand the frame

Bishop Expires November 23, 2014 [Page 7]

Internet-Draft Extensions May 2014

 type would not be able to track the state changes. Because end-to-
 end frames have unknown payload and provenance, end-to-end frames are
 always flow-controlled.

 Frames which do not modify stream or session state MAY be sent at any
 time. However, an implementation SHOULD NOT send hop-by-hop
 extension frames after receiving an EXTENSIONS frame indicating that
 the other party will not understand the frame being sent.

 An extension has complete freedom to define the payload, flags, and
 other semantics of the frames it specifies, including when and on
 what streams the frame may or may not be sent.

3.3.4.1. Handling by Intermediaries

 Intermediaries MUST forward all end-to-end frames regardless of
 whether they recognize the frame type. Endpoints (user agents and
 origin servers) MUST discard any frame types which they do not
 recognize. Such frames are, by definition, informational and can be
 safely ignored without affecting the shared state with the sender.

 All hop-by-hop extension-defined frames MUST be dropped by
 intermediaries which do not support the extension. However, each
 extension SHOULD specify how an intermediary translates the frames
 defined by the extension toward other peers which might or might not
 support the same extension. When an intermediary advertises support
 for an extension, it MUST abide by the extension-defined intermediary
 behavior.

 An intermediary which advertises support for an extension is
 explicitly not guaranteeing that all peers to which it will relay
 information support the same extensions. Extension definitions
 SHOULD define how intermediaries translate in the following
 situations:

 Relaying to HTTP/1.1 connection

 Relaying to HTTP/2 connection without extension support

 Relaying to HTTP/2 connection with extension support

3.4. Settings

Bishop Expires November 23, 2014 [Page 8]

Internet-Draft Extensions May 2014

 This draft restores the definition of a setting value as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Identifier (32) |
 +---+
 | Value (32) |
 +---+

 Modified Setting Value Format

 Extensions may define settings whose identifiers are registered with
 IANA. The semantics of any such setting value are defined strictly
 by the extension. Implementations MUST ignore unknown settings and
 MUST NOT emit settings defined by an extension which has not been
 announced in an EXTENSIONS (Section 3.3.2) frame.

4. IANA Considerations

 This draft proposes the restoration to the HTTP/2 spec of IANA
 registries for the following, pre-populated with the values defined
 in the HTTP/2 specification:

 o Frame types, with values less than 256 restricted to standards-
 track RFCs and values greater than 0x80000000 reserved for private
 experimental use

 o Setting identifiers, with values greater than 0xFFFF0000 reserved
 for private experimental use

 o Error codes

 And additionally, the creation of a registry for Extension IDs, with
 values above 0xFFFF0000 reserved for private experimental use.

 Given the expanded space, these registries should be allocated on a
 first-come-first-served [RFC5226] basis except as described above,
 though a publicly-available specification for each extension is
 strongly recommended.

5. References

https://datatracker.ietf.org/doc/html/rfc5226

Bishop Expires November 23, 2014 [Page 9]

Internet-Draft Extensions May 2014

 [I-D.ietf-httpbis-alt-svc]
 Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", draft-ietf-httpbis-alt-svc-01 (work
 in progress), April 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC6709] Carpenter, B., Aboba, B., and S. Cheshire, "Design
 Considerations for Protocol Extensions", RFC 6709,
 September 2012.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-alt-svc-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc6709

Bishop Expires November 23, 2014 [Page 10]

Internet-Draft Extensions May 2014

Appendix A. Example Extensions

 This section describes how certain extensions might leverage the
 above model. Because a number of recent additions to the HTTP/2
 specifications are excellent candidates for extension definition,
 they are used as examples here.

A.1. Blocked Flow-Control Announcement Extension

A.1.1. EXTENSIONS Payload

 Support for the Blocked Flow Control Announcement Extension is
 indicated by including extension ID 0xB39D237F in an EXTENSIONS
 frame. The initial data in the EXTENSIONS frame MUST be zero when
 sent and MUST be ignored on receipt.

