
HTTP M. Bishop
Internet-Draft Microsoft
Intended status: Standards Track M. Thomson
Expires: November 18, 2016 Mozilla
 May 17, 2016

Secondary Certificate Authentication in HTTP/2
draft-bishop-httpbis-http2-additional-certs-01

Abstract

 TLS provides fundamental mutual authentication services for HTTP,
 supporting up to one server certificate and up to one client
 certificate associated to the session to prove client and server
 identities as necessary. This draft provides mechanisms for
 providing additional such certificates at the HTTP layer when these
 constraints are not sufficient.

 Many HTTP servers host content from several origins. HTTP/2
 [RFC7540] permits clients to reuse an existing HTTP connection to a
 server provided that the secondary origin is also in the certificate
 provided during the TLS [I-D.ietf-tls-tls13] handshake.

 In many cases, servers will wish to maintain separate certificates
 for different origins but still desire the benefits of a shared HTTP
 connection. Similarly, servers may require clients to present
 authentication, but have different requirements based on the content
 the client is attempting to access.

 This document describes a how such certificates can be provided at
 the HTTP layer to support both scenarios.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Bishop & Thomson Expires November 18, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 This Internet-Draft will expire on November 18, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Server Certificate Authentication 3
1.2. Client Certificate Authentication 4
1.2.1. HTTP/1.1 using TLS 1.2 and previous 5
1.2.2. HTTP/1.1 using TLS 1.3 6
1.2.3. HTTP/2 . 6

1.3. HTTP-Layer Certificate Authentication 7
1.4. Terminology . 7

2. Discovering Additional Certificates at the HTTP/2 Layer . . . 7
 2.1. Indicating support for HTTP-layer certificate
 authentication . 8

2.2. Making certificates or requests available 9
2.3. Requiring certificate authentication 10

3. Certificates Frames for HTTP/2 11
3.1. The CERTIFICATE_REQUIRED frame 12
3.2. The USE_CERTIFICATE Frame 13
3.3. The CERTIFICATE_REQUEST Frame 14
3.4. The CERTIFICATE frame 15
3.4.1. Supplemental-Data 16

3.5. The CERTIFICATE_PROOF Frame 17
 4. Indicating failures during HTTP-Layer Certificate
 Authentication . 18

5. Security Considerations 19
6. IANA Considerations . 21
6.1. Signature Methods . 21
6.2. Supplemental Data . 22
6.3. HTTP/2 SETTINGS_HTTP_CERT_AUTH Setting 22
6.4. New HTTP/2 Frames . 23
6.4.1. CERTIFICATE_REQUIRED 23

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bishop & Thomson Expires November 18, 2016 [Page 2]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

6.4.2. CERTIFICATE_REQUEST 23
6.4.3. CERTIFICATE . 23
6.4.4. CERTIFICATE_PROOF 23
6.4.5. USE_CERTIFICATE 23

6.5. New HTTP/2 Error Codes 24
6.5.1. BAD_CERTIFICATE 24
6.5.2. UNSUPPORTED_CERTIFICATE 24
6.5.3. CERTIFICATE_REVOKED 24
6.5.4. CERTIFICATE_EXPIRED 24
6.5.5. BAD_SIGNATURE . 24
6.5.6. CERTIFICATE_GENERAL 25

7. Acknowledgements . 25
8. References . 25
8.1. Normative References 25
8.2. Informative References 26

 Authors' Addresses . 27

1. Introduction

 HTTP clients need to know that the content they receive on a
 connection comes from the origin that they intended to retrieve in
 from. The traditional form of server authentication in HTTP has been
 in the form of X.509 certificates provided during the TLS RFC5246
 [I-D.ietf-tls-tls13] handshake.

 Many existing HTTP [RFC7230] servers also have authentication
 requirements for the resources they serve. Of the bountiful
 authentication options available for authenticating HTTP requests,
 client certificates present a unique challenge for resource-specific
 authentication requirements because of the interaction with the
 underlying TLS layer.

 TLS 1.2 [RFC5246] supports one server and one client certificate on a
 connection. These certificates may contain multiple identities, but
 only one certificate may be provided.

1.1. Server Certificate Authentication

Section 9.1.1 of [RFC7540] describes how connections may be used to
 make requests from multiple origins as long as the server is
 authoritative for both. A server is considered authoritative for an
 origin if DNS resolves the origin to the IP address of the server and
 (for TLS) if the certificate presented by the server contains the
 origin in the Subject Alternative Names field.

 [I-D.ietf-httpbis-alt-svc] enables a step of abstraction from the DNS
 resolution. If both hosts have provided an Alternative Service at
 hostnames which resolve to the IP address of the server, they are

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7540#section-9.1.1

Bishop & Thomson Expires November 18, 2016 [Page 3]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 considered authoritative just as if DNS resolved the origin itself to
 that address. However, the server's one TLS certificate is still
 required to contain the name of each origin in question.

 Servers which host many origins often would prefer to have separate
 certificates for some sets of origins. This may be for ease of
 certificate management (the ability to separately revoke or renew
 them), due to different sources of certificates (a CDN acting on
 behalf of multiple origins), or other factors which might drive this
 administrative decision. Clients connecting to such origins cannot
 currently reuse connections, even if both client and server would
 prefer to do so.

 Because the TLS SNI extension is exchanged in the clear, clients
 might also prefer to retrieve certificates inside the encrypted
 context. When this information is sensitive, it might be
 advantageous to request a general-purpose certificate or anonymous
 ciphersuite at the TLS layer, while acquiring the "real" certificate
 in HTTP after the connection is established.

1.2. Client Certificate Authentication

 For servers that wish to use client certificates to authenticate
 users, they might request client authentication during or immediately
 after the TLS handshake. However, if not all users or resources need
 certificate-based authentication, a request for a certificate has the
 unfortunate consequence of triggering the client to seek a
 certificate, possibly requiring user interaction, network traffic, or
 other time-consuming activities. During this time, the connection is
 stalled in many implementations. Such a request can result in a poor
 experience, particularly when sent to a client that does not expect
 the request.

