
Internet Engineering Task Force A. Bittau
Internet-Draft D. Boneh
Intended status: Standards Track M. Hamburg
Expires: March 1, 2012 Stanford University
 M. Handley
 University College London
 D. Mazieres
 Q. Slack
 Stanford University
 August 29, 2011

Cryptographic protection of TCP Streams (tcpcrypt)
draft-bittau-tcp-crypt-01.txt

Abstract

 This document presents tcpcrypt, a TCP extension for
 cryptographically protecting TCP segments. Tcpcrypt maintains the
 confidentiality of data transmitted in TCP segments against a passive
 eavesdropper. It can be used to protect already established TCP
 connections against denial-of-service attacks involving injection of
 forged RST segments or desynchronizing of sequence numbers. Finally,
 applications that perform authentication can obtain end-to-end
 confidentiality and integrity guarantees by tying authentication to
 tcpcrypt Session ID values.

 The extension defines two new TCP options, CRYPT and MAC, which are
 designed to provide compatible interworking with TCPs that do not
 implement tcpcrypt. The CRYPT option allows hosts to negotiate the
 use of tcpcrypt and establish shared secret encryption keys. The MAC
 option carries a message authentication code with which hosts can
 verify the integrity of transmitted TCP segments. Tcpcrypt is
 designed to require relatively low overhead, particularly at servers,
 so as to be useful even in the case of servers accepting many TCP
 connections per second.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

Bittau, et al. Expires March 1, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft tcpcrypt August 2011

 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 1, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bittau, et al. Expires March 1, 2012 [Page 2]

Internet-Draft tcpcrypt August 2011

Table of Contents

1. Requirements Language . 4
2. Introduction . 4
3. Idealized protocol . 4
3.1. Stages of the protocol 4
3.1.1. The setup phase 5
3.1.2. The ENCRYPTING state 5
3.1.3. The DISABLED state 6

3.2. Cryptographic algorithms 6
3.3. "C" and "S" roles . 7
3.4. Key exchange protocol 8
3.5. Re-keying . 9
3.6. Session caching . 10
3.6.1. Session caching control 11

4. Extensions to TCP . 11
4.1. Protocol states . 11
4.2. Role negotiation . 16
4.2.1. Simultaneous open 17

4.3. The TCP CRYPT option 18
4.3.1. The HELLO suboption 21
4.3.2. The DECLINE suboption 22
4.3.3. The NEXTK1 and NEXTK2 suboptions 22
4.3.4. The PKCONF suboption 23
4.3.5. The UNKNOWN suboption 25
4.3.6. The SYNCOOKIE and ACKCOOKIE suboptions 25
4.3.7. The SYNC_REQ and SYNC_OK suboptions 26
4.3.8. The REKEY and REKEYSTREAM suboptions 28
4.3.9. The INIT1 and INIT2 suboptions 30
4.3.10. The IV suboption 32

4.4. The TCP MAC option . 33
5. Examples . 35
5.1. Example 1: Normal handshake 36
5.2. Example 2: Normal handshake with SYN cookie 36
5.3. Example 3: tcpcrypt unsupported 36
5.4. Example 4: Reusing established state 36
5.5. Example 5: Decline of state reuse 37
5.6. Exmaple 6: Reversal of client and server roles 37

6. API extensions . 37
7. Acknowledgments . 39
8. IANA Considerations . 39
9. Security Considerations 39
10. References . 40
10.1. Normative References 40
10.2. Informative References 40

Appendix A. Protocol constant values 41
 Authors' Addresses . 41

Bittau, et al. Expires March 1, 2012 [Page 3]

Internet-Draft tcpcrypt August 2011

1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Introduction

 This document describes tcpcrypt, an extension to TCP for
 cryptographic protection of session data. Tcpcrypt was designed to
 meet the following goals:

 o Maintain confidentiality of communications against a passive
 adversary. Ensure that an adversary must actively intercept and
 modify the traffic to eavesdrop, either by re-encrypting all
 traffic or by forcing a downgrade to an unencrypted session.

 o Minimize computational cost, particularly on servers.

 o Provide interfaces to higher-level software to facilitate end-to-
 end security, either in the application level protocol or after
 the fact. (E.g., client and server log session IDs and can
 compare them after the fact; if there was no tampering or
 eavesdropping, the IDs will match.)

 o Be compatible with further extensions that allow authenticated
 resumption of TCP connections when either end changes IP address.

 o Facilitate multipath TCP by identifying a TCP stream with a
 session ID independent of IP addresses and port numbers.

 o Provide for incremental deployment and graceful fallback, even in
 the presence of NATs and other middleboxes that might remove
 unknown options, and traffic normalizers.

3. Idealized protocol

 This section describes the tcpcrypt protocol at an abstract level,
 without reference to particular cryptographic algorithms or data
 encodings. Readers who simply wish to see the key exchange protocol
 should skip to Section 3.4.

3.1. Stages of the protocol

 A tcpcrypt endpoint goes through multiple stages. It begins in a
 setup phase and ends up in one of two states, ENCRYPTING or DISABLED,

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bittau, et al. Expires March 1, 2012 [Page 4]

Internet-Draft tcpcrypt August 2011

 before applications may send or receive data. The ENCRYPTING and
 DISABLED states are definitive and mutually exclusive; an endpoint
 that has been in one of the two states MUST NOT ever enter the other,
 nor ever re-enter the setup phase.

3.1.1. The setup phase

 The setup phase negotiates use of the tcpcrypt extension. During
 this phase, two hosts agree on a suite of cryptographic algorithms
 and establish shared secret session keys.

 The setup phase uses the Data portion of TCP segments to exchange
 cryptographic keys. Implementations MUST NOT include application
 data in TCP segments during setup and MUST NOT allow applications to
 read or write data. System calls MUST behave the same as for TCP
 connections that have not yet entered the ESTABLISHED state; calls to
 read and write SHOULD block or return temporary errors, while calls
 to poll or select SHOULD consider connections not ready.

 When setup succeeds, tcpcrypt enters the ENCRYPTING state.
 Importantly, a successful setup also produces an important value
 called the _Session ID_. The Session ID is tied to the negotiated
 algorithms and cryptographic keys, and is unique over all time with
 overwhelming probability.

 Operating systems MUST make the Session ID available to applications.
 To prevent man-in-the-middle attacks, applications MAY authenticate
 the session ID through any protocol that ensures both endpoints of a
 connection have the same value. Applications MAY alternatively just
 log Session IDs so as to enable attack detection after the fact
 through comparison of the values logged at both ends.

 The setup phase can also fail for various reasons, in which case
 tcpcrypt enters the DISABLED state.

 Applications MAY test whether setup succeeded by querying the
 operating system for the Session ID. Requests for the Session ID
 MUST return an error when tcpcrypt is not in the ENCRYPTING state.
 Applications SHOULD authenticate the returned Session ID if security
 of the DISABLED state would not be adequate.

3.1.2. The ENCRYPTING state

 When the setup phase succeeds, tcpcrypt enters the ENCRYPTING state.
 Once in this state, applications may read and write data with the
 expected semantics of TCP connections.

 In the ENCRYPTING state, a host MUST encrypt the Data portion of all

Bittau, et al. Expires March 1, 2012 [Page 5]

Internet-Draft tcpcrypt August 2011

 TCP segments transmitted and MUST include a Message Authentication
 Code (MAC) in all segments transmitted. A host MUST furthermore
 ignore any TCP segments received without the RST bit set, unless
 those segments also contain a valid MAC.

 A host MAY ignore RST segments without valid MACs. However,
 operating systems SHOULD allow applications to control the dropping
 of unMACed RST segments on a per-connection basis through an option
 called TCP_CRYPT_RSTCHK option. Operating systems SHOULD furthermore
 disable TCP_CRYPT_RSTCHK by default.

 Once in the ENCRYPTING state, an endpoint MUST NOT directly or
 indirectly transition to the DISABLED state under any circumstances.

3.1.3. The DISABLED state

 When setup fails, tcpcrypt enters the DISABLED state. In this case,
 the host MUST continue just as TCP would without tcpcrypt, unless
 network conditions would cause a plain TCP connection to fail as
 well. Entering the DISABLED state prohibits the endpoint from ever
 entering the ENCRYPTING state.

 An implementation MUST behave identically to ordinary TCP in the
 DISABLED state, except that the first segment transmitted after
 entering the DISABLED state MAY include a TCP CRYPT option with a
 DECLINE suboption (and optionally other suboptions such as UNKNOWN)
 to indicate that tcpcrypt is supported but not enabled.

Section 4.3.2 describes how this is done.

 Operating systems MUST allow applications to turn off tcpcrypt by
 setting the state to DISABLED before opening a connection. An active
 opener with tcpcrypt disabled MUST behave identically to an
 implementation of TCP without tcpcrypt. A passive opener with
 tcpcrypt disabled MUST also behave like normal TCP, except that it
 MAY optionally respond to SYN segments containing a CRYPT option with
 SYN-ACK segments containing a DECLINE suboption, so as to indicate
 that tcpcrypt is supported but not enabled.

3.2. Cryptographic algorithms

 The setup phase employs two types of cryptographic algorithm:

 o A _public key cipher_ is used with an ephemeral public key to
 exchange a random, shared secret. We use the notation
 ENC (K, VALUE) to denote an encryption of VALUE with public key K.

Bittau, et al. Expires March 1, 2012 [Page 6]

Internet-Draft tcpcrypt August 2011

 o A _collision-resistant pseudo-random function (CPRF)_ family is
 used to generate multiple cryptographic keys from a smaller shared
 secret. We use the notation CPRF (K, MESSAGE) to designate the
 output of the pseudo-random function identified by key K on
 MESSAGE.