A.1.2. BLOCKED Frame

 The BLOCKED frame defines no flags and contains no interpretable
 payload. Because the frame is experimental, each BLOCKED frame MUST
 contain the static payload 0xABED6142 for disambiguation. A receiver
 MUST treat the receipt of a BLOCKED frame with any other payload as
 an unknown frame type and ignore it.

A.1.3. Use of BLOCKED Frame

 The BLOCKED frame is used to provide feedback about the performance
 of flow control for the purposes of performance tuning and debugging.
 The BLOCKED frame can be sent by a peer when flow controlled data
 cannot be sent due to the connection- or stream-level flow control
 window being zero or less. This frame MUST NOT be sent if there are
 other reasons preventing data from being sent, such as a lack of
 available data or the underlying transport being blocked.

 The BLOCKED frame MAY be sent on a connection prior to receiving an
 EXTENSIONS frame, but SHOULD NOT be sent after the receipt of an
 EXTENSIONS frame which does not include the BLOCKED extension ID.

 The BLOCKED frame is sent on the stream that is blocked, that is, the
 stream with a non-positive number of bytes available in the flow
 control window. A BLOCKED frame can be sent on stream 0x0 to
 indicate that connection-level flow control is blocked.

 An endpoint MUST NOT send any subsequent BLOCKED frames until the
 affected flow control window becomes positive. This means that
 WINDOW_UPDATE frames are received or SETTINGS_INITIAL_WINDOW_SIZE is
 increased before more BLOCKED frames can be sent.

Bishop Expires November 23, 2014 [Page 11]

Internet-Draft Extensions May 2014

A.1.4. Behavior by Intermediaries

 Because flow-control is hop-by-hop, intermediaries MUST NOT relay a
 BLOCKED frame onto any other connection. If the intermediary is
 blocked by flow control, they MAY generate BLOCKED frames
 independently on other connections where BLOCKED is supported.

A.2. Alternate-Service Announcement

A.2.1. EXTENSIONS Payload

 Support for the Alternate Service Announcement Extension is indicated
 by including extension ID 0x8877B974 in an EXTENSIONS frame. The
 initial data in the EXTENSIONS frame MUST be zero when sent and MUST
 be ignored on receipt.

A.2.2. ALTSVC Frame

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Max-Age (32) |
 +-------------------------------+---------------+---------------+
 | Port (16) | Proto-Len (8) |
 +-------------------------------+---------------+---------------+
 | Protocol-ID (*) |
 +---------------+---+
 | Host-Len (8) | Host (*) ...
 +---------------+---+
 | Origin? (*) ...
 +---+

 ALTSVC Frame Payload

 The ALTSVC frame contains the following fields:

 Max-Age: An unsigned, 32-bit integer indicating the freshness
 lifetime of the alternative service association.

 Port: An unsigned, 16-bit integer indicating the port that the
 alternative service is available upon.

 Proto-Len: An unsigned, 8-bit integer indicating the length, in
 octets, of the Protocol-ID field.

Bishop Expires November 23, 2014 [Page 12]

Internet-Draft Extensions May 2014

 Protocol-ID: A sequence of bytes (length determined by "Proto-Len")
 containing the ALPN protocol identifier of the alternative
 service.

 Host-Len: An unsigned, 8-bit integer indicating the length, in
 octets, of the Host field.

 Host: A sequence of characters (length determined by "Host-Len")
 containing an ASCII string indicating the host that the
 alternative service is available upon. An internationalized
 domain name MUST be expressed using A-labels.

 Origin: An optional sequence of characters (length determined by
 subtracting the length of all preceding fields from the frame
 length) containing the ASCII serialisation of an origin that the
 alternate service is applicable to.

 The ALTSVC frame does not define any flags.

A.2.3. Use of ALTSVC Frame

 The ALTSVC frame (type=0xA) advertises the availability of an
 alternative service to the client. It can be sent at any time for an
 existing client-initiated stream or stream 0, and is intended to
 allow servers to load balance or otherwise segment traffic; see
 [I-D.ietf-httpbis-alt-svc] for details.