 The TLS 1.3 CertificateRequest can be used by servers to give clients
 hints about which certificate to offer. Servers that rely on
 certificate-based authentication might request different certificates
 for different resources. Such a server cannot use contextual
 information about the resource to construct an appropriate TLS
 CertificateRequest message during the initial handshake.

 Consequently, client certificates are requested at connection
 establishment time only in cases where all clients are expected or
 required to have a single certificate that is used for all resources.
 Many other uses for client certificates are reactive, that is,
 certificates are requested in response to the client making a
 request.

Bishop & Thomson Expires November 18, 2016 [Page 4]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

1.2.1. HTTP/1.1 using TLS 1.2 and previous

 In HTTP/1.1, a server that relies on client authentication for a
 subset of users or resources does not request a certificate when the
 connection is established. Instead, it only requests a client
 certificate when a request is made to a resource that requires a
 certificate. TLS 1.2 [RFC5246] accomodates this by permitting the
 server to request a new TLS handshake, in which the server will
 request the client's certificate.

 Figure 1 shows the server initiating a TLS-layer renegotiation in
 response to receiving an HTTP/1.1 request to a protected resource.

 Client Server
 -- (HTTP) GET /protected -------------------> *1
 <---------------------- (TLS) HelloRequest -- *2
 -- (TLS) ClientHello ----------------------->
 <------------------ (TLS) ServerHello, ... --
 <---------------- (TLS) CertificateRequest -- *3
 -- (TLS) ..., Certificate ------------------> *4
 -- (TLS) Finished -------------------------->
 <-------------------------- (TLS) Finished --
 <--------------------------- (HTTP) 200 OK -- *5

 Figure 1: HTTP/1.1 Reactive Certificate Authentication with TLS 1.2

 In this example, the server receives a request for a protected
 resource (at *1 on Figure 1). Upon performing an authorization
 check, the server determines that the request requires authentication
 using a client certificate and that no such certificate has been
 provided.

 The server initiates TLS renegotiation by sending a TLS HelloRequest
 (at *2). The client then initiates a TLS handshake. Note that some
 TLS messages are elided from the figure for the sake of brevity.

 The critical messages for this example are the server requesting a
 certificate with a TLS CertificateRequest (*3); this request might
 use information about the request or resource. The client then
 provides a certificate and proof of possession of the private key in
 Certificate and CertificateVerify messages (*4).

 When the handshake completes, the server performs any authorization
 checks a second time. With the client certificate available, it then
 authorizes the request and provides a response (*5).

https://datatracker.ietf.org/doc/html/rfc5246

Bishop & Thomson Expires November 18, 2016 [Page 5]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

1.2.2. HTTP/1.1 using TLS 1.3

 TLS 1.3 [I-D.ietf-tls-tls13] introduces a new client authentication
 mechanism that allows for clients to authenticate after the handshake
 has been completed. For the purposes of authenticating an HTTP
 request, this is functionally equivalent to renegotiation. Figure 2
 shows the simpler exchange this enables.

 Client Server
 -- (HTTP) GET /protected ------------------->
 <---------------- (TLS) CertificateRequest --
 -- (TLS) Certificate, CertificateVerify ---->
 <--------------------------- (HTTP) 200 OK --

 Figure 2: HTTP/1.1 Reactive Certificate Authentication with TLS 1.3

 TLS 1.3 does not support renegotiation, instead supporting direct
 client authentication. In contrast to the TLS 1.2 example, in TLS
 1.3, a server can simply request a certificate.

1.2.3. HTTP/2

 An important part of the HTTP/1.1 exchange is that the client is able
 to easily identify the request that caused the TLS renegotiation.
 The client is able to assume that the next unanswered request on the
 connection is responsible. The HTTP stack in the client is then able
 to direct the certificate request to the application or component
 that initiated that request. This ensures that the application has
 the right contextual information for processing the request.

 In HTTP/2, a client can have multiple outstanding requests. Without
 some sort of correlation information, a client is unable to identify
 which request caused the server to request a certificate.

 Thus, the minimum necessary mechanism to support reactive certificate
 authentication in HTTP/2 is an identifier that can be use to
 correlate an HTTP request with a request for a certificate. Since
 streams are used for individual requests, correlation with a stream
 is sufficient.

 [RFC7540] prohibits renegotiation after any application data has been
 sent. This completely blocks reactive certificate authentication in
 HTTP/2 using TLS 1.2. If this restriction were relaxed by an
 extension or update to HTTP/2, such an identifier could be added to
 TLS 1.2 by means of an extension to TLS. Unfortunately, many TLS 1.2
 implementations do not permit application data to continue during a
 renegotiation. This is problematic for a multiplexed protocol like
 HTTP/2.

Bishop & Thomson Expires November 18, 2016 [Page 6]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

1.3. HTTP-Layer Certificate Authentication

 This draft proposes bringing the TLS 1.3 CertificateRequest,
 Certificate, and CertificateVerify messages into HTTP/2 frames,
 enabling certificate-based authentication of both clients and servers
 independent of TLS version. This mechanism can be implemented at the
 HTTP layer without requiring new TLS stack behavior and without
 breaking the existing interface between HTTP and applications above
 it.

 This could be done in a naive manner by replicating the messages as
 HTTP/2 frames on each stream. However, this would create needless
 redundancy between streams and require frequent expensive signing
 operations. Instead, this draft lifts the bulky portions of each
 message into frames on stream zero and permits the on-stream frames
 to incorporate them by reference as needed.

 Certificate chains, with proof-of-possession of the corresponding
 private key, can be supplied into a collection of available
 certificates. Likewise, descriptions of desired certificates can be
 supplied into these collections. These pre-supplied elements are
 then available for automatic use (in some situations) or for
 reference by individual streams.

Section 2 describes how the feature is employed, defining means to
 detect support in peers (Section 2.1), make certificates and requests
 available (Section 2.2), and indicate when streams are blocked
 waiting on an appropriate certificate (Section 2.3). Section 3
 defines the required frame types, which parallel the TLS 1.3 message
 exchange. Finally, Section 4 defines new error types which can be
 used to notify peers when the exchange has not been successful.