 Because public key ciphers and CPRFs often both make use of
 cryptographic hashes, it generally makes sense to have both
 algorithms based on the same hash function--for instance to pair the
 OAEP+-RSA [RFC2437] cipher using a SHA-256-based mask-generation
 function with the HMAC-SHA256 [RFC2104] CPRF. For this reason, the
 public key cipher and CPRF are negotiated as a pair.

 The encrypting phase employs two more types of algorithm:

 o A _symmetric encryption algorithm_ is applied to all application
 data. The algorithm specifier includes both an underlying cipher
 (such as AES), and a mode of operation (such as CTR mode with TCP
 sequence numbers as the counter).

 o A Message Authentication Code or _MAC_ is used to protect the
 contents of all TCP segments sent and received in the encrypting
 phase. The currently specified MACs handle data in a structured
 way so as to optimize authentication of TCP's Acknowledgment
 Number field in re-transmissions.

 Note that public key generation, public key encryption, and shared
 secret generation all require randomness. Other tcpcrypt functions
 may also require randomness depending on the algorithms and modes of
 operation selected. A weak pseudo-random generator at either host
 will defeat tcpcrypt's security. Thus, any host implementing
 tcpcrypt MUST have a cryptographically secure source of randomness or
 pseudo-randomness.

3.3. "C" and "S" roles

 To establish shared session keys, tcpcrypt requires one host to
 encrypt a secret value with the second host's public key. The second
 host must subsequently use its private key to decrypt this value.
 Thus, tcpcrypt's setup phase is asymmetric; the two hosts must play
 different roles. We use "S" to denote the host that encrypts with
 the other host's public key, and "C" to denote the host that decrypts
 using its own private key.

 Which role a host plays can have performance implications, because
 for some public key algorithms encryption is much faster than
 decryption. For instance, on a machine at the time of writing,

https://datatracker.ietf.org/doc/html/rfc2437
https://datatracker.ietf.org/doc/html/rfc2104

Bittau, et al. Expires March 1, 2012 [Page 7]

Internet-Draft tcpcrypt August 2011

 encryption with a 2,048-bit RSA-3 key costs 82 microseconds, while
 decryption costs 10 milliseconds.

 Because servers often need to establish connections at a faster rate
 than clients, and because servers are often passive openers, by
 default the passive opener plays the "S" role. However, operating
 systems MUST provide a mechanism for the passive opener to reverse
 roles and play the "C" role, as discussed in Section 4.2.

3.4. Key exchange protocol

 Every machine C has a short-lived public encryption key, K_C, which
 gets refreshed periodically and SHOULD NOT ever be written to
 persistent storage.

 When a host C connects to S, the two engage in the following
 protocol:

 C -> S: HELLO
 S -> C: PKCONF, pub-cipher-list
 C -> S: INIT1, sym-cipher-list, N_C, K_C
 S -> C: INIT2, sym-cipher, ENC (K_C, N_S)

 Here the pub-cipher-list is a list of public key ciphers and key
 lengths acceptable to the server. Sym-cipher-list specifies the
 symmetric cipher suites acceptable to the client. N_C is a nonce
 chosen at random by C, while K_C is C's public encryption key, which
 MUST match one of the entries in pub-cipher-list. sym-cipher is the
 symmetric cipher suite chosen by the server from sym-cipher-list.
 Finally N_S is a "pre-session seed" chosen at random by S.

 The two sides then compute a series of "session secrets" and
 corresponding Session IDs as follows:

 param := { pub-cipher-list, sym-cipher-list, sym-cipher }

 ss[0] := CPRF (N_S, { K_C, param, N_C })
 ss[i] := CPRF (ss[i-1], TAG_NEXTK)

 SID[i] := CPRF (ss[i], TAG_SESSID)

 The value ss[0] is used to generate all key material for the current
 connection. SID[0] is the session ID for the current connection, and
 will with overwhelming probability be unique for each individual TCP
 connection. The most computationally expensive part of the key
 exchange protocol is the public key cipher. The values of ss[i] for
 i > 0 can be used to avoid public key cryptography when establishing
 subsequent connections between the same two hosts, as described in

Bittau, et al. Expires March 1, 2012 [Page 8]

Internet-Draft tcpcrypt August 2011

Section 3.6.

 Given a session secret, ss, the two sides compute a series of master
 keys as follows:

 mk[0] := CPRF (ss, TAG_REKEY)
 mk[i] := CPRF (mk[i-1], TAG_REKEY)

 Finally, each master key mk is used to generate four symmetric
 encryption keys:

 kec := CPRF (mk, TAG_KEY_C_ENC || 1) || CPRF (mk, TAG_KEY_C_ENC || 2)
 kac := CPRF (mk, TAG_KEY_C_MAC || 1) || CPRF (mk, TAG_KEY_C_MAC || 2)
 kes := CPRF (mk, TAG_KEY_S_ENC || 1) || CPRF (mk, TAG_KEY_S_ENC || 2)
 kas := CPRF (mk, TAG_KEY_S_MAC || 1) || CPRF (mk, TAG_KEY_S_MAC || 2)

 The numbers 1 and 2 are each 1-byte byte long.

 kec is used by the host in the "C" role to encrypt Data in
 transmitted TCP segments. If the symmetric encryption algorithm
 requires shorter keys, the key is truncated, keeping the left-most
 bytes only. Thus, if the symmetric cipher key length is less than or
 equal to the CPRF output length, a host need not compute
 CPRF (mk, TAG_KEY_C_ENC || 2).

 kac is used by the host in the "C" role to compute MACs on
 transmitted segments, as described in Section 4.4. The key is
 truncated similarly to kec if the MAC requires a shorter key length.
 If the symmetric cipher is used in a mode that provides
 authentication as well as secrecy, kac need not be used.

 kes and kas are used analogously to kec and kac for segments
 transmitted by the host in the "S" role.

3.5. Re-keying

 We refer to the four encryption keys (kec, kac, kes, kas) as a _key
 set_. We refer to the key set generated by mk[i] as the key set with
 generation number i within a session. Initially, the two hosts use
 the key set with generation number 0.

 Either host may decide to evolve the encryption key at one or more
 points within a session, by incrementing the generation number of its
 transmit keys. When switching keys to generation j, a host must
 label the segments it transmits with a REKEY option containing j, so
 that the recipient host knows to check the MAC and decrypt the
 segment using the new keyset:

Bittau, et al. Expires March 1, 2012 [Page 9]

Internet-Draft tcpcrypt August 2011

 A -> B: REKEY<j>, MAC<...>, Data<...>

 Upon receiving a REKEY<j> segment, a recipient using transmit keys
 from a generation less than j must also update its transmit keys and
 start including a REKEY<j> option in all of its segments. A host
 must continue transmitting REKEY options until all segments with
 other generation numbers have been processed at both ends.

 Implementations MUST always transmit and retransmit identical
 ciphertext Data bytes for the same TCP sequence numbers. Thus, a
 retransmitted segment MUST always use the same keyset as the original
 segment. If the encryption algorithm requires an initialization
 vector, a retransmitted segment MUST additionally use the same
 initialization vector as the original segment. Hosts MUST NOT
 combine segments that were encrypted with different keysets or
 incompatible initialization vectors.

 Implementations SHOULD delete older-generation keys from memory once
 they have received all segments they will need to decrypt with the
 old keys and received acknowledgments for all segments they might
 need to retransmit.

3.6. Session caching

 When two hosts have already negotiated session secret ss[i-1], they
 can establish a new connection without public key operations using
 ss[i]. The four-message protocol of Section 3.4 is replaced by:

 A -> B: NEXTK1, SID[i]
 B -> A: NEXTK2

 Which symmetric keys a host uses for transmitted segments is
 determined by its role in the original session ss[0]. It does not
 depend on which host is the passive opener in the current session.
 If A had the "C" role in the first session, then A uses kec and kac
 for sending segments. Otherwise, if A had the "S" role originally,
 it uses kes and kas in the new session. B similarly uses the
 transmit keys that correspond to its role in the original session.

 After using ss[i] to compute mk[0], implementations SHOULD compute
 and cache ss[i+1] for possible use by a later session, then erase
 ss[i] from memory. Hosts SHOULD keep ss[i+1] around for a period of
 time until it is used or the memory needs to be reclaimed. Hosts
 SHOULD NOT write a cached ss[i+1] value to non-volatile storage.

 It is an implementation-specific issue as to how long ss[i+1] should
 be retained if it is unused. If the passive opener times it out
 before the active opener does, the only cost is the additional twelve

Bittau, et al. Expires March 1, 2012 [Page 10]

Internet-Draft tcpcrypt August 2011

 bytes to send NEXTK1 for the next connection. The behavior then
 falls back to a normal public-key handshake.

3.6.1. Session caching control

 Implementations MUST allow applications to control session caching by
 setting the following option:

 TCP_CRYPT_CACHE_FLUSH When set on a TCP endpoint that is in the
 ENCRYPTING state, this option causes the operating system to flush
 from memory the cached ss[i+1] (or ss[i+1+n] if other connections
 have already been established). When set on an endpoint that is
 in the setup phase, causes any cached ss[i] that would have been
 used to be flushed from memory. In either case, future
 connections will have to undertake another round of the public key
 protocol in Section 3.4. Applications SHOULD set
 TCP_CRYPT_CACHE_FLUSH whenever authentication of the session ID
 fails.

4. Extensions to TCP

 The tcpcrypt extension adds two new kinds of option: CRYPT, and MAC.
 Both are described in this section. During the setup phase, all TCP
 segments MUST have the CRYPT option. In the ENCRYPTING state, all
 segments MUST have the MAC option and may include the CRYPT option
 for various purposes such as re-keying or keep-alive probes.

