
QUIC Working Group M. Bishop
Internet-Draft Microsoft
Intended status: Standards Track November 15, 2016
Expires: May 19, 2017

HTTP over QUIC - Mapping and Header Compression
draft-bishop-quic-http-and-qpack-00

Abstract

 HTTP/2 [RFC7540] uses HPACK [RFC7541] for header compression.
 However, HPACK relies on the in-order message-based semantics of the
 HTTP/2 framing layer in order to function. Messages can only be
 successfully decoded if processed by the receiver in the same order
 as generated by the sender. This draft refines HPACK to loosen the
 ordering requirements for use over QUIC
 [I-D.hamilton-quic-transport-protocol] and describes changes to
 [I-D.shade-quic-http2-mapping] to leverage the new compression.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 19, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Bishop Expires May 19, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft QPACK November 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 3

2. QPACK . 3
2.1. Changes to Static and Dynamic Tables 3
2.1.1. Dynamic table state synchronization 4

2.2. Changes to Binary Format 5
2.2.1. Literal Header Field Representation 5
2.2.2. Deletion . 6
2.2.3. The QPACK-ACK frame 7

3. HTTP over QUIC Mapping 7
3.1. Stream usage . 8
3.2. On-Stream Framing Definition 8
3.2.1. DATA . 9
3.2.2. HEADERS . 9
3.2.3. PUSH_PROMISE . 10
3.2.4. PRIORITY . 10
3.2.5. SETTINGS . 11
3.2.6. Other frames not mentioned 11

3.3. HTTP Message Exchanges 11
4. Performance Considerations 13
5. Security Considerations 13
6. IANA Considerations . 13
7. Acknowledgements . 13
8. References . 14
8.1. Normative References 14
8.2. Informative References 14

 Author's Address . 15

1. Introduction

 HPACK has a number of features that were intended to provide
 performance advantages to HTTP/2, but which don't live well in an
 out-of-order environment such as that provided by QUIC.

 The largest challenge is the fact that elements are referenced by a
 very fluid index. Not only is the index implicit when an item is
 added to the header table, the index will change without notice as
 other items are added to the header table. Static entries occupy the
 first 61 values, followed by dynamic entries. A newly-added dynamic
 entry would cause older dynamic entries to be evicted, and the
 retained items are then renumbered beginning with 62. This means
 that, without processing all preceding header sets, no index into the

Bishop Expires May 19, 2017 [Page 2]

Internet-Draft QPACK November 2016

 dynamic table can be interpreted, and the index of a given entry
 cannot be predicted.

 Any solution to the above will almost certainly fall afoul of the
 memory constraints the decompressor imposes. The automatic eviction
 of entries is done based on the compressor's declared dynamic table
 size, which MUST be less than the maximum permitted by the
 decompressor (and relayed using an HTTP/2 SETTINGS value).

 In the following sections, this document proposes a new version of
 HPACK which makes different trade-offs, enabling out-of-order
 interpretation and bounded memory consumption with minimal head-of-
 line blocking. None of the proposed improvements to HPACK (strongly-
 typed fields, binary compression of common header syntax) are
 currently included, but certainly could be.

1.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119] and indicate requirement levels for compliant STuPiD
 implementations.

2. QPACK

2.1. Changes to Static and Dynamic Tables

 QPACK uses two tables for associating header fields to indexes. The
 static table is unchanged from [RFC7541].

 The dynamic table is a map from index to header field. Indices are
 arbitrary numbers greater than the last index of the static table.
 Each insert instruction will specify the index being modified. While
 any index MAY be chosen for a new entry, smaller numbers will yield
 better compression performance. Once an index has been assigned, its
 value is immutable for the lifetime of that dynamic table.

 In order to improve resiliency to reordering, an encoder MAY send
 multiple insert instructions for the same value to the same index.
 However, any attempt to insert a different value to an occupied index
 is a fatal error.

 The dynamic table is still constrained to the size specified by the
 receiver. An attempt to add a header to the dynamic table which
 causes it to exceed the maximum size MUST be treated as an error by a
 decoder.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7541

Bishop Expires May 19, 2017 [Page 3]

Internet-Draft QPACK November 2016

 Because it is possible for QPACK frames to arrive which reference
 indices which have not yet been defined, such frames MUST wait until
 another frame has arrived and defined the index. In order to guard
 against malicious senders, implementations SHOULD impose a time limit
 and treat expiration of the timer as a decoding error. However, if
 the implementation chooses not to abort the connection, the remainder
 of the header block MUST be decoded and the output discarded.

