
QUIC Working Group M.

Bishop

Internet-Draft

Microsoft

Intended status: Standards Track September 26,

2017

Expires: March 30, 2018

 Header Compression for HTTP/QUIC

 draft-bishop-quic-http-and-qpack-05

Abstract

 HTTP/2 [RFC7540] uses HPACK [RFC7541] for header compression.

 However, HPACK relies on the in-order message-based semantics of the

 HTTP/2 framing layer in order to function. Messages can only be

 successfully decoded if processed by the decoder in the same order

as

 generated by the encoder. This draft refines HPACK to loosen the

 ordering requirements for use over QUIC [I-D.ietf-quic-transport].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six

months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 30, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with

respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bishop Expires March 30, 2018 [Page

1]

Internet-Draft QPACK September

2017

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction .

2

 1.1. Terminology .

3

 2. QPACK .

3

 2.1. Basic model .

3

 2.2. Changes to Static and Dynamic Tables

4

 2.2.1. Changes to Header Table Size

4

 2.2.2. Dynamic Table State Synchronization

5

 2.3. Header Management Streams

6

 2.3.1. Insert .

6

 2.3.2. Delete .

7

 2.3.3. Delete-Ack .

10

 2.4. Format of Encoded Headers on Message Streams

10

 2.4.1. Indexed Header Field Representation

10

 2.4.2. Literal Header Field Representation

11

 3. Use in HTTP/QUIC .

12

 4. Implementation trade-offs

12

 4.1. Compression Efficiency versus Blocking Avoidance

13

 4.2. Timely Delete Completion versus State Commitment

13

 5. Security Considerations

14

 6. IANA Considerations .

14

 7. Acknowledgements .

14

 8. Normative References .

15

 Author's Address .

15

1. Introduction

 HPACK has a number of features that were intended to provide

 performance advantages to HTTP/2, but which don't live well in an

 out-of-order environment such as that provided by QUIC.

 The largest challenge is the fact that elements are referenced by a

 very fluid index. Not only is the index implicit when an item is

 added to the header table, the index will change without notice as

 other items are added to the header table. Static entries occupy

the

 first 61 values, followed by dynamic entries. A newly-added dynamic

 entry would cause older dynamic entries to be evicted, and the

 retained items are then renumbered beginning with 62. This means

 that, without processing all preceding header sets, no index into

the

 dynamic table can be interpreted, and the index of a given entry

 cannot be predicted.

 Any solution to the above will almost certainly fall afoul of the

 memory constraints the decompressor imposes. The automatic eviction

Bishop Expires March 30, 2018 [Page

2]

Internet-Draft QPACK September

2017

 of entries is done based on the compressor's declared dynamic table

 size, which MUST be less than the maximum permitted by the

 decompressor (and relayed using an HTTP/2 SETTINGS value).

 Further, streams in QUIC are lossy in the presence of stream resets.

 While HTTP/2 (via TCP) guarantees the delivery of all previously-

sent

 data on a stream even if that stream is reset, QUIC does not

 retransmit lost frames if a stream has been reset, and may discard

 data which has not yet been delivered to the application.

 Previous versions of QPACK were small deltas of HPACK to introduce

 order-resiliency. This version departs from HPACK more

substantially

 to add resilience against reset message streams.

 In the following sections, this document proposes a new version of

 HPACK which makes different trade-offs, enabling partial out-of-

order

 interpretation and bounded memory consumption with minimal head-of-

 line blocking. None of the proposed improvements to HPACK

(strongly-

 typed fields, binary compression of common header syntax) are

 currently included, but certainly could be.

1.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",

 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",

 and "OPTIONAL" are to be interpreted as described in BCP 14,

 [RFC2119] and indicate requirement levels for compliant

 implementations.

2. QPACK

2.1. Basic model

 HPACK combines header table modification and message header emission

 in a single sequence of coded bytes. QPACK bifurcates these into

two

 channels:

 o Connection-wide sets of table update instructions sent on non-

 request streams

 o Non-modifying instructions which use the current header table

 state to encode message headers on request streams

 Because the per-message instructions introduce no changes to the

 header table state, no state is lost if these instructions are

 discarded due to a stream reset. Because the updates to the header

 table supply their own order controls (the delete logic), they can

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

be

Bishop Expires March 30, 2018 [Page

3]

Internet-Draft QPACK September

2017

 processed in any order and therefore delivered as messages using

 unidirectional QUIC streams.