 The idealized protocol of the previous section must be embedded in
 the TCP handshake. Unfortunately, since the maximum TCP header size
 is 60 bytes and the basic TCP header fields require 20 bytes, there
 are at most 40 option payload bytes available, which is not enough to
 hold the INIT1 and INIT2 messages. Tcpcrypt therefore uses the Data
 portion of TCP segments to send the body of these messages.

 Operating systems MUST keep track of which phase a data segment
 belongs to, and MUST only deliver data to applications from segments
 that are processed in the ENCRYPTING or DISABLED states.

4.1. Protocol states

 The setup phase is divided into six states: CLOSED, NEXTK-SENT,
 HELLO-SENT, C-MODE, LISTEN, and S-MODE. Together with the ENCRYPTING
 and DISABLED states already discussed, this means a tcpcrypt endpoint
 can be in one of eight states.

 In addition to tcpcrypt's state, each endpoint will also be in one of
 the 11 TCP states described in the TCP protocol specification

Bittau, et al. Expires March 1, 2012 [Page 11]

Internet-Draft tcpcrypt August 2011

 [RFC0793]. Not all pairs of states are valid. Table 1 shows which
 TCP states an endpoint can be in for each tcpcrypt state.

 +-------------+--------------------------+--------------------------+
 | Tcpcrypt | TCP states for an active | TCP states for a passive |
 | state | opener | opener |
 +-------------+--------------------------+--------------------------+
CLOSED	CLOSED	CLOSED
NEXTK-SENT	SYN-SENT	n/a
HELLO-SENT	SYN-SENT	SYN-RCVD
C-MODE	ESTABLISHED, FIN-WAIT-1	ESTABLISHED, FIN-WAIT-1
LISTEN	n/a	LISTEN
S-MODE	(SYN-RCVD), ESTABLISHED	SYN-RCVD
ENCRYPTING	(SYN-RCVD), ESTABLISHED+	SYN-RCVD, ESTABLISHED+
DISABLED	any	any
 +-------------+--------------------------+--------------------------+

 Valid tcpcrypt and TCP state combinations. States in parentheses
 occur only with simultaneous open. ESTABLISHED+ means ESTABLISHED or
 any later state (FIN-WAIT-1, FIN-WAIT-2, CLOSING, TIME-WAIT, CLOSE-
 WAIT, or LAST-ACK).

 Table 1

 Figure 1 shows how tcpcrypt transitions between states. Each
 transition is labeled by events that may trigger the transition above
 the line, and an action the local host is permitted to take in
 response below the line. "rcv" and "snd" denote sending and receiving
 segments, respectively. "any" means any possible event. "internal"
 means any possible event except for receiving a segment (i.e., timers
 and system calls). "drop" means discarding the last received segment
 and preventing it from having any effect on TCP's state. "mac" means
 any valid TCP action, including no action, except that any segments
 transmitted must be encrypted and contain a valid TCP MAC option. "x"
 indicates that a host sends no segments when taking a transition.

 A segment is described as "F/Op". F specifies constraints on the
 control bits of the TCP header, as follows:

https://datatracker.ietf.org/doc/html/rfc0793

Bittau, et al. Expires March 1, 2012 [Page 12]

Internet-Draft tcpcrypt August 2011

 +----+------------------------------+
 | F | Meaning |
 +----+------------------------------+
 | S | SYN=1, ACK=0, FIN=0, RST=0 |
 | SA | SYN=1, ACK=1, FIN=0, RST=0 |
 | A | SYN=0, ACK=1, FIN=0, RST=0 |
 | S? | SYN=1, ACK=any, FIN=0, RST=0 |
 | ?A | SYN=any, ACK=1, FIN=0, RST=0 |
 | R | RST=1 |
 | * | any |
 +----+------------------------------+

 Op designates message types in the abstract protocol, which also
 correspond to particular suboptions of the TCP CRYPT option,
 described in Section 4.3, or "MAC" for a valid TCP MAC option, as
 described in Section 4.4. A segment with SYN=1 and ACK=0 that
 contains the NEXTK1 suboption will also explicitly or implicitly
 contain the HELLO suboption; such a segment matches event constraints
 on either option--e.g., it matches any of the "rcv S/HELLO", "rcv
 S?/HELLO", and "rcv S/NEXTK1" events. An empty Op matches any
 segment with the appropriate control bits. A segment MUST contain
 the TCP MAC option if and only if Op is "MAC".

 The "drop" transitions from NEXTK-SENT and HELLO-SENT to HELLO-SENT
 change TCP slightly by ignoring a segment and preventing a TCP
 transition from SYN-SENT to SYN-RCVD that would otherwise occur
 during simultaneous open. Therefore, these transitions SHOULD be
 disabled by default. They MAY be enabled on one side by an
 application that wishes to enable tcpcrypt on simultaneous open, as
 discussed in Section 4.2.1.

Bittau, et al. Expires March 1, 2012 [Page 13]

Internet-Draft tcpcrypt August 2011

 active OPEN passive OPEN
 ------------ +----------+ ------------ +----------+
 snd S/NEXTK1 | CLOSED | x | LISTEN |
 +-------------------| |------------->| |---------+
 | +----------+ +----------+ |
 | +---+ |active OPEN | | | | |
 | rcv S/HELLO| | |----------- rcv S/HELLO| | rcv S/NEXTK1|
 | -----------| | |snd S/HELLO ------------| | -------------|
 V drop| V V snd SA/HELLO| | snd SA/NEXTK2|
 +----------+ | +----------+ | | |
 | NEXTK- |___/ \| HELLO- |<------------------+ | |
 | SENT | | SENT | |rcv S/HELLO |
 +----------+ +----------+ |------------- |
 | | | | |rcv S?/HELLO |snd SA/PKCONF | | |
 | | |rcv S?/HELLO | |------------- V |
 | | |------------- | |snd ?A/PKCONF +----------+ |
 | | |snd ?A/PKCONF | +---------------->| S-MODE | |
 | | +----------------|------------------>| | |
 | +----------------+ | +----------+ |
 | rcv SA/PKCONF| |rcv ?A/PKCONF | |
 | -------------| |------------- |rcv A/INIT1 |
 | snd A/INIT1| |snd A/INIT1 |----------- |
 | V V |snd A/INIT2 |
 | +----------+ | |
 |rcv SA/NEXTK2 | C-MODE | +---+ | +---+ |
 |------------- | | rcv */ | | | | |internal |
 |snd A/MAC +----------+ -------| | | | |or rcv */MAC |
 | == or == |rcv A/INIT2 drop| | | | |or rcv R/ |
 |rcv S/NEXTK1 |----------- | V V V |------------ |
 |------------ |x +----------+ |mac |
 |snd SA/NEXTK2 +------------------>|ENCRYPTING|-+ |
 +------------------------------------->| |<---------------+
 +----------+

 State diagram for tcpcrypt. Transitions to DISABLED and CLOSED are
 not shown.

 Figure 1

 Any segment that would be discarded by TCP (e.g., for being out of
 window) MUST also be ignored by tcpcrypt. However, certain segments
 that might otherwise be accepted by TCP MUST be dropped by tcpcrypt
 and prevented from affecting TCP's state.

 Except for these drop actions, tcpcrypt MUST abide by the TCP
 protocol specification [RFC0793]. Thus, any segment transmitted by a
 host MUST be permitted by the TCP specification in addition to
 matching either a transition in Figure 1 or one of the transitions to

https://datatracker.ietf.org/doc/html/rfc0793

Bittau, et al. Expires March 1, 2012 [Page 14]

Internet-Draft tcpcrypt August 2011

 DISABLED or CLOSED described below. In particular, a host MUST NOT
 acknowledge an INIT1 segment unless either the acknowledgment
 contains an INIT2 or the host transitions to DISABLED.

 Various events cause transitions to DISABLED from states other than
 ENCRYPTING. In particular:

 o Operating systems MUST provide a mechanism for applications to
 transition to DISABLED from the CLOSED and LISTEN states.

 o A host in the setup phase MUST transition to DISABLED upon
 receiving any segment without a TCP CRYPT option.

 o A host in the setup phase MUST transition to DISABLED upon
 receiving any segment with the FIN or RST control bit set.

 o A host in the setup phase MUST transition to DISABLED upon sending
 a segment with the FIN bit set. (As discussed below, however, a
 host MUST NOT send a FIN segment from the C-MODE state.)

 Other specific conditions cause a transition to DISABLED and are
 discussed in the sections that follow.

 CLOSED is a pseudo-state representing a connection that does not
 exist. A tcpcrypt connection's lifetime is identical to that of its
 associated TCP connection. Thus, tcpcrypt transitions to CLOSED
 exactly when TCP transitions to CLOSED.

 A host MUST NOT send a FIN segment from the C-MODE state. The reason
 is that the remote side can be in the ENCRYPTING state and would thus
 require the segment to contain a valid MAC, yet a host in C-MODE
 cannot compute the necessary encryption keys before receiving the
 INIT2 segment.

 If a CLOSE happens in C-MODE, a host MUST delay sending a FIN segment
 until receiving an ACK for its INIT1 segment. If the remote host is
 in ENCRYPTING, the ACK segment will contain INIT2 and the local host
 can transition to ENCRYPTING before sending the FIN. If the remote
 host is not in ENCRYPTING, the ACK will not contain INIT2, and thus
 the local host can transition to DISABLED before sending the FIN.

 If a CLOSE happens in C-MODE, an implementation MAY delay processing
 the CLOSE event and entering the TCP FIN-WAIT-1 state until sending
 the FIN. If it does not, the implementation MUST ensure all relevant
 timers correspond to the time of transmission of the FIN segment, not
 the time of entry into the FIN-WAIT-1 state.

 A CLOSE event in the ENCRYPTING state MUST NOT change tcpcrypt's

Bittau, et al. Expires March 1, 2012 [Page 15]

Internet-Draft tcpcrypt August 2011

 state, only TCP's. The only valid tcpcrypt state transition from
 ENCRYPTING is to CLOSED, which occurs only when TCP also transitions
 to CLOSED.