2.1.1. Dynamic table state synchronization

 No entries are evicted from the dynamic table. Size management is
 purely the responsibility of the sender, which MUST NOT exceed the
 declared memory size of the receiver.

 Both sender and receiver will maintain a count of references to the
 indexed entry. This count includes:

 o Insertions to the field, both the initial and any redundant
 indexed literal emissions.

 o Literal values which use the indexed entry to provide the header
 name

 o Explicit emissions of the indexed value

 The sender MUST consider memory as committed beginning with the first
 time the indexed entry is assigned. An encoder MAY repeat the
 insertion instruction in other frames rather than leveraging the
 index while it waits for the frame to arrive.

 When the sender wishes to delete an inserted value, it flows through
 the following set of states:

 1. *Delete requested.* The sender emits a delete instruction
 including the terminal value of the reference counter. The
 sender MUST NOT reference the entry in any subsequent frame until
 this state machine has completed and MUST continue to include the
 entry in its calculation of consumed memory.

 2. *Delete pending.* The receiver receives the delete instruction
 and compares the sender's counter with its own. If the
 receiver's counter is less than the sender's, it stores the
 sender's counter and waits for other QPACK frames to arrive.

 3. *Delete acknowledged.* The receiver has received all QPACK frames
 which reference the deleted value, and can safely delete the
 entry. The receiver SHOULD promptly emit a QPACK-ACK frame, but
 MAY delay briefly waiting for other pending deletes as well.

Bishop Expires May 19, 2017 [Page 4]

Internet-Draft QPACK November 2016

 4. *Delete completed.* When the sender receives a QPACK-ACK frame
 acknowledging the delete, it no longer counts the size of the
 deleted entry against the table size and MAY emit insert
 instructions for the field with a new value.

 The decoder can receive a delete instruction for a vacant table
 entry. A decoder MUST NOT consider this to be an error, but MUST
 handle the delete as usual even while waiting for the definition to
 arrive.

2.2. Changes to Binary Format

2.2.1. Literal Header Field Representation

 (This section replaces [RFC7541], Section 6.2.1.)

 A literal header field with indexing representation results in
 inserting a header field to the decoded header list and inserting it
 as a new entry into the dynamic table.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | New Index (6+) |
 +---+---+-----------------------+
 | Name Index (8+) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field with Indexing -- Indexed Name

https://datatracker.ietf.org/doc/html/rfc7541#section-6.2.1

Bishop Expires May 19, 2017 [Page 5]

Internet-Draft QPACK November 2016

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | New Index (6+) |
 +---+---+-----------------------+
 | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field with Indexing -- New Name

 A literal header field with incremental indexing representation
 starts with the '01' 2-bit pattern, followed by the new index of the
 header represented as an integer with a 6-bit prefix. This value is
 always greater than the number of entries in the static table.

 If the header field name matches the header field name of an entry
 stored in the static table or the dynamic table, the header field
 name can be represented using the index of that entry. In this case,
 the index of the entry is represented as an integer with an 8-bit
 prefix (see Section 5.1 of [RFC7231]). This value is always non-
 zero.

 Otherwise, the header field name is represented as a string literal
 (see Section 5.2 of [RFC7231]). A value 0 is used in place of the
 8-bit index, followed by the header field name.

 Either form of header field name representation is followed by the
 header field value represented as a string literal (see Section 5.2).

 An encoder MUST NOT attempt to place a value at an index not known to
 be vacant. An encoder MAY insert the same value to the same vacant
 slot multiple times in different frames, to reduce the risk of
 blocking from out-of-order frame interpretation. However, a decoder
 MUST treat the attempt to insert a different header field into an
 occupied slot as a fatal error.

2.2.2. Deletion

 (This section replaces [RFC7541], Section 6.2.3.)

https://datatracker.ietf.org/doc/html/rfc7231#section-5.1
https://datatracker.ietf.org/doc/html/rfc7231#section-5.2
https://datatracker.ietf.org/doc/html/rfc7541#section-6.2.3

Bishop Expires May 19, 2017 [Page 6]

Internet-Draft QPACK November 2016

 DISCUSS: I stole the never-indexed instruction code to avoid
 renumbering _all_ the instructions to fit a new one. If we think we
 still need this in QUIC, we'll have to do the renumbering later.

 0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | 0 | 0
| 0 | 1 | RefCount (4+) | +---+---+---+---+---------------+ |
Index (8+) | +-------------------------------+ ~~~~~~~~~~

 Header Field Deletion

 The sender may delete an entry in the dynamic header table at any
 time in order to stay below the receiver's declared memory boundary.
 This instruction tells the receiver that they should prepare to
 delete the specified entry after all preceding frames referencing it
 have been received. The delete instruction includes the count of
 such frames to facilitate the receiver's garbage collection process.