 An ALTSVC frame on a client-initiated stream indicates that the
 conveyed alternative service is associated with the origin of that
 stream.

 An ALTSVC frame on stream 0 indicates that the conveyed alternative
 service is associated with the origin contained in the Origin field
 of the frame. An association with an origin that the client does not
 consider authoritative for the current connection MUST be ignored.

 The ALTSVC frame is intended for receipt by clients; a server that
 receives an ALTSVC frame MAY treat it as a connection error of type
 PROTOCOL_ERROR.

 A server MAY send an ALTSVC frame before receiving an EXTENSIONS
 frame listing support for the Alternate-Service Availability
 Announcement extension, but SHOULD NOT send an ALTSVC frame after
 receiving an EXTENSIONS frame which does not declare support.

Bishop Expires November 23, 2014 [Page 13]

Internet-Draft Extensions May 2014

A.2.4. Behavior by Intermediaries

 The ALTSVC frame is processed hop-by-hop. An intermediary MUST NOT
 forward ALTSVC frames, though it can use the information contained in
 ALTSVC frames in forming new ALTSVC frames to send to its own
 clients.

A.3. Compressed Data Frames

 The COMPRESSED_DATA frame (type=TBD) permits a frame-by-frame choice
 of transfer encoding, permitting connections to employ compression
 where appropriate while still enabling the separation of different
 data into different contexts as appropriate.

A.3.1. EXTENSIONS Payload

 Support for the Compressed Data Extension is indicated by the
 following in an EXTENSIONS frame:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Extension ID (32) |
 +---------------+---+
 | Contexts (8) | Supported algorithms (24) |
 +---------------+---+

 Compressed Data in EXTENSIONS

 The EXTENSIONS entry contains the following fields:

 Extension ID: The extension ID for the Compressed Data Extension is
 0x53F9F537.

 Contexts An eight-bit count of the number of separate compression
 contexts the sender is willing to maintain. This SHOULD be
 greater than zero.

 Supported algorithms A bitmap of compression algorithms supported by
 the sender:

 0x001: Compress The "compress" coding is an adaptive Lempel-Ziv-
 Welch (LZW) coding that is commonly produced by the UNIX file
 compression program "compress".

Bishop Expires November 23, 2014 [Page 14]

Internet-Draft Extensions May 2014

 0x002: Deflate The "deflate" coding is a "zlib" data format
 [RFC1950] containing a "deflate" compressed data stream
 [RFC1951] that uses a combination of the Lempel-Ziv (LZ77)
 compression algorithm and Huffman coding.

 0x003: GZip The "gzip" coding is an LZ77 coding with a 32 bit
 CRC that is commonly produced by the gzip file compression
 program [RFC1952].

 Other bits: Reserved for future updates; MUST be zero when sent
 and ignored upon receipt

 Setting the corresponding bit indicates that the sender supports
 creating a compression context for the corresponding algorithm.

A.3.2. COMPRESSED_DATA Frame

 The COMPRESSED_DATA frame defines the following flags:

 END_STREAM (0x1): Bit 1 being set indicates that this frame is the
 last that the endpoint will send for the identified stream.
 Setting this flag causes the stream to enter one of the "half
 closed" states or the "closed" state.

 END_SEGMENT (0x2): Bit 2 being set indicates that this frame is the
 last for the current segment. Intermediaries MUST NOT coalesce
 frames across a segment boundary and MUST preserve segment
 boundaries when forwarding frames.

 PAD_LOW (0x8): Bit 4 being set indicates that the Pad Low field is
 present.

 PAD_HIGH (0x10): Bit 5 being set indicates that the Pad High field
 is present. This bit MUST NOT be set unless the PAD_LOW flag is
 also set. Endpoints that receive a frame with PAD_HIGH set and
 PAD_LOW cleared MUST treat this as a connection error of type
 PROTOCOL_ERROR.

 Init_Context (0x20): Indicates the presence of the Algorithm and
 Initialization fields in the COMPRESSED_DATA frame. MUST be set
 on the first frame to reference a context which has not previously
 been used, or which has been cleared. If set on any other frame,
 the previous value of the context MUST be discarded before further
 processing.