2.2. Changes to Static and Dynamic Tables

 QPACK uses two tables for associating header fields to indexes. The

 static table is unchanged from [RFC7541]. Unlike in [RFC7541], the

 tables are not concatenated, but are referenced separately.

 The dynamic table is a map from index to header field. Indices are

 arbitrary numbers between 1 and 2^27. Each insert instruction will

 specify the index being modified. While any index MAY be chosen for

 a new entry, smaller numbers will yield better compression

 performance.

 The dynamic table is still constrained to the size specified by the

 decoder. An attempt to add a header to the dynamic table which

 causes it to exceed the maximum size MUST be treated as an error by

a

 decoder. To enable encoders to reclaim space, encoders can delete

 entries in the dynamic table, but can only reuse the index or the

 space after receiving confirmation of a successful deletion.

 Because it is possible for QPACK frames to arrive which reference

 indices which have not yet been defined, such frames MUST wait until

 another frame has arrived and defined the index. In order to guard

 against malicious peers, implementations SHOULD impose a time limit

 and treat expiration of the timer as a decoding error.

2.2.1. Changes to Header Table Size

 HTTP/QUIC prohibits mid-stream changes of settings. As a result,

 only one table size change is possible: From the value a client

 assumes during the 0-RTT flight to the actual value included in the

 server's SETTINGS frame. The assumed value is required to be either

 a server's previous value or zero. A server whose configuration has

 recently changed MAY overlook inadvertent violations of its maximum

 table size during the first round-trip.

 In the case that the value has increased, either from zero to a non-

 zero value or from the cached value to a higher value, no action is

 required by the client. The encoder can simply begin using the

 additional space. In the case that the value has decreased, the

 encoder MUST immediately emit delete instructions which, upon

 completion, would bring the table within the required size.

 Regardless of changes to header table size, the encoder MUST NOT add

 entries to the table which would result in a size greater than the

https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7541

Bishop Expires March 30, 2018 [Page

4]

Internet-Draft QPACK September

2017

 maximum permitted. This can imply that no additions are permitted

 while waiting for these delete instructions to complete.

2.2.2. Dynamic Table State Synchronization

 In order to ensure table consistency, all modifications of the

header

 table occur as separate messages rather than on request streams.

 Request streams contain only indexed and literal header entries.

 No entries are automatically evicted from the dynamic table. Size

 management is purely the responsibility of the encoder, which MUST

 NOT exceed the declared memory size of the decoder.

 The encoder SHOULD track the following information about each entry

 in the table:

 o The list of recently-active streams which reference the entry in

a

 trailer block, if any

 o The list of recently-active streams which reference the entry in

a

 non-trailer block, if any

 "Recently-active" streams are those which are still open or were

 closed less than a reasonable number of RTTs ago. An implementation

 MAY vary its definition of "recent" to trade off memory consumption

 and timely completion of deletes, and tracking no information is a

 functional (though potentially less performant) choice in this

space.

 The encoder MUST consider memory as committed beginning when the

 indexed entry is assigned.

 When the encoder wishes to delete an inserted value, it flows

through

 the following set of states:

 1. *Delete requested.* The encoder emits a delete instruction

 indicating which streams might have referenced the entry. The

 encoder MUST NOT reference the entry in any subsequent frame

 until this state machine has completed and MUST continue to

 include the entry in its calculation of consumed memory.

 2. *Delete pending.* The decoder receives the delete instruction

and

 checks the current state of its incoming streams (see

 Section 2.3.2.2). If more references might arrive, it stores

the

 streams still needed and waits for them to complete.

 3. *Delete acknowledged.* The decoder has received all QPACK frames

 which reference the deleted value, and can safely delete the

Bishop Expires March 30, 2018 [Page

5]

Internet-Draft QPACK September

2017

 entry. The decoder SHOULD promptly emit a Delete-Ack

instruction

 on a header management stream.