2.2.3. The QPACK-ACK frame

 Each peer MUST periodically emit a QPACK-ACK frame (0xTBD) on QUIC
 stream 3 to reflect the current state of its header table. A peer
 MAY omit sending a new QPACK-ACK frame if the dynamic table has not
 changed since the last frame.

 The QPACK-ACK frame defines no flags and consists of a bitmap. The
 first bit in the bitmap reflects the first index after the static
 table (currently 62), and each successive bit indicates the next
 integer value. Each bit MUST be set if the indexed entry has had a
 delete complete since the preceding QUIC frame and MUST be unset
 otherwise. Indices beyond the end of the QPACK-ACK frame are assumed
 to be unset.

 Upon receipt, an encoder uses the table to confirm which items have
 been deleted. At this point, the space can be recovered by the
 encoder and the encoder can safely reuse the index for future
 insertions.

3. HTTP over QUIC Mapping

 [I-D.shade-quic-http2-mapping] refers to QUIC Stream 3 as carrying
 "headers," but more accurately, it carries a nearly-complete HTTP/2
 session, complete with framing and multiplexing. The mapping deletes
 certain elements of HTTP/2's framing layer which can be delegated to
 the QUIC transport layer.

 This was done in large part for expediency, reusing HTTP/2 code in
 place anywhere no QUIC-specific approach had yet been added. A
 primary driver of this is the need for in-order reliable delivery of
 frames carrying HPACK data (HEADERS, CONTINUATION, PUSH_PROMISE).

Bishop Expires May 19, 2017 [Page 7]

Internet-Draft QPACK November 2016

 While the ability to reuse HTTP/2 framing is useful, the double-mux
 layer is unwieldy and has proved unpopular in the working group.
 This section presents an alternate mapping preserving some HTTP/2
 code, but delegating all multiplexing to the QUIC layer.

 QPACK would permit header data to be on-stream with the request/
 response bodies, but some framing is still required. It would be
 possible (and perhaps desirable) to introduce a simplified version of
 HTTP/2's framing on each QUIC stream.

3.1. Stream usage

 In both QUIC and HTTP/2, odd-numbered streams are client-initiated,
 while even-numbered streams are server-initiated. A single HTTP
 transaction spans two streams, differentiated by the next stream bit.
 This means that the client's first request occurs on QUIC streams 5
 and 7, the second on stream 9 and 11, and so on. This amounts to the
 second least-significant bit differentiating the two streams in a
 request.

 The payload of each frame type is unmodified from HTTP/2 unless
 otherwise noted. Frames which would be sent on stream zero in HTTP/2
 are sent on QUIC stream 3.

 Because stream creation does not depend on particular frames, the
 requirement that a stream begin only with HEADERS is omitted.

 The second stream is used to carry any message payload, eliminating
 the DATA frame. The first stream is the request control stream and
 is used to carry all other frames which would have been on-stream in
 HTTP/2.

3.2. On-Stream Framing Definition

 Many framing concepts from HTTP/2 can be elided away on QUIC, because
 the transport deals with them. Because these frames would already be
 on a stream, they can omit the stream number. Because the frames do
 not block multiplexing (QUIC's multiplexing occurs below this layer),
 the support for variable-maximum-length packets can be removed.
 Because stream termination is handled by QUIC, an END_STREAM flag is
 not required.

 On QUIC streams other than Stream 1, the general frame format is as
 follows:

Bishop Expires May 19, 2017 [Page 8]

Internet-Draft QPACK November 2016

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Length (16) |
 | |
 +---+---+---+---+---+---+---+---+
 | Type (8) |
 +---+---+---+---+---+---+---+---+
 | Flags (8) |
 +---+---+---+---+---+---+---+---+
 | Frame Payload ...
 +---+---+---+---+---+---+---+---+

 HTTP/QUIC frame format

 The fields are defined as in [RFC7540]. The frames currently defined
 are described in this section:

3.2.1. DATA

 DATA frames (type=0x0) do not exist.

3.2.2. HEADERS

 The HEADERS frame (type=0x1) is used to carry part of a header set,
 compressed using QPACK ({QPACK}). The PRIORITY-equivalent regions
 have been removed, since a stream MAY begin with a PRIORITY frame and
 the size of the QUIC stream format requires changes to how these
 fields are handled.

 Padding MUST NOT be used. The flags defined are:

 o End Header Block (0x4): This frame concludes a header block.