 Clear_Context (0x40): Indicates that this is the last frame which
 will use the current context state, and that the context MUST be
 discarded after interpretation of the current frame.

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1952

Bishop Expires November 23, 2014 [Page 15]

Internet-Draft Extensions May 2014

 The payload is formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Pad High? (8) | Pad Low? (8) | Context (8) | Algorithm? (8)|
 +---------------+---------------+---------------+---------------+
 | Compressed payload (*) ...
 +---------------+---+
 | Padding? (*) ...
 +---+

 COMPRESSED_DATA

 The fields are:

 Pad High: An 8-bit field containing an amount of padding in units of
 256 octets. This field is optional and is only present if the
 PAD_HIGH flag is set. This field, in combination with Pad Low,
 determines how much padding there is on a frame.

 Pad Low: An 8-bit field containing an amount of padding in units of
 single octets. This field is optional and is only present if the
 PAD_LOW flag is set. This field, in combination with Pad High,
 determines how much padding there is on a frame.

 Context: An eight-bit value reflecting which of the connection's
 contexts the sender intends to use. This MUST be less than the
 value the recipient declared in EXTENSIONS.

 Algorithm: Present only if the Init_Context flag is set. Declares
 the compression algorithm the sender intends to employ on the new
 context. Integer taken from the same list employed in the
 EXTENSIONS frame to announce support.

 Compressed payload The remainder of the payload is the compressed
 content, interpreted using the selected compression context.

 Padding: Padding octets that contain no application semantic value.
 Padding octets MUST be set to zero when sending and ignored when
 receiving.

Bishop Expires November 23, 2014 [Page 16]

Internet-Draft Extensions May 2014

A.3.3. Use of COMPRESSED_DATA Frame

 The COMPRESSED_DATA frame may be sent instead of a DATA frame
 provided that both of the following are true:

 The sender is allowed to send a DATA frame at this time on this
 stream

 The recipient has advertised support for the Compressed Data
 Extension

 The sender SHOULD clear contexts, use different contexts, or compress
 selectively to prevent attacker-controlled data from being compressed
 in the same compression context as server-controlled data.

 COMPRESSED_DATA frames are subject to flow control and can only be
 sent when a stream is in the "open" or "half closed (remote)" states.
 The entire frame payload is included in flow control, including Pad
 Low, Pad High, Context, Algorithm, Initialization, and Padding fields
 if present. If a COMPRESSED_DATA frame is received whose stream is
 not in "open" or "half closed (local)" state, the recipient MUST
 respond with a stream error of type STREAM_CLOSED. After processing
 flow control, the frame is decompressed and the result processed as
 if a DATA frame with the decompressed payload had just been received.

 If the COMPRESSED_DATA frame had the Clear_Context flag set, the
 sender MUST discard the compression context immediately following
 compression, and the recipient MUST do likewise immediately after
 decompression.

A.3.4. Behavior by Intermediaries

 COMPRESSED_DATA frames are processed hop-by-hop, though an
 intermediary MAY relay the same compressed content onto another
 connection if an identical compression context is available.

 Intermediaries MAY convert COMPRESSED_DATA frames to use different
 compression schemes on different connections, and MAY convert
 COMPRESSED_DATA frames into DATA frames on connections which do not
 support this extension or which do not support a compression
 algorithm to which the intermediary is willing to convert.

 Intermediaries MUST NOT convert DATA frames into COMPRESSED_DATA
 frames.

Bishop Expires November 23, 2014 [Page 17]

Internet-Draft Extensions May 2014

Appendix B. Acknowledgements

 This document includes input from Rob Trace, Gabriel Montenegro, and
 James Snell.

 Sample extensions are based largely on the work of Mark Nottingham,
 Roberto Peon, and Matthew Kerwin.

Author's Address

 Mike Bishop
 Microsoft

 EMail: michbish@microsoft.com

Bishop Expires November 23, 2014 [Page 18]