 4. *Delete completed.* When the encoder receives a Delete-Ack

 instruction acknowledging the delete, it no longer counts the

 size of the deleted entry against the table size and MAY emit

 insert instructions for the field with a new value.

2.3. Header Management Streams

 Header management streams are unidirectional streams in either

 direction which contain a series of QPACK instructions with no

 message boundaries. Data on these streams SHOULD be processed as

 soon as it arrives.

 This section describes the instructions which are possible on header

 management streams.

2.3.1. Insert

 An addition to the header table starts with the '1' one-bit pattern,

 followed by the new index of the header represented as an integer

 with a 7-bit prefix. This value is always greater than the number

of

 entries in the static table.

 If the header field name matches the header field name of an entry

 stored in the static table or the dynamic table, the header field

 name can be represented using the index of that entry. In this

case,

 the "S" bit indicates whether the reference is to the static (S=1)

or

 dynamic (S=0) table and the index of the entry is represented as an

 integer with an 7-bit prefix (see Section 5.1 of [RFC7541]). This

 value is always non-zero.

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 1 | New Index (7+) |

 +---+---+-----------------------+

 | S | Name Index (7+) |

 +---+---------------------------+

 | H | Value Length (7+) |

 +---+---------------------------+

 | Value String (Length octets) |

 +-------------------------------+

 Insert Header Field -- Indexed Name

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1

Bishop Expires March 30, 2018 [Page

6]

Internet-Draft QPACK September

2017

 Otherwise, the header field name is represented as a string literal

 (see Section 5.2 of [RFC7541]). A value 0 is used in place of the

 table reference, followed by the header field name.

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 1 | New Index (7+) |

 +---+---+-----------------------+

 | 0 |

 +---+---+-----------------------+

 | H | Name Length (7+) |

 +---+---------------------------+

 | Name String (Length octets) |

 +---+---------------------------+

 | H | Value Length (7+) |

 +---+---------------------------+

 | Value String (Length octets) |

 +-------------------------------+

 Insert Header Field -- New Name

 Either form of header field name representation is followed by the

 header field value represented as a string literal (see Section 5.2

 of [RFC7541]).

 An encoder MUST NOT attempt to place a value at an index not known

to

 be vacant. A decoder MUST treat the attempt to insert into an

 occupied slot as a fatal error.

2.3.2. Delete

 A deletion from the header table starts with the '00' two bit

 pattern, followed by the index of the affected entry in the dynamic

 table represented as an integer with a 6-bit prefix.

 A delete instruction then encodes a series of stream IDs which might

 have contained references to the entry in question.

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 0 | 0 | Index (6+) |

 +---+---+-----------------------+

 | Non-Trailer List (*) ...

 +-------------------------------+

 | Trailer List (*) ...

 +-------------------------------+

 Delete Instruction

https://datatracker.ietf.org/doc/html/rfc7541#section-5.2
https://datatracker.ietf.org/doc/html/rfc7541#section-5.2
https://datatracker.ietf.org/doc/html/rfc7541#section-5.2

Bishop Expires March 30, 2018 [Page

7]

Internet-Draft QPACK September

2017

 Both the Non-Trailer List and Trailer List are Stream ID Lists (see

 below) encoding a list of streams which might have referenced the

 entry either in non-trailer or trailer blocks.

2.3.2.1. Stream ID List

 A Stream ID List encodes a sequence of stream IDs in two parts:

 First, a Horizon value indicates the first non-occurrence about

which

 data is maintained. If data is maintained from the beginning of the

 connection, the Horizon is zero. This allows senders to succinctly

 express both old state which has been discarded and large regions

 where many or all streams contain references.

 Following the horizon, a sequence of deltas indicates all streams

 since the Horizon on which a value has been used.

 This structure permits either side to adjust the amount of tracking

 complexity it is willing to devote to ensure timely deletions. In

 the simplest case, a Stream ID List might be a horizon value

followed

 by one zero byte. This indicates an absolute cut-off after which

the

 entry is guaranteed not to be referenced, and requires the receiver

 to wait until all prior requests have been completed. Similarly,

the

 receiver can create equivalent-but-less-complex forms of a Stream ID

 list by increasing the Horizon value and discarding all explicit

 stream entries less than the new value.