1.4. Terminology

RFC 2119 [RFC2119] defines the terms "MUST", "MUST NOT", "SHOULD" and
 "MAY".

2. Discovering Additional Certificates at the HTTP/2 Layer

 A certificate chain is sent as a series of "CERTIFICATE" frames (see
Section 3.4) on stream zero. Proof of possession of the

 corresponding private key is sent as a "CERTIFICATE_PROOF" frame (see
Section 3.5) on stream zero. Once the holder of a certificate has

 sent the chain and proof, this certificate chain is cached by the
 recipient and available for future use. If the certificate is marked
 as "AUTOMATIC_USE", the certificate may be used by the recipient to
 authorize any current or future request. Otherwise, the recipient
 requests the required certificate on each stream, but the previously-

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bishop & Thomson Expires November 18, 2016 [Page 7]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 supplied certificates are available for reference without having to
 resend them.

 Likewise, the details of a request are sent on stream zero and stored
 by the recipient. These details will be referenced by subsequent
 "CERTIFICATE_REQUIRED" frames.

 Data sent by each peer is correlated by the ID given in each frame.
 This ID is unrelated to values used by the other peer, even if each
 uses the same ID in certain cases.

2.1. Indicating support for HTTP-layer certificate authentication

 Clients and servers that will accept requests for HTTP-layer
 certificate authentication indicate this using the HTTP/2
 "SETTINGS_HTTP_CERT_AUTH" (0xSETTING-TBD) setting.

 The initial value for the "SETTINGS_HTTP_CERT_AUTH" setting is 0,
 indicating that the peer does not support HTTP-layer certificate
 authentication. If a peer does support HTTP-layer certificate
 authentication, it uses the setting to communicate its acceptable
 hash and signature algorithm.

 The setting value is a pair of bitmaps. In the lower half, each set
 bit reflects an acceptable signing algorithm for provided
 certificates. Each bit MUST NOT be set if a proof signed in this way
 would be unacceptable to the sender.

 Bit 1 (0x00 00 00 01): ECDSA P-256 with SHA-256

 Bit 2 (0x00 00 00 02): ECDSA P-384 with SHA-384

 Bit 3 (0x00 00 00 04): Ed25519

 Bit 4 (0x00 00 00 08): Ed448

 Bit 5 (0x00 00 00 10): RSA-PSS with SHA-256 and MGF1 (minimum of
 2048 bits)

 Bits 6-16: Reserved for future use

 If no compatible signature algorithms have been proffered in SETTINGS
 by a peer, the frames defined in this specification MUST NOT be sent
 to them, with the exception of empty "USE_CERTIFICATE" frames.

 In the upper half, each set bit reflects an acceptable form of
 supporting data to include with the certificate.

Bishop & Thomson Expires November 18, 2016 [Page 8]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 Bit 17 (0x00 01 00 00): Always set. Indicates the ability to
 interpret requests for certificates.

 Bit 18 (0x00 02 00 00): Indicates support for OCSP [RFC2560]
 supporting data.

 Bit 19 (0x00 04 00 00): Indicates support for Signed Certificate
 Timestamp [RFC6962] supporting data.

 Bit 20-32: Reserved for future use

2.2. Making certificates or requests available

 When a peer has advertised support for HTTP-layer certificates as in
Section 2.1, either party can supply additional certificates into the

 connection at any time. These certificates then become available for
 the peer to consider when deciding whether a connection is suitable
 to transport a particular request.

 Available certificates which have the "AUTOMATIC_USE" flag set MAY be
 used by the recipient without further notice. This means that
 clients or servers which predict a certificate will be required could
 pre-supply the certificate without being asked. Regardless of
 whether "AUTOMATIC_USE" is set, these certificates are available for
 reference by future "USE_CERTIFICATE" frames.

 Client Server
 <--<--<------------ (stream 0) CERTIFICATE --
 <-- (stream 0) CERTIFICATE_PROOF (AU flag) --
 ...
 -- (stream N) GET /from-new-origin --------->
 <----------------------- (stream N) 200 OK --

 Figure 3: Server-Proffered Certificate

 Client Server
 -- (stream 0) CERTIFICATE ------------>-->-->
 -- (stream 0) CERTIFICATE_PROOF (AU flag) -->
 -- (streams 1,3) GET /protected ------------>
 <-------------------- (streams 1,3) 200 OK --

 Figure 4: Client-Proffered Certificate

 Likewise, either party can supply a certificate request that outlines
 parameters of a certificate they might request in the future. It is
 important to note that this does not currently request such a

https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc6962

Bishop & Thomson Expires November 18, 2016 [Page 9]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 certificate, but makes the contents of the request available for
 reference by a future "CERTIFICATE_REQUIRED" frame.

 Because certificates can be large and each "CERTIFICATE_PROOF"
 requires a signing operation, the server MAY instead send an "ORIGIN"
 frame including origins which are not in its TLS certificate. This
 represents an explicit claim by the server to possess the appropriate
 certificate - a claim the client MUST verify using the procedures in

Section 2.3 before relying on the server's authority for the claimed
 origin.

2.3. Requiring certificate authentication

 As defined in [RFC7540], when a client finds that a https:// origin
 (or Alternative Service [I-D.ietf-httpbis-alt-svc]) to which it needs
 to make a request has the same IP address as a server to which it is
 already connected, it MAY check whether the TLS certificate provided
 contains the new origin as well, and if so, reuse the connection.

 If the TLS certificate does not contain the new origin, but the
 server has advertised support for HTTP-layer certificates (see

Section 2.1, it MAY send a "CERTIFICATE_REQUIRED" frame on the stream
 it will use to make the request. (If the request parameters have not
 already been made available using a "CERTIFICATE_REQUEST" frame, the
 client will need to send the "CERTIFICATE_REQUEST" in order to
 generate the "CERTIFICATE_REQUIRED" frame.) The stream represents a
 pending request to that origin which is blocked until a valid
 certificate is processed.

 The request is blocked until the server has responded with a
 "USE_CERTIFICATE" frame pointing to a certificate for that origin.
 If the certificate is already available, the server SHOULD
 immediately respond with the appropriate "USE_CERTIFICATE" frame.
 (If the certificate has not already been transmitted, the server will
 need to make the certificate available as described in Section 2.2
 before completing the exchange.)