 The next frame on the same stream after a HEADERS frame without the
 EHB flag set MUST be another HEADERS frame. A receiver MUST treat
 the receipt of any other type of frame as a stream error. (Note that
 QUIC can intersperse data from other streams between frames, or even
 during transmission of frames, so multiplexing is not blocked by this
 requirement.)

 A full header block is contained in a sequence of zero or more
 HEADERS frames without EHB set, followed by a HEADERS frame with EHB
 set.

 HEADERS frames from various streams may be processed by the QPACK
 decoder in any order, completely or partially. It is not necessary
 to withhold decoding results until the end of the header block has
 arrived. However, depending on the contents, the processing of one

https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires May 19, 2017 [Page 9]

Internet-Draft QPACK November 2016

 frame might depend on other QPACK frames. The results of decoding
 MUST be emitted in the same order as the HEADERS frames were placed
 on the stream.

3.2.3. PUSH_PROMISE

 The PUSH_PROMISE frame (type=0x02) is used to carry a request header
 set from server to client, as in HTTP/2. It contains the same flags
 as HEADERS.

 The payload contains a QPACK headers block encoding the request whose
 response is promised, preceded by a 32-bit Stream ID indicating the
 QUIC stream on which the response headers will be sent. (The
 response body stream is implied by the headers stream, as defined in

Section 3.1.)

 TODO: QUIC stream space may be enlarged; would need to redefine
 Promised Stream field in this case.

3.2.4. PRIORITY

 The PRIORITY frame (type=0x2) specifies the sender-advised priority
 of a stream and is sent on Stream 3. It can refer to a stream in any
 state, including idle or closed streams.

 +---+
 | Prioritized Stream (32) |
 +---+
 | Dependent Stream (32) |
 +---------------+---+
 | Weight (8) |
 +---------------+

 PRIORITY Frame Payload

 The payload of a PRIORITY frame contains the following fields:

 Prioritized Stream: The 32-bit stream identifier for the stream
 whose priority is being modified.

 Stream Dependency:
 :The 32-bit stream identifier for the stream that this stream depends
 on.

 Weight: :An unsigned 8-bit integer representing a priority weight for
 the stream (see Section 5.3). Add one to the value to obtain a
 weight between 1 and 256.

Bishop Expires May 19, 2017 [Page 10]

Internet-Draft QPACK November 2016

 The PRIORITY frame defines one flag:

 EXCLUSIVE (0x01):
 :Indicates that the stream dependency is exclusive (see [RFC7540]
 Section 5.3).

 If a PRIORITY frame is received which attempts to modify a stream
 which is not a request control scheme, the recipient MUST respond
 with a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The PRIORITY frame can affect a stream in any state. Note that this
 frame could arrive after processing or frame sending has completed,
 which would cause it to have no effect on the identified stream. For
 a stream that is in the "half-closed (remote)" or "closed" state,
 this frame can only affect processing of the identified stream and
 its dependent streams; it does not affect frame transmission on that
 stream.

 The PRIORITY frame can create a dependency on a stream in the "idle"
 or "closed" state. This allows for the reprioritization of a group
 of dependent streams by altering the priority of an unused or closed
 parent stream.

 A PRIORITY frame with a length other than 9 octets MUST be treated as
 a connection error of type FRAME_SIZE_ERROR.

3.2.5. SETTINGS

 The EXTENDED_SETTINGS frame as defined in
 [I-D.bishop-httpbis-extended-settings] will be renamed SETTINGS and
 will replace the HTTP/2 SETTINGS frame.

 TODO: SETTINGS_ACK and stream state. Do we need to emit the ACK on
 every active stream? What about idle streams and in-flight data?

3.2.6. Other frames not mentioned

 QUIC stream 3 is equivalent to HTTP/2's stream 0, and the same
 framing is used as for other streams. SETTINGS frames remain on
 stream 3, as do any other HTTP/2 stream-zero frames. This enables
 HTTP/2 extension frames which do not have a hard cross-stream
 ordering requirement to continue to function.

3.3. HTTP Message Exchanges

 A client sends an HTTP request on a new pair of QUIC stream. A
 server sends an HTTP response on the same streams as the request.

https://datatracker.ietf.org/doc/html/rfc7540#section-5.3
https://datatracker.ietf.org/doc/html/rfc7540#section-5.3

Bishop Expires May 19, 2017 [Page 11]

Internet-Draft QPACK November 2016

 An HTTP message (request or response) consists of:

 1. for a response only, zero or more header blocks (a sequence of
 HEADERS frames with End Header Block set on the last) on the
 control stream containing the message headers of informational
 (1xx) HTTP responses (see [RFC7230], Section 3.2 and [RFC7231],
 Section 6.2),

 2. one header block on the control stream containing the message
 headers (see [RFC7230], Section 3.2),

 3. the payload body (see [RFC7230], Section 3.3), sent on the data
 stream

 4. optionally, one header block on the control stream containing the
 trailer-part, if present (see [RFC7230], Section 4.1.2).