4.2. Role negotiation

 A passive opener receiving an S/HELLO segment may choose to play the
 "S" role (by transitioning to S-MODE) or the "C" role (by
 transitioning to HELLO-SENT). An active opener may accept the role
 not chosen by the passive opener, or may instead disable tcpcrypt.
 During simultaneous open, one endpoint must choose the "C" role while
 the other chooses the "S" role. Operating systems MUST allow
 applications to guide these choices on a per-connection basis.

 Applications SHOULD be able to exert this control by setting a per-
 connection _CMODE disposition_, which can take on one of the
 following five values:

 TCP_CRYPT_CMODE_DEFAULT This disposition SHOULD be the default. A
 passive opener will only play the "S" role, but an active opener
 can play either the "C" or the "S" role. Simultaneous open
 without session caching will cause tcpcrypt to be disabled unless
 the remote host has set the TCP_CMODE_ALWAYS[_NK] disposition.

 TCP_CRYPT_CMODE_ALWAYS

 TCP_CRYPT_CMODE_ALWAYS_NK With this disposition, a host will only
 play the "C" role. The _NK version additionally prevents the use
 of session caching if the session was originally established in
 the "S" role.

 TCP_CRYPT_CMODE_NEVER

 TCP_CRYPT_CMODE_NEVER_NK With this disposition, a host will only
 play the "S" role. The _NK version additionally prevents the use
 of session caching if the session was originally established in
 the "C" role.

 The CMODE disposition prohibits certain state transitions, as
 summarized in Table 2. If an event occurs for which all valid
 transitions in Figure 1 are prohibited, a host MUST transition to
 DISABLED. Operating systems MAY add additional CMODE dispositions,
 for instance to force or prohibit session caching.

Bittau, et al. Expires March 1, 2012 [Page 16]

Internet-Draft tcpcrypt August 2011

 +-----------------------------+---------------------------+
 | CMODE disposition | Prohibited transitions |
 +-----------------------------+---------------------------+
 | TCP_CRYPT_CMODE_DEFAULT | LISTEN --> HELLO-SENT |
 | | HELLO-SENT --> HELLO-SENT |
 | | NEXTK-SENT --> HELLO-SENT |
 | | |
 | TCP_CRYPT_CMODE_ALWAYS[_NK] | any --> S-MODE |
 | | |
 | TCP_CRYPT_CMODE_NEVER[_NK] | LISTEN --> HELLO-SENT |
 | | HELLO-SENT --> HELLO-SENT |
 | | NEXTK-SENT --> HELLO-SENT |
 | | any --> C-MODE |
 +-----------------------------+---------------------------+

 State transitions prohibited by each CMODE disposition

 Table 2

4.2.1. Simultaneous open

 During simultaneous open, two ends of a TCP connection are both
 active openers. If both hosts attempt to use session caching by
 simultaneously transmitting S/NEXTK1 segments, and if both transmit
 the same session ID, then both may reply with SA/NEXTK2 segments and
 immediately enter the ENCRYPTING state. In this case, the host that
 played "C" when the session was initially negotiated MUST use the
 symmetric encryption keys for "C" (i.e., use kec and kac for
 transmitted segments), while the host that initially played "S" uses
 the "S" keys for the new connection.

 If both hosts in a simultaneous open do not attempt to use session
 caching, or if the two hosts use incompatible Session IDs, then they
 MUST engage in public-key-based key negotiation to use tcpcrypt.
 Doing so requires one host to play the "C" role and the other to play
 the "S" role. With the TCP_CRYPT_CMODE_DEFAULT disposition, these
 roles are usually determined by the passive opener choosing the "S"
 role. With no passive opener, both active openers will end up in
 S-MODE, then transition to DISABLED upon receiving an unexpected
 PKCONF.

 Simultaneous open can work with key negotiation if exactly one of the
 two hosts selects the TCP_CRYPT_CMODE_ALWAYS disposition. This host
 will then drop S/HELLO segments and remain in C-MODE while the other
 host transitions to S-MODE. Applications SHOULD NOT set
 TCP_CRYPT_CMODE_ALWAYS on both sides of a simultaneous open, as this
 will cause even the underlying TCP connection to fail.

Bittau, et al. Expires March 1, 2012 [Page 17]

Internet-Draft tcpcrypt August 2011

4.3. The TCP CRYPT option

 A CRYPT option has the following format:

 Byte 0 1 2 N
 +-------+-------+-------...-------+
 | Kind= |Length=| Suboptions |
 | OPT1 | N | |
 +-------+-------+-------...-------+

 Format of TCP CRYPT option

 Kind is always OPT1. Length is the total length of the option,
 including the two bytes used for Kind and Length. These first two
 bytes are then followed by zero or more suboptions. Suboptions
 determine the meaning of the TCP CRYPT option. When a TCP header
 contains more than one CRYPT option, a host MUST interpret them the
 same as if all the suboptions appeared in a single CRYPT option.

 Each suboption begins with an Opcode byte. The specific format of
 the option depends on the two most significant bits of the Opcode.

 Suboptions with opcodes from 0x00 to 0x3f contain no data other than
 the single opcode byte:

 bit 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | Opcode = |
 |0 0 x x x x x x|
 +-+-+-+-+-+-+-+-+

 Hosts MUST ignore any opcodes of this format that they do not
 recognize.

 Suboptions with opcodes from 0x40 to 0x7f contain an opcode, a length
 field, and data bytes.

 0 1
 bit 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------...
 | Opcode = | Length = | N-2 bytes
 |0 1 x x x x x x| N | of suboption data
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------...

 Hosts MUST ignore any opcodes of this format that they do not
 recognize.

 Suboptions with opcodes from 0x80 to 0xbf contain zero or more bytes

Bittau, et al. Expires March 1, 2012 [Page 18]

Internet-Draft tcpcrypt August 2011

 of data whose length depends on the opcode. These suboptions can be
 either fixed length or variable length; implementations that
 understand these opcodes will known which they are; if the suboption
 is fixed length the implementation will know the length; otherwise it
 will know where to look for the length field.

 bit 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+-------...
 | Opcode = | data
 |1 0 x x x x x x|
 +-+-+-+-+-+-+-+-+-------...

 If a host sees an unknown opcode in this range, it MUST ignore the
 suboption and all subsequent suboptions in the same TCP CRYPT option.
 However, if more than one CRYPT option appears in the TCP header, the
 host MUST continue processing suboptions from the next TCP CRYPT
 option.

 Suboptions with opcodes from 0xc0 to 0xff also contain an opcode-
 specific length of data. As before, these suboptions can be either
 fixed length or variable length. However, suboptions in this range
 are classed as mandatory as far as the protocol is concerned.
 However, they are not MANDATORY to implement unless otherwise stated,
 as discussed below.

 bit 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+-------...
 | Opcode = | data
 |1 1 x x x x x x|
 +-+-+-+-+-+-+-+-+-------...

 Should a host encounter an unknown opcode greater than or equal to
 0xc0 during the setup phase of the protocol, the host MUST transition
 to the DISABLED state. It SHOULD respond with both a DECLINE
 suboption and an UNKNOWN suboption specifying the opcode of the
 unknown mandatory suboption, after which the host MUST NOT send any
 further CRYPT options.

 Should a host encounter an unknown opcode greater than or equal to
 0xc0 while in the ENCRYPTING state, the host MUST respond with an
 UNKNOWN suboption specifying the opcode of the unknown mandatory
 suboption, and should ensure the session continues with the same
 encryption and authentication state as it had before the segment was
 received. This may require ignoring other suboptions within the same
 message, or reverting any half-negotiated state.

 Table 3 summarizes the opcodes discussed in this document. It is
 MANDATORY that all implementations support every opcode in this

Bittau, et al. Expires March 1, 2012 [Page 19]

Internet-Draft tcpcrypt August 2011

 table. Each opcode is listed with the length in bytes of the
 suboption (including the opcode byte), or * for variable-length
 suboptions. The last column specifies in which of the (S)etup phase,
 (E)NCRYPTING state, and (D)ISABLED state an opcode may be used. A
 host MUST NOT send an option unless it is in one of the stages
 indicated by this column.

 +-------+--------+---------------------+--------+
 | Value | Length | Name | Stages |
 +-------+--------+---------------------+--------+
 | 0x01 | 1 | HELLO | S |
 | 0x02 | 1 | HELLO-app-support | S |
 | 0x03 | 1 | HELLO-app-mandatory | S |
 | 0x04 | 1 | DECLINE | SD |
 | 0x05 | 1 | NEXTK2 | S |
 | 0x06 | 1 | INIT1 | S |
 | 0x07 | 1 | INIT2 | S |
 | 0x41 | * | PKCONF | S |
 | 0x42 | * | PKCONF-app-support | S |
 | 0x43 | * | UNKNOWN | SED |
 | 0x44 | * | SYNCOOKIE | S |
 | 0x45 | * | ACKCOOKIE | SED |
 | 0x80 | 5 | SYNC_REQ | E |
 | 0x81 | 5 | SYNC_OK | E |
 | 0x82 | 2 | REKEY | E |
 | 0x83 | 6 | REKEYSTREAM | E |
 | 0x84 | 10 | NEXTK1 | S |
 | 0x85 | * | IV | E |
 +-------+--------+---------------------+--------+

 Opcodes for suboptions of the TCP CRYPT option.

 Table 3

 If a TCP segment (sent by an active opener) has the SYN flag set, the
 ACK flag clear, and one or more TCP CRYPT options, there is an
 implicit HELLO suboption even if that suboption does not appear in
 the segment. In particular, when such a SYN segment contains a
 single, empty, two-byte TCP CRYPT option, the passive opener MUST
 interpret that option as equivalent to the three-byte TCP option
 composed of bytes OPT1, 3, 1 (Kind = OPT1, Length = 3, Suboption =
 HELLO).