 If the server does not have the desired certificate, it MUST respond
 with an empty "USE_CERTIFICATE" frame. In this case, or if the
 server has not advertised support for HTTP-layer certificates, the
 client MUST NOT send any requests for resources in that origin on the
 current connection and SHOULD send a RST_STREAM on the stream used
 for the request.

https://datatracker.ietf.org/doc/html/rfc7540

Bishop & Thomson Expires November 18, 2016 [Page 10]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 Client Server
 <----------------------- (stream 0) ORIGIN --
 -- (stream 0) CERTIFICATE_REQUEST ---------->
 ...
 -- (stream N) CERTIFICATE_REQUIRED --------->
 <--<--<------------ (stream 0) CERTIFICATE --
 <------------ (stream 0) CERTIFICATE_PROOF --
 <-------------- (stream N) USE_CERTIFICATE --
 -- (stream N) GET /from-new-origin --------->
 <----------------------- (stream N) 200 OK --

 Figure 5: Client-Requested Certificate

 Likewise, on each stream where certificate authentication is
 required, the server sends a "CERTIFICATE_REQUIRED" frame, which the
 client answers with a "USE_CERTIFICATE" frame indicating the
 certificate to use. If the request parameters or the responding
 certificate are not already available, they will need to be sent as
 described in Section 2.2 as part of this exchange.

 Client Server
 <---------- (stream 0) CERTIFICATE_REQUEST --
 ...
 -- (stream N) GET /protected --------------->
 <--------- (stream N) CERTIFICATE_REQUIRED --
 -- (stream 0) CERTIFICATE ------------>-->-->
 -- (stream 0) CERTIFICATE_PROOF ------------>
 -- (stream N) USE_CERTIFICATE -------------->
 <----------------------- (stream N) 200 OK --

 Figure 6: Reactive Certificate Authentication

 A server MAY push resources from an origin for which it is
 authoritative but for which the client has not yet received the
 certificate. In this case, the client MUST verify the server's
 possession of an appropriate certificate by sending a
 "CERTIFICATE_REQUIRED" frame on the pushed stream to inform the
 server that progress is blocked until the request is satisfied. The
 client MUST NOT use the pushed resource until an appropriate
 certificate has been received and validated.

3. Certificates Frames for HTTP/2

 The "CERTIFICATE_REQUEST" and "CERTIFICATE_REQUIRED" frames are
 correlated by their "Request-ID" field. Subsequent
 "CERTIFICATE_REQUIRED" frames with the same "Request-ID" value MAY be

Bishop & Thomson Expires November 18, 2016 [Page 11]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 sent on other streams where the sender is expecting a certificate
 with the same parameters.

 The "CERTIFICATE", "CERTIFICATE_PROOF", and "USE_CERTIFICATE" frames
 are correlated by their "Cert-ID" field. Subsequent
 "USE_CERTIFICATE" frames with the same "Cert-ID" MAY be sent in
 response to other "CERTIFICATE_REQUIRED" frames and refer to the same
 certificate.

 "Request-ID" and "Cert-ID" are sender-local, and the use of the same
 value by the other peer does not imply any correlation between their
 frames.

3.1. The CERTIFICATE_REQUIRED frame

 The "CERTIFICATE_REQUIRED" frame (0xFRAME-TBD2) is sent to indicate
 that the HTTP request on the current stream is blocked pending
 certificate authentication. The frame includes a request identifier
 which can be used to correlate the stream with a previous
 "CERTIFICATE_REQUEST" frame sent on stream zero. The
 "CERTIFICATE_REQUEST" describes the certificate the sender requires
 to make progress on the stream in question.

 The "CERTIFICATE_REQUIRED" frame contains 1 octet, which is the
 authentication request identifier, "Request-ID". A peer that
 receives a "CERTIFICATE_REQUIRED" of any other length MUST treat this
 as a stream error of type "PROTOCOL_ERROR". Frames with identical
 request identifiers refer to the same "CERTIFICATE_REQUEST".

 A server MAY send multiple "CERTIFICATE_REQUIRED" frames on the same
 stream. If a server requires that a client provide multiple
 certificates before authorizing a single request, each required
 certificate MUST be indicated with a separate "CERTIFICATE_REQUIRED"
 frame, each of which MUST have a different request identifier
 (referencing different "CERTIFICATE_REQUEST" frames describing each
 required certificate). To reduce the risk of client confusion,
 servers SHOULD NOT have multiple outstanding "CERTIFICATE_REQUIRED"
 frames on the same stream at any given time.

 Clients MUST NOT send multiple "CERTIFICATE_REQUIRED" frames on the
 same stream.

 The "CERTIFICATE_REQUIRED" frame SHOULD NOT be sent to a peer which
 has not advertised support for HTTP-layer certificate authentication.

 The "CERTIFICATE_REQUIRED" frame MUST NOT be sent on stream zero, and
 MUST NOT be sent on a stream in the "half-open (remote)" state. A
 client that receives a "CERTIFICATE_REQUIRED" frame on a stream which

Bishop & Thomson Expires November 18, 2016 [Page 12]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 is not in a valid state SHOULD treat this as a stream error of type
 "PROTOCOL_ERROR".

3.2. The USE_CERTIFICATE Frame

 The "USE_CERTIFICATE" frame (0xFRAME-TBD5) is sent in response to a
 "CERTIFICATE_REQUIRED" frame to indicate which certificate is being
 used to satisfy the requirement.

 A "USE_CERTIFICATE" frame with no payload refers to the certificate
 provided at the TLS layer, if any. If no certificate was provided at
 the TLS layer, the stream should be processed with no authentication,
 likely returning an authentication-related error at the HTTP level
 (e.g. 403) for servers or routing the request to a new connection for
 clients.

 Otherwise, the "USE_CERTIFICATE" frame contains the "Cert-ID" of the
 certificate the sender wishes to use. This MUST be the ID of a
 certificate previously presented in one or more "CERTIFICATE" frames,
 and for which proof of possession has been presented in a
 "CERTIFICATE_PROOF" frame. Recipients of a "USE_CERTIFICATE" frame
 of any other length MUST treat this as a stream error of type
 "PROTOCOL_ERROR". Frames with identical certificate identifiers
 refer to the same certificate chain.