 If the message does not contain a body, the corresponding data stream
 MUST still be half-closed without transferring any data. The
 "chunked" transfer encoding defined in Section 4.1 of [RFC7230] MUST
 NOT be used.

 Trailing header fields are carried in a header block following the
 body. Such a header block is a sequence of HEADERS frames with End
 Header Block set on the last frame. Header blocks after the first
 but before the end of the stream are invalid. These MUST be decoded
 to maintain QPACK decoder state, but the resulting output MUST be
 discarded.

 An HTTP request/response exchange fully consumes a pair of streams.
 After sending a request, a client closes the streams for sending;
 after sending a response, the server closes its streams for sending
 and the QUIC streams are fully closed.

 A server can send a complete response prior to the client sending an
 entire request if the response does not depend on any portion of the
 request that has not been sent and received. When this is true, a
 server MAY request that the client abort transmission of a request
 without error by sending a RST_STREAM with an error code of NO_ERROR
 after sending a complete response and closing its stream. Clients
 MUST NOT discard responses as a result of receiving such a
 RST_STREAM, though clients can always discard responses at their
 discretion for other reasons.

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-6.2
https://datatracker.ietf.org/doc/html/rfc7231#section-6.2
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc7230#section-3.3
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1.2
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1

Bishop Expires May 19, 2017 [Page 12]

Internet-Draft QPACK November 2016

4. Performance Considerations

 While QPACK is designed to minimize head-of-line blocking between
 streams on header decoding, there are some situations in which lost
 or delayed packets can still impact the performance of header
 compression.

 References to indexed entries will block if the frame containing the
 entry definition is lost or delayed. Encoders MAY choose to trade
 off compression efficiency and avoid blocking by repeating the
 literal-with-indexing instruction rather than referencing the dynamic
 table until the insertion is known to be complete.

 Delayed frames which prevent deletes from completing can prevent the
 encoder from adding any new entries due to the maximum table size.
 This does not block the encoder from continuing to make requests, but
 could sharply limit compression performance. Encoders would be well-
 served to delete entries in advance of encountering the table
 maximum. Decoders SHOULD be prompt about emitting QPACK-ACK frames
 to enable the sender to recover the table space.

5. Security Considerations

 The security considerations for QPACK are believed to be the same as
 for HPACK.

6. IANA Considerations

 This document currently makes no request of IANA, but probably
 should.

7. Acknowledgements

 This draft draws heavily on the text of [RFC7540] and [RFC7541], as
 well as the ideas of [I-D.shade-quic-http2-mapping]. The indirect
 input of those authors is gratefully acknowledged, as well as ideas
 gleefully stolen from:

 o Jana Iyengar

 o Patrick McManus

 o Martin Thomson

 o Charles 'Buck' Krasic

 o Kyle Rose

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541

Bishop Expires May 19, 2017 [Page 13]

Internet-Draft QPACK November 2016

8. References

8.1. Normative References

 [I-D.bishop-httpbis-extended-settings]
 Bishop, M., "HTTP/2 Extended SETTINGS Extension", draft-

bishop-httpbis-extended-settings-00 (work in progress),
 June 2016.

 [I-D.hamilton-quic-transport-protocol]
 Hamilton, R., Iyengar, J., Swett, I., and A. Wilk, "QUIC:
 A UDP-Based Multiplexed and Secure Transport", draft-

hamilton-quic-transport-protocol-01 (work in progress),
 October 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <http://www.rfc-editor.org/info/rfc7541>.

8.2. Informative References

 [I-D.shade-quic-http2-mapping]
 Shade, R. and M. Warres, "HTTP/2 Semantics Using The QUIC
 Transport Protocol", draft-shade-quic-http2-mapping-00
 (work in progress), July 2016.

https://datatracker.ietf.org/doc/html/draft-bishop-httpbis-extended-settings-00
https://datatracker.ietf.org/doc/html/draft-bishop-httpbis-extended-settings-00
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-01
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
http://www.rfc-editor.org/info/rfc7541
https://datatracker.ietf.org/doc/html/draft-shade-quic-http2-mapping-00

Bishop Expires May 19, 2017 [Page 14]

Internet-Draft QPACK November 2016

Author's Address

 Mike Bishop
 Microsoft

 Email: michael.bishop@microsoft.com

Bishop Expires May 19, 2017 [Page 15]