 A host MUST enter the DISABLED state if, during the setup phase, it
 receives a segment containing neither a TCP CRYPT nor a TCP MAC
 option. A host MUST also enter DISABLED if, during the setup phase,
 it receives a DECLINE suboption or any unrecognized suboption with
 opcode greater than or equal to 0xc0. Once a host has entered

Bittau, et al. Expires March 1, 2012 [Page 20]

Internet-Draft tcpcrypt August 2011

 DISABLED, it MUST NOT include the MAC option in any transmitted
 segment. The host MAY include a CRYPT option in the next segment
 transmitted, but only if the segment also contains the DECLINE
 suboption. All subsequently transmitted packets MUST NOT contain the
 CRYPT option.

4.3.1. The HELLO suboption

 The HELLO dataless suboption MUST only appear in a segment with the
 SYN control bit set. It is used by an active opener to indicate
 interest in using tcpcrypt for a connection, and by a passive opener
 to indicate that the passive opener wishes to play the "C" role.

 The initial SYN segment from an active opener wishing to use tcpcrypt
 MUST contain a TCP CRYPT option with either an explicit or an
 implicit HELLO suboption.

 After receiving a SYN segment with the HELLO suboption, a passive
 opener MUST respond in one of three ways:

 o To continue setting up tcpcrypt and play the "S" role, the passive
 opener MUST respond with a PKCONF suboption in the SYN-ACK segment
 and transition to S-MODE.

 o To continue setting up tcpcrypt and play the "C" role, the passive
 opener MUST respond with a HELLO suboption in the SYN-ACK segment
 and transition to HELLO-SENT.

 o To continue without tcpcrypt, the passive opener MUST respond with
 either no CRYPT option or the DECLINE suboption in the SYN-ACK
 segment, then transition to the DISABLED state.

 An active opener receiving HELLO in a SYN-ACK segment must either
 transition to S-MODE and respond with a PKCONF suboption, or
 transition to DISABLED.

 There are three variants of the HELLO option used for application-
 level authentication: a plain HELLO where the application is not
 tcpcrypt-aware (but the kernel is), an "application supported" HELLO
 where the application is tcpcrypt-aware and is advertising the fact,
 and a "application mandatory" HELLO where the application requires
 the remote application to support tcpcrypt otherwise the connection
 MUST revert to plain TCP. The application supported HELLO can be
 used, for example, when implementing HTTP digest authentication - an
 application can check whether the peer's application is tcpcrypt
 aware and proceed to authenticate tcpcrypt's session ID over HTTP,
 otherwise reverting to standard HTTP digest authentication. The
 application mandatory HELLO can be used, for example, when

Bittau, et al. Expires March 1, 2012 [Page 21]

Internet-Draft tcpcrypt August 2011

 implementing an SSL library that attempts tcpcrypt but reverts to SSL
 if the peer's SSL library does not support tcpcrypt. The application
 mandatory HELLO avoids double encrypting (SSL-over-tcpcrypt) since
 the connection will revert to plain TCP if the remote SSL library is
 not tcpcrypt-ware.

4.3.2. The DECLINE suboption

 The DECLINE dataless suboption is sent by a host to indicate that the
 host will not enable tcpcrypt on a connection. If a host is in the
 DISABLED state or transitioning to the DISABLED state, and the host
 transmits a segment containing a CRYPT option, then the segment MUST
 contain the DECLINE suboption.

 A passive opener SHOULD send a DECLINE suboption in response to a
 HELLO suboption or NEXTK1 suboption in a received SYN segment if it
 supports tcpcrypt but does not wish to engage in encryption for this
 particular session.

 Implementations MUST NOT send segments containing the DECLINE
 suboption from the C-MODE or ENCRYPTING states.

4.3.3. The NEXTK1 and NEXTK2 suboptions

 The NEXTK1 suboption MUST only appear in a segment with the SYN
 control bit set and the ACK bit clear. It is used by the active
 opener to initiate a TCP session without the overhead of public key
 cryptography. The new session key is derived from a previously
 negotiated session secret, as described in Section 3.6.

 The suboption is always 10 bytes in length; the data contains the
 first nine bytes of SID[i] and is used to to start the session with
 session secret ss[i]. The format of the suboption is:

 Byte 0 1 2 3
 +-------+-------+-------+-------+
 0 |Opcode | Bytes 0-2 |
 | 0x84 | of SID[i] |
 +-------+-------+-------+-------+
 4 | Bytes 3-6 |
 | of SID[i] |
 +-------+-------+-------+-------+
 8 | Bytes 7-8 |
 | of SID[i] |
 +-------+-------+

 Format of the NEXTK1 suboption

Bittau, et al. Expires March 1, 2012 [Page 22]

Internet-Draft tcpcrypt August 2011

 The active opener MUST use the lowest value of i that has not already
 appeared in a NEXTK1 segment exchanged with the same host and for the
 same pre-session seed.

 If the passive opener recognizes SID[i] and knows ss[i], it SHOULD
 respond with a segment containing the dataless NEXTK2 suboption. The
 NEXTK2 option MUST only appear in a segment with both the SYN and ACK
 bits set.

 If the passive opener does not recognize SID[i], or SID[i] is not
 valid or has already been used, the passive opener SHOULD respond
 with a PKCONF or HELLO option and continue key negotiation as usual.

 When two hosts have previously negotiated a tcpcrypt session, either
 host may use the NEXTK1 option regardless of which host was the
 active opener or played the "C" role in the previous session.
 However, a given host must either use kec/kac for all sessions
 derived from the same pre-session seed, or kas/kes for all those
 sessions. Thus, which keys a host uses to send segments depends only
 whether the host played the "C" or "S" role in the initial session
 that used ss[0]; it is not affected by which host was the active
 opener transmitting the SYN segment containing a NEXTK1 suboption.

 A host MUST reject a NEXTK1 message if it has previously sent or
 received one with the same SID[i]. In the event that two hosts
 simultaneously send SYN segments to each other with the same SID[i],
 but the two segments are not part of a simultaneous open, both
 connections will have to revert to public key cryptography. To avoid
 this limitation, implementations MAY chose to implement session
 caching such that a given pre-session key is only good for either
 passive or active opens at the same host, not both.

 In the case of simultaneous open, two hosts that simultaneously send
 SYN packets with NEXTK1 and the same SID[i] may establish a
 connection, as described in Section 4.2.1.

4.3.4. The PKCONF suboption

 The PKCONF option has the following format:

 Byte 0 1 2 N
 +-------+-------+-------...-------+
 |Opcode=|Length=| Algorithm |
 | 0x41 | N | Specifiers |
 +-------+-------+-------...-------+

 Format of the PKCONF suboption

Bittau, et al. Expires March 1, 2012 [Page 23]

Internet-Draft tcpcrypt August 2011

 The suboption data, whose length (N-2) must be divisible by 3,
 contains one or more 3-byte algorithm specifiers of the following
 form:

 0 1 2
 bit 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 |0| Algorithm | Min-Key-Len | Max-Key-Len |
 +-+

 Format of algorithm specifier within PKCONF suboption

 The following values of algorithm are defined:

 +-------+---------------------------+-------------+
 | Value | Cipher | CPRF |
 +-------+---------------------------+-------------+
 | 0x01 | Rabin-Williams | HMAC-SHA256 |
 | 0x02 | OAEP+-RSA with exponent 3 | HMAC-SHA256 |
 +-------+---------------------------+-------------+

 (Values of algorithm over 127 are reserved for future use by multi-
 byte algorithm specifiers for algorithms with fixed key sizes or more
 compact min/max key length encodings.)

 Hosts SHOULD implement Rabin-Williams, and MUST implement OAEP+-RSA3.
 The Min-Key-Len and Max-Key-Len fields specify the minimum and
 maximum key sizes acceptable for each particular algorithm. The
 interpretation of the values of these fields depends on the
 particular algorithm. For the two algorithms listed above, the two
 Len values are expressed in terms of 256-bit (32-byte) key blocks, so
 that, for example, the following algorithm specifier designates
 Rabin-Williams keys with lengths from 1,024 to 8,192 bits.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 |0 0 0 0 0 0 0 1|0 0 0 0 0 1 0 0|0 0 1 0 0 0 0 0|
 +-+

 Depending on the value of the PKCONF suboption, it can either
 indicate that the application is tcpcrypt-aware or not. This can be
 used for bootstrapping application-level authentication without
 requiring probing in upper layer protocols to check for support
 (which may not be possible).

Bittau, et al. Expires March 1, 2012 [Page 24]

Internet-Draft tcpcrypt August 2011

4.3.5. The UNKNOWN suboption

 The UNKNOWN option has the following format:

 Byte 0 1 2 N
 +-------+-------+-------........-------+
 |Opcode=|Length=| N-2 unknown one-byte |
 | 0x42 | N | opcodes received |
 +-------+-------+-------........-------+

 Format of the UNKNOWN suboption

 This suboption is sent in response to an unknown suboption that has
 been received. The contents of the option are a complete list of the
 mandatory suboption opcodes from the received packet that were not
 understood. Note that this option is only sent once, in the next
 packet that the host sends. This means that it is reliable when sent
 in a SYN-ACK, but unreliable otherwise. Any mechanism sending new
 mandatory attributes must take this into account. If multiple
 packets, each containing unknown options, are received before an
 UNKNOWN suboption can be sent, the options list MUST contain the
 union of the two sets. The order of the opcode list is not
 significant.