 The "USE_CERTIFICATE" frame MUST NOT be sent on stream zero or a
 stream on which a "CERTIFICATE_REQUIRED" frame has not been received.
 Receipt of a "USE_CERTIFICATE" frame in these circmustances SHOULD be
 treated as a stream error of type "PROTOCOL_ERROR".

 The referenced certificate chain MUST conform to the requirements
 expressed in the "CERTIFICATE_REQUEST" to the best of the sender's
 ability. Specifically:

 o If the "CERTIFICATE_REQUEST" contained a non-empty "Certificate-
 Authorities" element, one of the certificates in the chain SHOULD
 be signed by one of the listed CAs.

 o If the "CERTIFICATE_REQUEST" contained a non-empty "Cert-
 Extensions" element, the first certificate MUST match with regard
 to the extension OIDs recognized by the sender.

 o Each certificate that is not self-signed MUST be signed using a
 hash/signature algorithm listed in the "Algorithms" element.
 [[TODO: No longer exists; does SETTINGS give enough info?]]

 If these requirements are not satisfied, the recipient MAY at its
 discretion either return an error at the HTTP semantic layer, or

Bishop & Thomson Expires November 18, 2016 [Page 13]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 respond with a stream error [RFC7540] on any stream where the
 certificate is used. Section 4 defines certificate-related error
 codes which might be applicable.

3.3. The CERTIFICATE_REQUEST Frame

 TLS 1.3 defines the "CertificateRequest" message, which prompts the
 client to provide a certificate which conforms to certain properties
 specified by the server. This draft defines the
 "CERTIFICATE_REQUEST" frame (0xFRAME-TBD1), which contains the same
 contents as a TLS 1.3 "CertificateRequest" message, but can be sent
 over any TLS version.

 The "CERTIFICATE_REQUEST" frame SHOULD NOT be sent to a peer which
 has not advertised support for HTTP-layer certificate authentication.

 The "CERTIFICATE_REQUEST" frame MUST be sent on stream zero. A
 "CERTIFICATE_REQUEST" frame received on any other stream MUST be
 rejected with a stream error of type "PROTOCOL_ERROR".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+---------------+---------------+
 | Request-ID (8)| CA-Count (16) |
 +---+---------------+
 | Certificate-Authorities (?) ...
 +---+
 | Cert-Extension-Count (16) | Cert-Extensions(?) ...
 +---+

 Figure 7: CERTIFICATE_REQUEST frame payload

 The frame contains the following fields:

 Request-ID: "Request-ID" is an 8-bit opaque identifier used to
 correlate subsequent certificate-related frames with this request.
 The identifier MUST be unique in the session for the sender.

 CA-Count and Certificate-Authorities: "Certificate-Authorities" is a
 series of distinguished names of acceptable certificate
 authorities, represented in DER-encoded [X690] format. These
 distinguished names may specify a desired distinguished name for a
 root CA or for a subordinate CA; thus, this message can be used to
 describe known roots as well as a desired authorization space.
 The number of such structures is given by the 16-bit "CA-Count"
 field, which MAY be zero. If the "CA-Count" field is zero, then
 the recipient MAY send any certificate that meets the rest of the

https://datatracker.ietf.org/doc/html/rfc7540

Bishop & Thomson Expires November 18, 2016 [Page 14]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 selection criteria in the "CERTIFICATE_REQUEST", unless there is
 some external arrangement to the contrary.

 Cert-Extension-Count and Cert-Extensions: A list of certificate
 extension OIDs [RFC5280] with their allowed values, represented in
 a series of "CertificateExtension" structures (see
 [I-D.ietf-tls-tls13] section 6.3.5). The list of OIDs MUST be
 used in certificate selection as described in
 [I-D.ietf-tls-tls13]. The number of Cert-Extension structures is
 given by the 16-bit "Cert-Extension-Count" field, which MAY be
 zero.

 Some certificate extension OIDs allow multiple values (e.g. Extended
 Key Usage). If the sender has included a non-empty Cert-Extensions
 list, the certificate MUST contain all of the specified extension
 OIDs that the recipient recognizes. For each extension OID
 recognized by the recipient, all of the specified values MUST be
 present in the certificate (but the certificate MAY have other values
 as well). However, the recipient MUST ignore and skip any
 unrecognized certificate extension OIDs.

 Servers MUST be able to recognize the "subjectAltName" extension
 ([RFC2459] section 4.2.1.7) at a minimum. Clients MUST always
 specify the desired origin using this extension, though other
 extensions MAY also be included.

 PKIX RFCs define a variety of certificate extension OIDs and their
 corresponding value types. Depending on the type, matching
 certificate extension values are not necessarily bitwise-equal. It
 is expected that implementations will rely on their PKI libraries to
 perform certificate selection using these certificate extension OIDs.

3.4. The CERTIFICATE frame

 A certificate chain is transferred as a series of "CERTIFICATE"
 frames (0xFRAME-TBD3) with the same Cert-ID, each containing a single
 certificate in the chain. The end certificate of the chain can be
 used as authentication for previous or subsequent requests.

 The "CERTIFICATE" frame defines no flags.

 While unlikely, it is possible that an exceptionally large
 certificate might be too large to fit in a single HTTP/2 frame (see

[RFC7540] section 4.2). Senders unable to transfer a requested
 certificate due to the recipient's "SETTINGS_MAX_FRAME_SIZE" value
 SHOULD terminate affected streams with "CERTIFICATE_TOO_LARGE".

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc2459#section-4.2.1.7
https://datatracker.ietf.org/doc/html/rfc7540#section-4.2

Bishop & Thomson Expires November 18, 2016 [Page 15]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 The "CERTIFICATE" frame MUST be sent on stream zero. A "CERTIFICATE"
 frame received on any other stream MUST be rejected with a stream
 error of type "PROTOCOL_ERROR".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Cert-ID (8) | SData-Count(8)| SData-Records (*) ...
 +---+
 | Certificate (*) ...
 +---+

 Figure 8: CERTIFICATE frame payload

 The fields defined by the "CERTIFICATE" frame are:

 Cert-ID: The sender-assigned ID of the certificate chain.