 0 1 2 3 4 5 6 7

 +-------------------------------+

 | Horizon (8+) |

 +-------------------------------+

 | NumEntries (8+) |

 +-------------------------------+

 | [Delta1 (8+)] |

 +-------------------------------+

 | [Delta2 (8+)] |

 +-------------------------------+

 ...

 +-------------------------------+

 | [DeltaN (8+)] |

 +-------------------------------+

 Stream ID List

 The field are as follows:

 Horizon: The ID of the first stream for which the sender retains

 state which does not reference the deleted entry in the indicated

 block

Bishop Expires March 30, 2018 [Page

8]

Internet-Draft QPACK September

2017

 NumEntries: The number of streams greater than the Horizon which

 might reference the entry and are listed in the remainder of the

 instruction

 Delta1..N: A sequence of streams greater than the Horizon which

 might reference the entry, encoded as the difference in stream

 number from the previously-listed stream. This field is repeated

 NumEntries times.

2.3.2.2. Delete Validation

 In order to safely delete an entry, a decoder MUST ensure that all

 outstanding references have arrived and been processed. Because no

 data is available about stream IDs less than the Horizon, a decoder

 MUST assume that any earlier stream ID might have contained a

 reference to the value in question.

 A decoder can ensure all outstanding references have been processed

 by verifying that the following statements are true:

 o In the Non-Trailer Block, all streams less than the Horizon and

 all streams explicitly listed are in one of two states:

 * closed

 * headers completely processed

 o In the Trailer Block, all streams less than the Horizon and all

 streams explicitly listed are in one of three states:

 * closed

 * headers completely processed AND no trailers are expected

 * trailers completely processed

 An implementation MAY omit the "trailers completely processed" case,

 since the stream is expected to close immediately after receipt of

 the trailers block.

 If these conditions are not met upon receipt of a Delete

instruction,

 a decoder MUST wait to emit a Delete-Ack instruction until the

 outstanding streams have reached an appropriate state.

 Note that a decoder MAY condense the list of specified streams by

 increasing the Horizon value and discarding those explicitly-listed

 stream IDs which are less than the new Horizon it has chosen. This

 delays delete completion, but reduces the amount of state to be

Bishop Expires March 30, 2018 [Page

9]

Internet-Draft QPACK September

2017

 tracked by the decoder without changing the correctness of the

 requirements above.

2.3.3. Delete-Ack

 Confirmation that a delete has completed is expressed by an

 instruction which starts with the '01' two-bit pattern, followed by

 the index of the affected dynamic table entry represented as an

 integer with a 6-bit prefix.

 Note that unlike all other instructions, this instruction refers to

 the receiver's dynamic table, not the sender's.

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 0 | 1 | Index (6+) |

 +---+---+-----------------------+

 Delete-Ack Instruction

 This instruction MUST NOT be sent before the conditions described in

 Section 2.3.2.2 have been satisfied, and SHOULD be sent as soon as

 possible once they are.

2.4. Format of Encoded Headers on Message Streams

 Frames which carry HTTP message headers encode them using the

 following instructions:

2.4.1. Indexed Header Field Representation

 An indexed header field representation identifies an entry in either

 the static table or the dynamic table and causes that header field

to

 be added to the decoded header list, as described in Section 3.2 of

 [RFC7541].

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 1 | S | Index (6+) |

 +---+---------------------------+

 Indexed Header Field

 An indexed header field starts with the '1' 1-bit pattern, followed

 by the "S" bit indicating whether the reference is into the static

 (S=1) or dynamic (S=0) table. Finally, the index of the matching

 header field is represented as an integer with a 6-bit prefix (see

 Section 5.1 of [RFC7541]).

https://datatracker.ietf.org/doc/html/rfc7541#section-3.2
https://datatracker.ietf.org/doc/html/rfc7541#section-3.2
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1

Bishop Expires March 30, 2018 [Page

10]

Internet-Draft QPACK September

2017

 The index value of 0 is not used. It MUST be treated as a decoding

 error if found in an indexed header field representation.