 If a host receives an unknown option, it SHOULD reply with the
 UNKNOWN suboption to notify the other side. If the host transitions
 to DISABLED as a result of the unknown option, then the host MUST
 also include the DECLINE suboption if it sends an UNKNOWN suboption
 (or more generally if it includes a CRYPT option in the next packet).

 As a special case, if PKCONF (0x41) or INIT1 (0x06) appears in the
 unknown opcode list, it does not mean the sender does not understand
 the option (since these options are MANDATORY). Instead, it means
 the sender does not implement any of the algorithms specified in the
 PKCONF or INIT1 message. In either case, the segment must also
 contain a DECLINE suboption.

4.3.6. The SYNCOOKIE and ACKCOOKIE suboptions

 A passive opener MAY include the SYNCOOKIE suboption in a segment
 with both the SYN and ACK flags set. SYNCOOKIE allows a server to be
 stateless until the TCP handshake has completed. If has the
 following format:

Bittau, et al. Expires March 1, 2012 [Page 25]

Internet-Draft tcpcrypt August 2011

 Byte 0 1 2 N
 +-------+-------+-------...-------+
 |Opcode=|Length=| N-2 bytes of |
 | 0x43 | N | opaque data |
 +-------+-------+-------...-------+

 Format of the SYNCOOKIE suboption

 The data is opaque as far as the protocol is concerned; it is
 entirely up to implementations how to make use of this suboption to
 hold state. It is OPTIONAL to send a SYNCOOKIE, but MANDATORY to
 understand and respond to them.

 The ACKCOOKIE suboption echoes the contents of a SYNCOOKIE; it MUST
 be sent in a packet acknowledging receipt of a packet containing a
 SYNCOOKIE, and MUST NOT be sent in any other packet. If has the
 following format:

 Byte 0 1 2 N
 +-------+-------+-------...-------+
 |Opcode=|Length=| N-2 bytes of |
 | 0x44 | N | SYNCOOKIE data |
 +-------+-------+-------...-------+

 Format of the ACKCOOKIE suboption

 Servers that rely on suboption data from ACKCOOKIE to reconstruct
 session state SHOULD embed a cryptographically strong message
 authentication code within the SYNCOOKIE data so as to be able to
 reject forged ACKCOOKIE suboptions.

 Though an implementation MUST NOT send a SYNCOOKIE in any context
 except the SYN-ACK packet returned by a passive opener,
 implementations SHOULD accept SYNCOOKIEs in other contexts and reply
 with the appropriate ACKCOOKIE if possible.

4.3.7. The SYNC_REQ and SYNC_OK suboptions

 Many hosts implement TCP Keep-Alives [RFC1122] as an option for
 applications to ensure that the other end of a TCP connection still
 exists even when there is no data to be sent. A TCP Keep-Alive
 segment carries a sequence number one prior to the beginning of the
 send window, and may carry one byte of "garbage" data. Such a
 segment causes the remote side to send an acknowledgment.

 Unfortunately, Keep-Alive acknowledgments might not contain unique
 data. Hence, an old but cryptographically valid acknowledgment could
 be replayed by an attacker to prolong the existence of a session at

https://datatracker.ietf.org/doc/html/rfc1122

Bittau, et al. Expires March 1, 2012 [Page 26]

Internet-Draft tcpcrypt August 2011

 one host after the other end of the connection no longer exists.
 (Such an attack might prevent a process with sensitive data from
 exiting, giving an attacker more time to compromise a host and
 extract the sensitive data.)

 The TCP Timestamps Option (TSopt) [RFC1323] could alternatively have
 been used to make Keep-Alives unique. However, because some
 middleboxes change the value of TSopt in packets, tcpcrypt does not
 protect the contents of the TCP TSopt option. Hence the SYNC_REQ and
 SYNC_OK suboptions allow the cryptographically protected TCP CRYPT
 option to contain unique data.

 The SYNC_REQ suboption is always 5 bytes, and has the following
 format:

 Byte 0 1 2 3 4
 +-------+-------+-------+-------+-------+
 |Opcode=| Clock |
 | 0x80 | |
 +-------+-------+-------+-------+-------+

 Format of the SYNC_REQ suboption

 Clock is a 32-bit non-decreasing value. A host MUST increment Clock
 at least once for every interval in which it sends a Keep-Alive.
 Implementations that support TSopt MAY chose to use the same value
 for Clock that they would put in the TSval field of the TCP TSopt.
 However, implementations SHOULD "fuzz" any system clocks used to
 avoid disclosing either when a host was last rebooted or at what rate
 the hardware clock drifts.

 A host that receives a SYNC_REQ suboption MUST reply with a SYNC_OK
 suboption, which is always five bytes and has the following format:

 Byte 0 1 2 3 4
 +-------+-------+-------+-------+-------+
 |Opcode=| Received-Clock |
 | 0x81 | |
 +-------+-------+-------+-------+-------+

 Format of the SYNC_OK suboption

 The value of Received-Clock depends on the values of the Clock fields
 in SYNC_REQ messages a host has received. A host must set Received-
 Clock to a value at least as high as the most recently received
 Clock, but no higher than the highest Clock value received this
 session. If a host delays acknowledgment of multiple packets with
 SYNC_REQ suboptions, it SHOULD send a single SYNC_OK with Received-

https://datatracker.ietf.org/doc/html/rfc1323

Bittau, et al. Expires March 1, 2012 [Page 27]

Internet-Draft tcpcrypt August 2011

 Clock set to the highest Clock in the packets it is acknowledging.

 Because middleboxes sometimes "correct" inconsistent retransmissions,
 Keep-Alive segments with one byte of garbage data MUST use the same
 ciphertext byte as previously transmitted for that sequence number.
 Otherwise, a middlebox might change the byte back to its value in the
 original transmission, causing the cryptographic MAC to fail.

4.3.8. The REKEY and REKEYSTREAM suboptions

 The REKEY and REKEYSTREAM suboptions are used to evolve encryption
 keys. Exactly one of the two options is valid with any given
 symmetric encryption algorithm and mode. Generally block ciphers
 will use REKEY while stream ciphers use REKEYSTREAM. We refer to a
 segment containing either option as a REKEY segment.

 REKEY allows hosts to wipe from memory keys that could decrypt
 previously transmitted segments. It also allows the use of message
 authentication codes that are only secure up to a fixed number of
 messages. However, implementations MUST work in the presence of
 middleboxes that "correct" inconsistent data retransmissions. Hence,
 the value of ciphertext bytes must be the same in the original
 transmission and all retransmissions of a particular sequence number.
 This means a host MUST always use the same encryption key when
 transmitting or retransmitting the same range of sequence numbers.
 Re-keying only affects data transmitted in the future. Moreover,
 segments encrypted with different keysets MUST NOT be combined in
 retransmissions.

 When switching keys, the REKEY suboption specifies which key set has
 been used to encrypt and integrity-protect the current segment. The
 suboption is always two bytes, and has the following format:

 Byte 0 1
 +-------+-------+
 |Opcode=|KeyLSB |
 | 0x83 | |
 +-------+-------+

 Format of the REKEY suboption

 KeyLSB is the generation number of the keys used to encrypt and MAC
 the current segment, modulo 256. REKEYSTREAM is the same as REKEY
 but includes the TCP Sequence Number offset at which the key change
 took effect, for cases in which decryption requires knowing how many
 bytes have been encrypted thus far with a key. To interoperate with
 middleboxes that rewrite sequence numbers, offsets from the Initial
 Sequence Number (ISN) are used instead of TCP sequence numbers

Bittau, et al. Expires March 1, 2012 [Page 28]

Internet-Draft tcpcrypt August 2011

 throughout tcpcrypt. The same occurs when dealing with
 acknowledgement numbers.

 Byte 0 1 2 3 4 5
 +-------+-------+-------+-------+-------+-------+
 |Opcode=|KeyLSB | Sequence Number Offset |
 | 0x83 | | from ISN |
 +-------+-------+-------+-------+-------+-------+

 Format of the REKEYSTREAM suboption

 A host MAY use REKEY to increment the session key generation number
 beyond the highest generation it knows the other side to be using.
 We call this process _initiating_ re-keying. When one host initiates
 re-keying, the other host MUST increment its key generation number to
 match, as described blow (unless the other host has also
 simultaneously initiated re-keying).

 A host MAY initiate re-keying by including a REKEY suboption in a
 syncable segment. A syncable segment is one that either contains
 data, or is acknowledgment-only but contains a SYNC_REQ suboption
 with a fresh Clock value--i.e., higher than any Clock value it has
 previously transmitted. We say a syncable segment is _synced_ when
 the transmitter knows the remote side has received it and all
 previous sequence numbers. A data segment is synced when the
 transmitter receives a cumulative acknowledgment for its sequence
 number (a Selective Acknowledgment [RFC2018] is insufficient). An
 acknowledgment-only segment is synced when the sender receives an
 acknowledgment for its sequence number and a SYNC_OK with a high
 enough Clock number.

 A host MUST NOT initiate re-keying with an acknowledgment-only
 segment that has either no SYNC_REQ suboption or a SYNC_REQ with an
 old Clock value, because such a segment is not syncable. A host MUST
 NOT initiate re-keying with any KeyLSB other than its current key
 number plus one modulo 256.

 When a host receives a segment containing a REKEY suboption, it MUST
 proceed as follows:

 1. The receiver computes RECEIVE-KEY-NUMBER to be the closest
 integer to its own transmit key number that also equals KeyLSB
 modulo 256. If no number is closest (because KeyLSB is exactly
 128 away from the transmit number modulo 256), the receiver MUST
 discard the segment. If RECEIVE-KEY-NUMBER is negative, the
 receiver MUST also discard the segment.

https://datatracker.ietf.org/doc/html/rfc2018

Bittau, et al. Expires March 1, 2012 [Page 29]

Internet-Draft tcpcrypt August 2011

 2. The receiver MUST authenticate and decrypt the segment using the
 receive keys with generation number RECEIVE-KEY-NUMBER. The
 receiver MUST discard the packet as usual if the MAC is invalid.