 SData-Count and SData-Records: An array of Supplemental-Data objects
 (see Section 3.4.1), with the number given by SData-Count, which
 MAY be zero. Each Supplemental-Data object contains information
 about the certificate.

 Certificate: An X.509v3 [RFC5280] certificate in the sender's
 certificate chain.

 The first or only "CERTIFICATE" frame with a given Cert-ID MUST
 contain the sender's certificate. Each subsequent certificate SHOULD
 directly certify the certificate immediately preceding it. A
 certificate which specifies a trust anchor MAY be omitted, provided
 that the recipient is known to already possess the relevant
 certificate. (For example, because it was included in a
 "CERTIFICATE_REQUEST"'s Certificate-Authorities list.)

3.4.1. Supplemental-Data

 Supplemental data helps a client to validate a certificate, but is
 not essential to doing so. Peers SHOULD NOT include supplemental
 data which the recipient is known not to support, but MAY offer
 supplemental data prior to learning which types the recipient
 supports.

 Each supplemental data object has the following format:

https://datatracker.ietf.org/doc/html/rfc5280

Bishop & Thomson Expires November 18, 2016 [Page 16]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Type(8) | Length (16) | Data (*) ...
 +---+

 Figure 9: Supplemental-Data element

 The Type field indicates which type of supplemental data is being
 offered:

 OSCP (0x0): Data contains an OCSP [RFC2560] record supporting this
 certificate.

 SCT (0x1): Data contains a Signed Certificate Timestamp [RFC6962]
 supporting this certificate.

 Other values (0x3-0xF): Reserved for future use.

3.5. The CERTIFICATE_PROOF Frame

 The "CERTIFICATE_PROOF" frame proves possession of the private key
 corresponding to an end certificate previously shown in a
 "CERTIFICATE" frame.

 The "CERTIFICATE_PROOF" frame defines one flag:

 AUTOMATIC_USE (0x01): Indicates that the certificate can be used
 automatically on future requests.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Cert-ID (8) | Algorithm (16) | Signature(*)...
 +---+

 Figure 10: CERTIFICATE_PROOF frame payload

 The "CERTIFICATE_PROOF" frame (0xFRAME-TBD4) contains an "Algorithm"
 field (a "SignatureAndHashAlgorithm", from [I-D.ietf-tls-tls13]

section 6.3.2.1), describing the hash/signature algorithm pair being
 used. [[TODO: Sixteen bits because it is in TLS 1.3; if we're using
 a bitmask to express allowed values, we're down to ~5 bits needed to
 contain all permitted algorithms. Shrink?]]

https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc6962

Bishop & Thomson Expires November 18, 2016 [Page 17]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 The signature is performed as described in [I-D.ietf-tls-tls13], with
 the following values being used:

 o The context string for the signature is "HTTP/2 CERTIFICATE_PROOF"

 o The "specified content" is an [RFC5705] exported value, with the
 following parameters:

 * Disambiguating label string: "EXPORTER HTTP/2
 CERTIFICATE_PROOF"

 * Length: 64 bytes

 Because the exported value can be independently calculated by both
 sides of the TLS connection, the value to be signed is not sent on
 the wire at any time. The same signed value is used for all
 "CERTIFICATE_PROOF" frames in a single HTTP/2 connection.

 A "CERTIFICATE_PROOF" frame MUST be sent only after all "CERTIFICATE"
 frames with the same Cert-ID have been sent, and MUST correspond to
 the first certificate presented in the first "CERTIFICATE" frame with
 that Cert-ID. Receipt of multiple "CERTIFICATE_PROOF" frames for the
 same Cert-ID, receipt of a "CERTIFICATE_PROOF" frame without a
 corresponding "CERTIFICATE" frame, or receipt of a "CERTIFICATE"
 frame after a corresponding "CERTIFICATE_PROOF" MUST be treated as a
 session error of type "PROTOCOL_ERROR".

 If the "AUTOMATIC_USE" flag is set, the recipient MAY omit sending
 "CERTIFICATE_REQUIRED" frames on future streams which would require a
 similar certificate and use the referenced certificate for
 authentication without further notice to the holder. This behavior
 is optional, and receipt of a "CERTIFICATE_REQUIRED" frame does not
 imply that previously-presented certificates were unacceptable, even
 if "AUTOMATIC_USE" was set. Servers MUST set the "AUTOMATIC_USE"
 flag when sending a "CERTIFICATE_PROOF" frame. A server MUST NOT
 send certificates for origins which it is not prepared to service on
 the current connection.

4. Indicating failures during HTTP-Layer Certificate Authentication

 Because this draft permits certificates to be exchanged at the HTTP
 framing layer instead of the TLS layer, several certificate-related
 errors which are defined at the TLS layer might now occur at the HTTP
 framing layer. In this section, those errors are restated and added
 to the HTTP/2 error code registry.

 BAD_CERTIFICATE (0xERROR-TBD1): A certificate was corrupt, contained
 signatures that did not verify correctly, etc.

https://datatracker.ietf.org/doc/html/rfc5705

Bishop & Thomson Expires November 18, 2016 [Page 18]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 UNSUPPORTED_CERTIFICATE (0xERROR-TBD2): A certificate was of an
 unsupported type or did not contain required extensions

 CERTIFICATE_REVOKED (0xERROR-TBD3): A certificate was revoked by its
 signer

 CERTIFICATE_EXPIRED (0xERROR-TBD4): A certificate has expired or is
 not currently valid

 BAD_SIGNATURE (0xERROR-TBD5): The digital signature provided did not
 match the claimed public key

 CERTIFICATE_TOO_LARGE (0xERROR-TBD6): The certificate cannot be
 transferred due to the recipient's "SETTINGS_MAX_FRAME_SIZE"

 CERTIFICATE_GENERAL (0xERROR-TBD7): Any other certificate-related
 error

 As described in [RFC7540], implementations MAY choose to treat a
 stream error as a connection error at any time. Of particular note,
 a stream error cannot occur on stream 0, which means that
 implementations cannot send non-session errors in response to
 "CERTIFICATE_REQUEST", "CERTIFICATE", and "CERTIFICATE_PROOF" frames.
 Implementations which do not wish to terminate the connection MAY
 either send relevant errors on any stream which references the
 failing certificate in question or process the requests as
 unauthenticated and provide error information at the HTTP semantic
 layer.

