
Internet Engineering Task Force A. Bittau
Internet-Draft D. Boneh
Intended status: Standards Track M. Hamburg
Expires: April 29, 2015 Stanford University
 M. Handley
 University College London
 D. Mazieres
 Q. Slack
 Stanford University
 October 26, 2014

Cryptographic protection of TCP Streams (tcpcrypt)
draft-bittau-tcpinc-tcpcrypt-00.txt

Abstract

 This document presents tcpcrypt, a TCP extension for
 cryptographically protecting TCP segments. Tcpcrypt maintains the
 confidentiality of data transmitted in TCP segments against a passive
 eavesdropper. It protects connections against denial-of-service
 attacks involving desynchronizing of sequence numbers, and when
 enabled, against forged RST segments. Finally, applications that
 perform authentication can obtain end-to-end confidentiality and
 integrity guarantees by tying authentication to tcpcrypt Session ID
 values.

 The extension defines two new TCP options, CRYPT and MAC, which are
 designed to provide compatible interworking with TCPs that do not
 implement tcpcrypt. The CRYPT option allows hosts to negotiate the
 use of tcpcrypt and establish shared secret encryption keys. The MAC
 option carries a message authentication code with which hosts can
 verify the integrity of transmitted TCP segments. Tcpcrypt is
 designed to require relatively low overhead, particularly at servers,
 so as to be useful even in the case of servers accepting many TCP
 connections per second.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

Bittau, et al. Expires April 29, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft tcpcrypt October 2014

 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 29, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bittau, et al. Expires April 29, 2015 [Page 2]

Internet-Draft tcpcrypt October 2014

Table of Contents

1. Requirements Language . 5
2. Introduction . 5
3. Idealized protocol . 5
3.1. Stages of the protocol 5
3.1.1. The setup phase 6
3.1.2. The ENCRYPTING state 6
3.1.3. The DISABLED state 7

3.2. Cryptographic algorithms 7
3.3. "C" and "S" roles . 9
3.4. Key exchange protocol 9
3.5. Data encryption and authentication 12
3.6. Authenticated Sequence Mode (ASM) 13
3.6.1. ASM-Encrypt . 14
3.6.2. ASM-Decrypt . 15
3.6.3. ASM-Update . 16

3.7. Re-keying . 16
3.8. Session caching . 17
3.8.1. Session caching control 17

4. Extensions to TCP . 18
4.1. Protocol states . 18
4.2. Role negotiation . 23
4.2.1. Simultaneous open 24

4.3. The TCP CRYPT option 25
4.3.1. The HELLO suboption 28
4.3.2. The DECLINE suboption 29
4.3.3. The NEXTK1 and NEXTK2 suboptions 29
4.3.4. The PKCONF suboption 31
4.3.5. The UNKNOWN suboption 32
4.3.6. The SYNCOOKIE and ACKCOOKIE suboptions 33
4.3.7. The SYNC_REQ and SYNC_OK suboptions 33
4.3.8. The REKEY and REKEYSTREAM suboptions 35
4.3.9. The INIT1 and INIT2 suboptions 38

4.4. The TCP MAC option . 39
5. Examples . 41
5.1. Example 1: Normal handshake 42
5.2. Example 2: Normal handshake with SYN cookie 42
5.3. Example 3: tcpcrypt unsupported 42
5.4. Example 4: Reusing established state 43
5.5. Example 5: Decline of state reuse 43
5.6. Example 6: Reversal of client and server roles 43

6. API extensions . 43
7. Acknowledgments . 46
8. IANA Considerations . 46
9. Security Considerations 48
10. References . 49
10.1. Normative References 49

Bittau, et al. Expires April 29, 2015 [Page 3]

Internet-Draft tcpcrypt October 2014

10.2. Informative References 49
Appendix A. Protocol constant values 50

 Authors' Addresses . 50

Bittau, et al. Expires April 29, 2015 [Page 4]

Internet-Draft tcpcrypt October 2014

1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Introduction

 This document describes tcpcrypt, an extension to TCP for
 cryptographic protection of session data. Tcpcrypt was designed to
 meet the following goals:

 o Maintain confidentiality of communications against a passive
 adversary. Ensure that an adversary must actively intercept and
 modify the traffic to eavesdrop, either by re-encrypting all
 traffic or by forcing a downgrade to an unencrypted session.

 o Minimize computational cost, particularly on servers.

 o Provide interfaces to higher-level software to facilitate end-to-
 end security, either in the application level protocol or after
 the fact. (E.g., client and server log session IDs and can
 compare them after the fact; if there was no tampering or
 eavesdropping, the IDs will match.)

 o Be compatible with further extensions that allow authenticated
 resumption of TCP connections when either end changes IP address.

 o Facilitate multipath TCP [RFC6824] by identifying a TCP stream
 with a session ID independent of IP addresses and port numbers.

 o Provide for incremental deployment and graceful fallback, even in
 the presence of NATs and other middleboxes that might remove
 unknown options, and traffic normalizers.

3. Idealized protocol

 This section describes the tcpcrypt protocol at an abstract level,
 without reference to particular cryptographic algorithms or data
 encodings. Readers who simply wish to see the key exchange protocol
 should skip to Section 3.4.