 3. If RECEIVE-KEY-NUMBER is greater than the receiver's current
 transmit key number, the receiver must wait to receive all
 sequence numbers prior to the REKEY segment's. Once it receives
 segments covering all these missing sequence numbers (if any), it
 MUST increase its transmit number to RECEIVE-KEY-NUMBER and
 transmit a REKEY suboption. If the receiver has gotten multiple
 REKEY segments with different KeyLSB values, it MUST increase its
 transmit key number to the highest RECEIVE-KEY-NUMBER of any
 segment for which it is not missing prior sequence numbers.

 After sending a REKEY (whether initiating re-keying or just
 responding), a host MUST continue to send REKEY in all subsequent
 segments until at least one of the following holds:

 o One of the REKEY segments the host transmitted for its current
 transmit key number was syncable, and it has been synced.

 o The host receives a cumulative acknowledgment for one of its REKEY
 segments with the current transmit key number, and the cumulative
 acknowledgment is in a segment encrypted with the new key but not
 containing a REKEY suboption.

 A host SHOULD erase old keys from memory once the above requirements
 are met.

 A host MUST NOT initiate re-keying if it initiated a re-keying less
 than 60 seconds ago and has not transmitted at least 1 Megabyte
 (increased its sequence number by 1,048,576) since the last re-
 keying. A host MUST NOT initiate re-keying if it has outstanding
 unacknowledged REKEY segments for key numbers that are 127 or more
 below the current key. A host SHOULD not initiate more than one
 concurrent re-key operation if it has no data to send.

4.3.9. The INIT1 and INIT2 suboptions

 The INIT1 dataless suboption indicates that the Data portion of the
 TCP segment contains the following data structure:

Bittau, et al. Expires March 1, 2012 [Page 30]

Internet-Draft tcpcrypt August 2011

 Byte 0 1 2 3
 +-------+-------+-------+-------+
 | 0x0001 | # sym ciphers |
 +-------+-------+-------+-------+
 |# bytes of N_C |# bytes of K_C |
 +-------+-------+-------+-------+
 | symmetric cipher |
 : :
 +-------+-------+-------+-------+
 | N_C |
 : :
 +-------+-------+-------+-------+
 | 0 | type of K_C |
 +-------+-------+-------+-------+
 | K_C |
 : :
 +-------+-------+-------+-------+

 Each symmetric cipher has the following format:

 0 1 2 3
 bit 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0| cipher alg |0 0 0 0 0 0 0 0| MAC alg |
 +-+

 Format of symmetric cipher within INIT1 suboption

 Note that the cipher and MAC are specified as a pair, using an 8-bit
 identifier to specify each supported algorithm. The special cipher
 value of 0 means that a MAC can be used with any cipher, or a cipher
 with any MAC. The following cipher values are mandatory and MUST be
 supported by all implementations:

 +-------+---------------------------------+
 | value | cipher |
 +-------+---------------------------------+
 | 0x00 | Any cipher okay with this MAC |
 | 0x01 | AES-128 CTR mode w. seqno as IV |
 +-------+---------------------------------+

 With AES-128 CTR mode, bytes are encrypted using their extended 64-
 bit sequence number offset from the ISN. To encrypt the byte for
 sequence number offset N:

 o Compute B = N - (N % 16).

Bittau, et al. Expires March 1, 2012 [Page 31]

Internet-Draft tcpcrypt August 2011

 o Let B* = 0^{128-|B|} || B be B with enough 0 bits pre-pended to
 make B* exactly 128 bits long.

 o Let C = ENC-AES (ke[cs], B*).

 o XOR the message byte with byte (N-B) of C.

 The following MACs are mandatory and MUST be supported by all
 implementations.

 +-------+-------------------------------+
 | value | MAC |
 +-------+-------------------------------+
 | 0x00 | Any MAC okay with this cipher |
 | 0x01 | HMAC-SHA2-128 |
 +-------+-------------------------------+

 The value "type of K_C" must be one of the public key specifiers
 included earlier in the other host's PKCONF message.

 The INIT2 dataless suboption indicates that the Data portion of the
 TCP segment contains the following data structure:

 Byte 0 1 2 3
 +-------+-------+-------+-------+
 | 0x0002 |#byt ciphertext|
 +-------+-------+-------+-------+
 | symmetric cipher suite |
 +-------+-------+-------+-------+
 | ciphertext |
 : :
 +-------+-------+-------+-------+

 Here the symmetric cipher suite is one selected by the host
 transmitting the INIT2 segment, which will be playing the "S" role.
 Neither the cipher nor the MAC may have value 0x00 in the INIT2
 segment. The ciphertext is an encryption of N_S, as described in

Section 3.4.

 Hosts MUST set the TCP PSH control bits on INIT1 and INIT2 segments.
 Implementations MUST NOT set the TCP FIN control bit on INIT2
 segments.

4.3.10. The IV suboption

 The IV suboption is used to hold an initialization vector (IV) when
 the negotiated encryption mode requires an initialization vector to
 be transmitted with packets. It MUST NOT be included in transmitted

Bittau, et al. Expires March 1, 2012 [Page 32]

Internet-Draft tcpcrypt August 2011

 packets except in the ENCRYPTING state when the negotiated encryption
 mode requires IVs. When the negotiated encryption mode does require
 IVs, all segments transmitted in ENCRYPTING mode MUST contain an IV
 suboption.

 The IV suboption has the following format:

 Byte 0 1 N
 +-------+-------...-------+
 |Opcode=| Initialization |
 | 0x85 | Vector |
 +-------+-------...-------+

 Format of the IV suboption

 The length N of the IV is determined by the encryption algorithm and
 mode negotiated.

 As discussed in Section 4.3.8, a host MUST always transmit the same
 ciphertext byte in retransmissions of a particular sequence number.
 Thus, retransmitted segments must use the same IV each time.
 Moreover, previously transmitted segments MUST NOT be combined on
 retransmission if their IVs would prevent the ciphertext bytes from
 remaining the same as in the original transmission.

4.4. The TCP MAC option

 The MAC option is used to authenticate a TCP segment as described in
 the next section. Once a host has entered the encrypting phase for a
 session, the HOST must include a TCP MAC option in all segments it
 sends. Furthermore, once in the encrypting phase, a host MUST ignore
 any segments it receives that do not have a valid MAC option, except
 for segments with the RST bit set if the application has not
 requested cryptographic verification of RST segments.

 The length of the MAC option is determined by the symmetric message
 authentication code selected. The format of the MAC option is:

 Byte 0 1 2 N+1
 +-------+-------+------...------+
 | Kind | Len= | N-byte |
 | OPT2 | 2+N | MAC |
 +-------+-------+------...------+

 Format of TCP MAC option

 The MAC is computed based on two data structures, a pseudo-packet
 structure we call M, and an acknowledgment structure we call A. The

Bittau, et al. Expires March 1, 2012 [Page 33]

Internet-Draft tcpcrypt August 2011

 format of M is as follows:

 Byte 0 1 2 3
 +-------+-------+-------+-------+
 0 | 0x8000 | length |
 +-------+-------+-------+-------+
 4 | off | flags | window |
 +-------+-------+---------------+
 8 | 0x0000 | urg |
 +-------+-------+-------+-------+
 12 | seqno offset hi |
 +-------+-------+-------+-------+
 16 | seqno offset |
 +-------+-------+-------+-------+
 20 | options |
 : :
 +-------+-------+-------+-------+
 | payload ciphertext |
 | must be len-off bytes |
 : :
 +-------+-------+-------+-------+

 M data structure

 The fields of M are defined as follows:

 length
 Total size of the TCP segment from the start of the TCP header to
 the end of the IP datagram.

 off
 Byte 12 of the TCP header (Data Offset)

 flags
 Byte 13 of the TCP header (Control Bits)

 window
 Bytes 14-15 of the TCP header (Window)

 urg
 Bytes 18-19 of the TCP header (Urgent Pointer)

 seqno offset hi
 Number of times the seqno offset field has wrapped from 0xffffff
 -> 0

Bittau, et al. Expires March 1, 2012 [Page 34]

Internet-Draft tcpcrypt August 2011

 seqno offset
 The low 32 bits of the sequence number offset (the Sequence Number
 in the TCP header - ISN)

 options
 These are bytes 20-off of the TCP header. However, where the
 TSOPT (8), Skeeter (16), Bubba (17), MD5 (19), and MAC (OPT2)
 options appear, their contents (all but the kind and length bytes)
 are replaced with all zeroes.

 payload ciphertext
 This is the Data portion of the TCP segment, which contains
 encrypted ciphertext.

 The format of the A structure is as follows:

 Byte 0 1 2 3
 +-------+-------+-------+-------+
 0 | ackno offset hi |
 +-------+-------+-------+-------+
 4 | ackno offset |
 +-------+-------+-------+-------+

 A data structure

 The fields of A are defined as follows:

 ackno offset hi The number of times ackno offset hi has wrapped from
 0xffffff -> 0.

 ackno offset The lower 32 bits of the acknowledgement number offset
 from the remote end's ISN (TCP's acknowledgement header - ISN
 received).

 For HMAC-SHA2-128, The N-byte MAC value in the option contains the
 exclusive OR of MAC (M) and MAC (A).

5. Examples

 To illustrate these suboptions, consider the following series of ways
 in which a TCP connection may be established from host A to host B.
 We use notation S for SYN-only packet, SA for SYN-ACK packet, and A
 for packets with the ACK bit but not SYN bit. These examples are not
 normative.