5. Security Considerations

 This mechanism defines an alternate way to obtain server and client
 certificates other than the TLS handshake. While the signature of
 exporter values is expected to be equally secure, it is important to
 recognize that a vulnerability in this code path is at least equal to
 a vulnerability in the TLS handshake.

 This could also increase the impact of a key compromise. Rather than
 needing to subvert DNS or IP routing in order to use a compromised
 certificate, a malicious server now only needs a client to connect to
 some HTTPS site under its control. Clients SHOULD continue to
 validate that destination IP addresses are valid for the origin
 either by direct DNS resolution or resolution of a validated
 Alternative Service. (Future work could include a mechanism for a
 server to offer proofs.)

 This draft defines a mechanism which could be used to probe servers
 for origins they support, but opens no new attack versus making

https://datatracker.ietf.org/doc/html/rfc7540

Bishop & Thomson Expires November 18, 2016 [Page 19]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 repeat TLS connections with different SNI values. Servers SHOULD
 impose similar denial-of-service mitigations (e.g. request rate
 limits) to "CERTIFICATE_REQUEST" frames as to new TLS connections.

 While the "CERTIFICATE_REQUEST" frame permits the sender to enumerate
 the acceptable Certificate Authorities for the requested certificate,
 it might not be prudent (either for security or data consumption) to
 include the full list of trusted Certificate Authorities in every
 request. Senders, particularly clients, are advised to send an empty
 "Certificate-Authorities" element unless they are expecting a
 certificate to be signed by a particular CA or small set of CAs.

 Failure to provide a certificate on a stream after receiving
 "CERTIFICATE_REQUIRED" blocks processing, and SHOULD be subject to
 standard timeouts used to guard against unresponsive peers.

 In order to protect the privacy of the connection against triple-
 handshake attacks, this feature of HTTP/2 MUST be used only over TLS
 1.3 or greater, or over TLS 1.2 in combination with the Extended
 Master Secret extension defined in [RFC7627].

 Client implementations need to carefully consider the impact of
 setting the "AUTOMATIC_USE" flag. This flag is a performance
 optimization, permitting the client to avoid a round-trip on each
 request where the server checks for certificate authentication.
 However, once this flag has been sent, the client has zero knowledge
 about whether the server will use the referenced cert for any future
 request, or even for an existing request which has not yet completed.
 Clients MUST NOT set this flag on any certificate which is not
 appropriate for currently-in-flight requests, and MUST NOT make any
 future requests on the same connection which they are not willing to
 have associated with the provided certificate.

 Implementations need to be aware of the potential for confusion about
 the state of a connection. The presence or absence of a validated
 certificate can change during the processing of a request,
 potentially multiple times, as "USE_CERTIFICATE" frames are received.
 A server that uses certificate authentication needs to be prepared to
 reevaluate the authorization state of a request as the set of
 certificates changes.

 Finally, validating a multitude of signatures can be computationally
 expensive, while generating an invalid signature is computationally
 cheap. Implementations will require checks against attacks from this
 direction. Signature proofs SHOULD NOT be validated until a stream
 requires the certificate to make progress. A signature which is not
 valid based on the asserted public key SHOULD be treated as a session
 error, to avoid further attacks from the peer, though an

https://datatracker.ietf.org/doc/html/rfc7627

Bishop & Thomson Expires November 18, 2016 [Page 20]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 implementation MAY instead disable HTTP-layer certificates for the
 current connection instead.

6. IANA Considerations

 This draft establishes two new registries, and adds entries in three
 others.

 Acceptable signature methods are registered in Section 6.1.
 Acceptable forms of supplemental data are registered in Section 6.2.

 The HTTP/2 "SETTINGS_HTTP_CERT_AUTH" setting is registered in
Section 6.3. Five frame types are registered in Section 6.4. Six

 error codes are registered in Section 6.5.

6.1. Signature Methods

 This document establishes a registry for signature methods acceptable
 for use with this extension. The "HTTP-Layer Certificate Signature
 Method" registry manages a space of sixteen values. The "HTTP-Layer
 Certificate Signature Method" operates under either the "RFC
 Required" or "IESG Approval" policy.

 New entries in this registry require the following information:

 Signature Method: A name or label for the signature method

 Bit assignment: A single-bit value from 0x0000 to 0x8000

 Specification: A document which describes how the signature may be
 performed

 The entries in the following table are registered by this document.

+-------------------------------+------------+------------------------------+
| Signature Method | Bit | Specification |
+-------------------------------+------------+------------------------------+
ECDSA P-256 with SHA-256	1 (0x0001)	[FIPS-186-4]
ECDSA P-384 with SHA-384	2 (0x0002)	[FIPS-186-4]
Ed25519	3 (0x0004)	[I-D.josefsson-eddsa-ed25519]
Ed448	4 (0x0008)	[I-D.josefsson-eddsa-ed25519]
RSA-PSS with SHA-256 and MGF1	5 (0x0010)	[PKCS.1]
+-------------------------------+------------+------------------------------+

 Figure 11

Bishop & Thomson Expires November 18, 2016 [Page 21]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

6.2. Supplemental Data

 This document establishes a registry for supplemental data types
 acceptable for use with this extension. The "HTTP-Layer Certificate
 Supplemental Data" registry manages a space of sixteen values. The
 "HTTP-Layer Certificate Supplemental Data" operates under either the
 "RFC Required" or "IESG Approval" policy.

 New entries in this registry require the following information:

 Data Type: A name or label for the supplemental data type

 Bit assignment: A single-bit value from 0x0000 to 0x8000

 Value assignment: A value in the range 0x00 to 0xFF; one type MAY
 reserve multiple values

 Specification: A document which describes how the supplemental data
 may be interpreted

 The entries in the following table are registered by this document.