2.4.2. Literal Header Field Representation

 A literal header field representation starts with the '0' 1-bit

 pattern and causes a header field to be added the decoded header

 list.

 The second bit, 'N', indicates whether an intermediary is permitted

 to add this header to the dynamic header table on subsequent hops.

 When the 'N' bit is set, the encoded header MUST always be encoded

 with this specific literal representation. In particular, when a

 peer sends a header field that it received represented as a literal

 header field with the 'N' bit set, it MUST use the same

 representation to forward this header field. This bit is intended

 for protecting header field values that are not to be put at risk by

 compressing them (see Section 7.1 of [RFC7541] for more details).

 If the header field name matches the header field name of an entry

 stored in the static table or the dynamic table, the header field

 name can be represented using the index of that entry. In this

case,

 the "S" bit indicates whether the reference is to the static (S=1)

or

 dynamic (S=0) table and the index of the entry is represented as an

 integer with an 5-bit prefix (see Section 5.1 of [RFC7541]). This

 value is always non-zero.

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 0 | N | S | Name Index (5+) |

 +---+---+-----------------------+

 | H | Value Length (7+) |

 +---+---------------------------+

 | Value String (Length octets) |

 +-------------------------------+

 Literal Header Field -- Indexed Name

 Otherwise, the header field name is represented as a string literal

 (see Section 5.2 of [RFC7541]). A value 0 is used in place of the

 6-bit index, followed by the header field name.

https://datatracker.ietf.org/doc/html/rfc7541#section-7.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.2

Bishop Expires March 30, 2018 [Page

11]

Internet-Draft QPACK September

2017

 0 1 2 3 4 5 6 7

 +---+---+---+---+---+---+---+---+

 | 0 | N | 0 |

 +---+---+-----------------------+

 | H | Name Length (7+) |

 +---+---------------------------+

 | Name String (Length octets) |

 +---+---------------------------+

 | H | Value Length (7+) |

 +---+---------------------------+

 | Value String (Length octets) |

 +-------------------------------+

 Literal Header Field -- Literal Name

 Either form of header field name representation is followed by the

 header field value represented as a string literal (see Section 5.2

 of [RFC7541]).

3. Use in HTTP/QUIC

 HTTP/QUIC [I-D.ietf-quic-http] currently retains the HPACK encoder/

 decoder from HTTP/2, using a Sequence number to enforce ordering.

 Using QPACK instead would entail the following changes:

 o The Sequence field is removed from HEADERS frames (Section 5.2.2)

 and PUSH_PROMISE frames (Section 5.2.6).

 o Header Block Fragments consist of QPACK data instead of HPACK

 data.

 o Just as unidirectional push streams have a stream header

 identifying their type and Push ID, a header will need to be

added

 to differentiate header table update streams from requests and

 pushes.

 A HEADERS or PUSH_PROMISE frame MAY contain an arbitrary number of

 QPACK instructions, but QPACK instructions SHOULD NOT cross a

 boundary between successive HEADERS frames. A partial HEADERS or

 PUSH_PROMISE frame MAY be processed upon arrival and the resulting

 partial header set emitted or buffered according to implementation

 requirements.

4. Implementation trade-offs

 This document specifies a means for the encoder to express the

 choices it made while encoding, but intentionally does not mandate

https://datatracker.ietf.org/doc/html/rfc7541#section-5.2
https://datatracker.ietf.org/doc/html/rfc7541#section-5.2

Bishop Expires March 30, 2018 [Page

12]

Internet-Draft QPACK September

2017

 what those choices should be. In this section, potential areas for

 implementation tuning are explored.

4.1. Compression Efficiency versus Blocking Avoidance

 References to indexed entries will block if the frame containing the

 entry definition is lost or delayed. Encoders MAY choose to trade

 off compression efficiency and avoid blocking by using literal

 instructions rather than referencing the dynamic table until the

 insertion is believed to be complete.

 The most efficient compression algorithm will reference a table

entry

 whenever it exists in the table, but risks blocking when subject to

 packet loss or reordering. The most conservative algorithm will

 always emit literals to guarantee that no blocking will ever occur.

 Most implementations will choose a balance between these two

 extremes.