Bittau, et al. Expires March 1, 2012 [Page 35]

Internet-Draft tcpcrypt August 2011

5.1. Example 1: Normal handshake

 (1) A -> B: S CRYPT<>
 (2) B -> A: SA CRYPT<PKCONF<1, 4, 16>>
 (3) A -> B: A data<INIT1...>
 (4) B -> A: A data<INIT2...>
 (5) A -> B: A MAC<m> data<...>

 (1) A indicates interest in using tcpcrypt. In (2), the server
 indicates willingness to accept Rabin-Williams public keys between
 1,024 and 4,096 bytes long. Messages (3) and (4) complete the INIT1
 and INIT2 key exchange messages described above, which are embedded
 in the data portion of the TCP segment. (5) From this point on, all
 messages are encrypted, and their integrity protected by a MAC option
 (described in the next section).

5.2. Example 2: Normal handshake with SYN cookie

 (1) A -> B: S CRYPT<>
 (2) B -> A: SA CRYPT<PKCONF<1, 4, 16>, SYNCOOKIE<val>>
 (3) A -> B: A CRYPT<ACKCOOKIE<val>> data<INIT1...>
 (4) B -> A: A data<INIT2...>
 (5) B -> A: A MAC<m> data<...>

 Same as previous example, except the server sends the client a SYN
 cookie value, which the client must echo in (3). Here also the
 application level protocol begins by B transmitting data, while in
 the previous example A was the first to transmit application-level
 data.

5.3. Example 3: tcpcrypt unsupported

 (1) A -> B: S CRYPT<>
 (2) B -> A: SA
 (3) A -> A: A

 (1) A indicates interest in using tcpcrypt. (2) B does not support
 tcpcrypt, or a middle box strips out the CRYPT TCP option. (3) the
 client completes a normal three-way handshake, and tcpcrypt is not
 enabled for the connection.

5.4. Example 4: Reusing established state

 (1) A -> B: S CRYPT<NEXTK1<ID>>
 (2) B -> A: SA CRYPT<NEXTK2>
 (3) A -> A: A MAC<m>

 (1) A indicates interest in using tcpcrypt with a session key derived

Bittau, et al. Expires March 1, 2012 [Page 36]

Internet-Draft tcpcrypt August 2011

 from an existing key, to avoid the use of public key cryptography for
 the new session. (2) B supports tcpcrypt, but does not does not have
 ID in its session ID cache. (3) the client completes a normal three-
 way handshake, and tcpcrypt is not enabled for the connection.

5.5. Example 5: Decline of state reuse

 (1) A -> B: S CRYPT<NEXTK1<ID>>
 (2) B -> A: SA CRYPT<PKCONF<1, 4, 16>>
 (3) A -> B: A data<INIT1...>
 (4) B -> A: A data<INIT2...>
 (5) A -> B: A MAC<m> data<...>

 A wishes to use a key derived from a previous session key, but B does
 not recognize the session ID or has flushed it from its cache.
 Therefore session establishment proceeds as in the first connection,
 with public key encryption.

5.6. Exmaple 6: Reversal of client and server roles

 (1) A -> B: S CRYPT<>
 (2) B -> A: SA CRYPT<HELLO>
 (3) A -> B: A CRYPT<PKCONF<1, 4, 16>>
 (4) B -> A: A data<INIT1...>
 (5) A -> B: A data<INIT2...>
 (6) B -> A: A MAC<m> data<...>

 Here the server, B, wishes to play the role of the decryptor. By
 sending a HELLO suboption, it causes A to switch roles, so that now A
 is "S" and B can play the role of "C".

6. API extensions

 The getsockopt call should have new options for IPPROTO_TCP:

 TCP_CRYPT_SESSID -> should return the session ID or error if no
 tcpcrypt.

 TCP_CRYPT_PUBKEY -> should return (mine, pubkey), where pubkey is
 the public key used to establish the session (K_C), and mine says
 whether the key belongs to this host or the remote peer.

 TCP_CRYPT_CONF -> returns encryption algorithms used for the
 current session.

 TCP_CRYPT_SUPPORT -> returns 1 if the remote application is
 tcpcrypt-aware.

Bittau, et al. Expires March 1, 2012 [Page 37]

Internet-Draft tcpcrypt August 2011

 The setsockopt call should have:

 TCP_CRYPT_CACHE_FLUSH -> setting wipes cached session keys.
 Useful if application-level authentication discovers a man in the
 middle attack, to prevent the next connection from using NEXTK.

 The following options should be readable and writable with getsockopt
 and setsockopt:

 TCP_CRYPT_ENABLE -> one bit, enables or disables tcpcrypt
 extension on an unconnected (listening or new) socket.

 TCP_CRYPT_SECURST -> one bit, means ignore unauthenticated RST
 packets for this connection when set to 1.

 TCP_CRYPT_CMODE_{DEFAULT,NEVER,ALWAYS}[_NK] -> As described in
Section 4.2.

 TCP_CRYPT_PKCONF -> set of allowed public key algorithms and CPRFs
 this host advertises in CRYPT PKCONF suboptions.

 TCP_CRYPT_CCONF -> set of allowed symmetric ciphers and message
 authentication codes this host advertises in CRYPT INIT1 segments.

 TCP_CRYPT_SCONF -> order of preference of symmetric ciphers.

 TCP_CRYPT_SUPPORT -> set to 1 if the application is tcpcrypt-
 aware. set to 2 if the application requires the remote application
 to be tcpcrypt-aware.

 Finally, system administrators must be able to set the following
 system-wide parameters:

 o Default TCP_CRYPT_ENABLE value

 o Default TCP_CRYPT_PKCONF value

 o Default TCP_CRYPT_CCONF value

 o Default TCP_CRYPT_SCONF value

 o Types, key lengths, and regeneration intervals of local host's
 ephemeral public keys

 The session ID can be used for end-to-end security. For instance,
 applications might sign the session ID with public keys to
 authenticate their ends of a connection. Because session IDs are not
 secret, servers can sign them in batches to amortize the cost of the

Bittau, et al. Expires March 1, 2012 [Page 38]

Internet-Draft tcpcrypt August 2011

 signature over multiple connections. Alternative, DSA signatures are
 cheaper to compute than to verify, so might be a good way for servers
 to authenticate themselves. A voice application could display the
 session ID on both parties' screens, and if they confirm by voice
 that they have the same ID, then the conversation is secure.

 Because the public key may change less often than once a session, it
 may alternatively be useful for the local end of a connection to
 authenticate itself by signing the local host's public key instead of
 the session ID.

7. Acknowledgments

 This work was funded by gifts from Intel (to Brad Karp) and from
 Google, and by NSF award CNS-0716806 (A Clean-Slate Infrastructure
 for Information Flow Control).

8. IANA Considerations

 When tcpcrypt is extended, the following numbers must be assigned by
 IANA:

 o New opcodes for CRYPT suboptions

 o New identifiers for public key algorithms

 o New identifiers for symmetric key algorithms

 This memo includes no request to IANA.

 All drafts are required to have an IANA considerations section (see
 the update of RFC 2434 [I-D.narten-iana-considerations-rfc2434bis]
 for a guide). If the draft does not require IANA to do anything, the
 section contains an explicit statement that this is the case (as
 above). If there are no requirements for IANA, the section will be
 removed during conversion into an RFC by the RFC Editor.

9. Security Considerations

 All drafts are required to have a security considerations section.
 See RFC 3552 [RFC3552] for a guide.

10. References

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc3552

Bittau, et al. Expires March 1, 2012 [Page 39]

Internet-Draft tcpcrypt August 2011

10.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2437] Kaliski, B. and J. Staddon, "PKCS #1: RSA Cryptography
 Specifications Version 2.0", RFC 2437, October 1998.

10.2. Informative References

 [I-D.narten-iana-considerations-rfc2434bis]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs",

draft-narten-iana-considerations-rfc2434bis-09 (work in
 progress), March 2008.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 July 2003.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2437
https://datatracker.ietf.org/doc/html/draft-narten-iana-considerations-rfc2434bis-09
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552

Bittau, et al. Expires March 1, 2012 [Page 40]

Internet-Draft tcpcrypt August 2011

Appendix A. Protocol constant values

 +-------+---------------+
 | Value | Name |
 +-------+---------------+
 | 0x01 | TAG_NEXTK |
 | 0x02 | TAG_SESSID |
 | 0x03 | TAG_REKEY |
 | 0x04 | TAG_KEY_C_ENC |
 | 0x05 | TAG_KEY_C_MAC |
 | 0x06 | TAG_KEY_S_ENC |
 | 0x07 | TAG_KEY_S_MAC |
 +-------+---------------+

 Protocol constants.

 Table 4

Authors' Addresses

 Andrea Bittau
 Stanford University
 Department of Computer Science
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Phone: +1 650 723 8777
 Email: bittau@cs.stanford.edu

 Dan Boneh
 Stanford University
 Department of Computer Science
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Phone: +1 650 725 3897
 Email: dabo@cs.stanford.edu

Bittau, et al. Expires March 1, 2012 [Page 41]

Internet-Draft tcpcrypt August 2011

 Mike Hamburg
 Stanford University
 Department of Computer Science
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Phone: +1 650 725 3897
 Email: mike@shiftleft.org

 Mark Handley
 University College London
 Department of Computer Science
 University College London
 Gower St.
 London WC1E 6BT
 UK

 Phone: +44 20 7679 7296
 Email: M.Handley@cs.ucl.ac.uk

 David Mazieres
 Stanford University
 Department of Computer Science
 353 Serra Mall, Room 290
 Stanford, CA 94305
 US

 Phone: +1 415 490 9451
 Email: dm@uun.org

 Quinn Slack
 Stanford University
 Department of Computer Science
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Phone: +1 650 723 8777
 Email: sqs@cs.stanford.edu

Bittau, et al. Expires March 1, 2012 [Page 42]