 +------------------------+------------+-------+----------------------+
 | Data Type | Bit | Value | Specification |
 +------------------------+------------+-------+----------------------+
Reserved	1 (0x0001)	N/A	{{setting}}
OCSP	2 (0x0002)	0x00	[RFC2560]
SCT	3 (0x0004)	0x01	[RFC6962]
 +------------------------+------------+------------------------------+

 Figure 12

6.3. HTTP/2 SETTINGS_HTTP_CERT_AUTH Setting

 The SETTINGS_HTTP_CERT_AUTH setting is registered in the "HTTP/2
 Settings" registry established in [RFC7540].

 Name: SETTINGS_HTTP_CERT_AUTH

 Code: 0xSETTING-TBD

 Initial Value: 0

 Specification: This document.

https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc6962
https://datatracker.ietf.org/doc/html/rfc7540

Bishop & Thomson Expires November 18, 2016 [Page 22]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

6.4. New HTTP/2 Frames

 Four new frame types are registered in the "HTTP/2 Frame Types"
 registry established in [RFC7540].

6.4.1. CERTIFICATE_REQUIRED

 Frame Type: CERTIFICATE_REQUIRED

 Code: 0xFRAME-TBD1

 Specification: This document.

6.4.2. CERTIFICATE_REQUEST

 Frame Type: CERTIFICATE_REQUEST

 Code: 0xFRAME-TBD2

 Specification: This document.

6.4.3. CERTIFICATE

 Frame Type: CERTIFICATE

 Code: 0xFRAME-TBD3

 Specification: This document.

6.4.4. CERTIFICATE_PROOF

 Frame Type: CERTIFICATE_PROOF

 Code: 0xFRAME-TBD4

 Specification: This document.

6.4.5. USE_CERTIFICATE

 Frame Type: USE_CERTIFICATE

 Code: 0xFRAME-TBD5

 Specification: This document.

https://datatracker.ietf.org/doc/html/rfc7540

Bishop & Thomson Expires November 18, 2016 [Page 23]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

6.5. New HTTP/2 Error Codes

 Five new error codes are registered in the "HTTP/2 Error Code"
 registry established in [RFC7540].

6.5.1. BAD_CERTIFICATE

 Name: BAD_CERTIFICATE

 Code: 0xERROR-TBD1

 Specification: This document.

6.5.2. UNSUPPORTED_CERTIFICATE

 Name: UNSUPPORTED_CERTIFICATE

 Code: 0xERROR-TBD2

 Specification: This document.

6.5.3. CERTIFICATE_REVOKED

 Name: CERTIFICATE_REVOKED

 Code: 0xERROR-TBD3

 Specification: This document.

6.5.4. CERTIFICATE_EXPIRED

 Name: CERTIFICATE_EXPIRED

 Code: 0xERROR-TBD4

 Specification: This document.

6.5.5. BAD_SIGNATURE

 Name: BAD_SIGNATURE

 Code: 0xERROR-TBD5

 Specification: This document.

https://datatracker.ietf.org/doc/html/rfc7540

Bishop & Thomson Expires November 18, 2016 [Page 24]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

6.5.6. CERTIFICATE_GENERAL

 Name: CERTIFICATE_GENERAL

 Code: 0xERROR-TBD6

 Specification: This document.

7. Acknowledgements

 Eric Rescorla pointed out several failings in an earlier revision.
 Andrei Popov contributed to the TLS considerations.

8. References

8.1. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-12 (work in progress),
 March 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2459] Housley, R., Ford, W., Polk, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and CRL
 Profile", RFC 2459, DOI 10.17487/RFC2459, January 1999,
 <http://www.rfc-editor.org/info/rfc2459>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-12
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2459
http://www.rfc-editor.org/info/rfc2459
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
http://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc5705
http://www.rfc-editor.org/info/rfc5705

Bishop & Thomson Expires November 18, 2016 [Page 25]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <http://www.rfc-editor.org/info/rfc7627>.

 [X690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO ISO/IEC 8825-1:2002, 2002,
 <http://www.itu.int/ITU-T/studygroups/com17/languages/

X.690-0207.pdf>.

8.2. Informative References

 [FIPS-186-4]
 National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS 186-4, July 2013,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.186-4.pdf>.

 [I-D.ietf-httpbis-alt-svc]
 Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", draft-ietf-httpbis-alt-svc-14 (work
 in progress), March 2016.

 [I-D.josefsson-eddsa-ed25519]
 Josefsson, S. and N. Moller, "EdDSA and Ed25519", draft-

josefsson-eddsa-ed25519-03 (work in progress), May 2015.

 [I-D.nottingham-httpbis-origin-frame]
 Nottingham, M. and E. Nygren, "The ORIGIN HTTP/2 Frame",

draft-nottingham-httpbis-origin-frame-01 (work in
 progress), January 2016.

 [PKCS.1.1991]
 RSA Laboratories, "RSA Encryption Standard, Version 1.1",
 PKCS 1, June 1991.

https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7627
http://www.rfc-editor.org/info/rfc7627
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-alt-svc-14
https://datatracker.ietf.org/doc/html/draft-josefsson-eddsa-ed25519-03
https://datatracker.ietf.org/doc/html/draft-josefsson-eddsa-ed25519-03
https://datatracker.ietf.org/doc/html/draft-nottingham-httpbis-origin-frame-01

Bishop & Thomson Expires November 18, 2016 [Page 26]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2016

 [RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
 Adams, "X.509 Internet Public Key Infrastructure Online
 Certificate Status Protocol - OCSP", RFC 2560,
 DOI 10.17487/RFC2560, June 1999,
 <http://www.rfc-editor.org/info/rfc2560>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <http://www.rfc-editor.org/info/rfc6962>.

Authors' Addresses

 Mike Bishop
 Microsoft

 Email: michael.bishop@microsoft.com

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

https://datatracker.ietf.org/doc/html/rfc2560
http://www.rfc-editor.org/info/rfc2560
https://datatracker.ietf.org/doc/html/rfc6962
http://www.rfc-editor.org/info/rfc6962

Bishop & Thomson Expires November 18, 2016 [Page 27]