 Better efficiency while being similarly conservative can be achieved

 by permitting references to table entries only once these entries

are

 confirmed to be present in the table. More optimization can be

 achieved when the reference is known to be in the same packet as the

 definition.

 Increases in efficiency can be achieved by assuming greater risk of

 blocking - implementations might choose a particular balance, or

 adjust their aggressiveness based on observed network

 characteristics.

 Since it is possible to insert header values without emitting them

on

 a stream, an encoder MAY also proactively insert header values which

 it believes will be needed on future requests, at the cost of

reduced

 compression efficiency for incorrect predictions.

 The ability to split updates to the header table into discrete

 messages reduces the possibility for head-of-line blocking within

the

 table update streams. Implementations SHOULD limit the size of

table

 update messages to avoid head-of-line blocking within these

messages.

4.2. Timely Delete Completion versus State Commitment

 Anything which prevent deletes from completing can prevent the

 encoder from adding any new entries due to the maximum table size.

 This does not block the encoder from continuing to make requests,

but

 could sharply limit compression performance. Encoders would be

well-

 served to delete entries in advance of encountering the table

 maximum. Decoders SHOULD be prompt about emitting Delete-Ack

 instructions to enable the encoder to recover the table space.

Bishop Expires March 30, 2018 [Page

13]

Internet-Draft QPACK September

2017

 The encoder can enable deletes to complete more quickly by

 maintaining a complete history of which streams have referenced any

 given table entry and providing this list as part of the delete

 instruction. The encoder can also choose to maintain less state by

 advancing the Horizon value (see Section 2.3.2.1). This value

 indicates the starting point of the provided history, and can be

 advanced arbitrarily far to discard history. This comes at the

 potential cost of a decoder taking longer to acknowledge that

entries

 have been removed, but this cost is zero if all previous requests

are

 known to have completed. Therefore, this history can be pruned

 without performance impact by removing entries where all data is

 known to have been successfully delivered and interpreted, if some

 transport coordination is employed.

 An encoder which chooses to maintain no history would simply supply

a

 Horizon value of a stream which has not yet been used, meaning that

 deletes cannot complete until all currently-active requests have

 completed.

 A decoder can perform the same trade-off in the event the encoder's

 supplied history is more state than it wishes to track.

5. Security Considerations

 A malicious encoder might attempt to consume a large amount of space

 on the decoder by opening the maximum number of streams, adding

 entries to the table, then sending delete instructions enumerating

 many streams in a Stream ID List.

 To guard against such attacks, a decoder SHOULD bound its state

 tracking by generalizing the list of streams to be tracked. This is

 most easily achieved by advancing the Horizon to a later value and

 discarding explicit Stream IDs to track, but can also be

accomplished

 by eliding explicit streams in ranges. This does not cause any loss

 of consistency for deletes, but could delay completion and reduce

 performance if done aggressively.

6. IANA Considerations

 This document currently makes no request of IANA, and might not need

 to.

7. Acknowledgements

 This draft draws heavily on the text of [RFC7541]. The indirect

 input of those authors is gratefully acknowledged, as well as ideas

 gleefully stolen from:

https://datatracker.ietf.org/doc/html/rfc7541

Bishop Expires March 30, 2018 [Page

14]

Internet-Draft QPACK September

2017

 o Jana Iyengar

 o Patrick McManus

 o Martin Thomson

 o Charles 'Buck' Krasic

 o Kyle Rose

8. Normative References

 [I-D.ietf-quic-http]

 Bishop, M., "Hypertext Transfer Protocol (HTTP) over

 QUIC", draft-ietf-quic-http-06 (work in progress),

 September 2017.

 [I-D.ietf-quic-transport]

 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed

 and Secure Transport", draft-ietf-quic-transport-06 (work

 in progress), September 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

 editor.org/info/rfc2119>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,

 DOI 10.17487/RFC7540, May 2015, <https://www.rfc-

 editor.org/info/rfc7540>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for

 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,

 <https://www.rfc-editor.org/info/rfc7541>.

Author's Address

 Mike Bishop

 Microsoft

 Email: michael.bishop@microsoft.com

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-06
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541

Bishop Expires March 30, 2018 [Page

15]