3.1. Stages of the protocol

 A tcpcrypt endpoint goes through multiple stages. It begins in a
 setup phase and ends up in one of two states, ENCRYPTING or DISABLED,

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6824

Bittau, et al. Expires April 29, 2015 [Page 5]

Internet-Draft tcpcrypt October 2014

 before applications may send or receive data. The ENCRYPTING and
 DISABLED states are definitive and mutually exclusive; an endpoint
 that has been in one of the two states MUST NOT ever enter the other,
 nor ever re-enter the setup phase.

3.1.1. The setup phase

 The setup phase negotiates use of the tcpcrypt extension. During
 this phase, two hosts agree on a suite of cryptographic algorithms
 and establish shared secret session keys.

 The setup phase uses the Data portion of TCP segments to exchange
 cryptographic keys. Implementations MUST NOT include application
 data in TCP segments during setup and MUST NOT allow applications to
 read or write data. System calls MUST behave the same as for TCP
 connections that have not yet entered the ESTABLISHED state; calls to
 read and write SHOULD block or return temporary errors, while calls
 to poll or select SHOULD consider connections not ready.

 When setup succeeds, tcpcrypt enters the ENCRYPTING state.
 Importantly, a successful setup also produces an important value
 called the _Session ID_. The Session ID is tied to the negotiated
 algorithms and cryptographic keys, and is unique over all time with
 overwhelming probability.

 Operating systems MUST make the Session ID available to applications.
 To prevent man-in-the-middle attacks, applications MAY authenticate
 the session ID through any protocol that ensures both endpoints of a
 connection have the same value. Applications MAY alternatively just
 log Session IDs so as to enable attack detection after the fact
 through comparison of the values logged at both ends.

 The setup phase can also fail for various reasons, in which case
 tcpcrypt enters the DISABLED state.

 Applications MAY test whether setup succeeded by querying the
 operating system for the Session ID. Requests for the Session ID
 MUST return an error when tcpcrypt is not in the ENCRYPTING state.
 Applications SHOULD authenticate the returned Session ID.
 Applications relying on tcpcrypt for security SHOULD authenticate the
 Session ID and SHOULD treat unauthenticated Session IDs the same as
 connections in the DISABLED state.

3.1.2. The ENCRYPTING state

 When the setup phase succeeds, tcpcrypt enters the ENCRYPTING state.
 Once in this state, applications may read and write data with the
 expected semantics of TCP connections.

Bittau, et al. Expires April 29, 2015 [Page 6]

Internet-Draft tcpcrypt October 2014

 In the ENCRYPTING state, a host MUST encrypt the Data portion of all
 TCP segments transmitted and MUST include a Message Authentication
 Code (MAC) in all segments transmitted. A host MUST furthermore
 ignore any TCP segments received without the RST bit set, unless
 those segments also contain a valid MAC option.

 A host SHOULD accept RST segments without valid MACs by default.
 However, the application SHOULD be allowed to force unMACed RST
 segments to be dropped by enabling the TCP_CRYPT_RSTCHK option on the
 connection.

 Once in the ENCRYPTING state, an endpoint MUST NOT directly or
 indirectly transition to the DISABLED state under any circumstances.

3.1.3. The DISABLED state

 When setup fails, tcpcrypt enters the DISABLED state. In this case,
 the host MUST continue just as TCP would without tcpcrypt, unless
 network conditions would cause a plain TCP connection to fail as
 well. Entering the DISABLED state prohibits the endpoint from ever
 entering the ENCRYPTING state.

 An implementation MUST behave identically to ordinary TCP in the
 DISABLED state, except that the first segment transmitted after
 entering the DISABLED state MAY include a TCP CRYPT option with a
 DECLINE suboption (and optionally other suboptions such as UNKNOWN)
 to indicate that tcpcrypt is supported but not enabled.

Section 4.3.2 describes how this is done.

 Operating systems MUST allow applications to turn off tcpcrypt by
 setting the state to DISABLED before opening a connection. An active
 opener with tcpcrypt disabled MUST behave identically to an
 implementation of TCP without tcpcrypt. A passive opener with
 tcpcrypt disabled MUST also behave like normal TCP, except that it
 MAY optionally respond to SYN segments containing a CRYPT option with
 SYN-ACK segments containing a DECLINE suboption, so as to indicate
 that tcpcrypt is supported but not enabled.

3.2. Cryptographic algorithms

 The setup phase employs three types of cryptographic algorithms:

 o A _public key cipher_ is used with a short-lived public key to
 exchange (or agree upon) a random, shared secret.

 o An _extract function_ is used to generate a pseudo-random key from
 some initial keying material, typically the output of the public
 key cipher. The notation Extract (S, IKM) denotes the output of

Bittau, et al. Expires April 29, 2015 [Page 7]

Internet-Draft tcpcrypt October 2014

 the extract function with salt S and initial keying material IKM.

 o A _collision-resistant pseudo-random function (CPRF)_ is used to
 generate multiple cryptographic keys from a pseudo-random key,
 typically the output of the extract function. We use the notation
 CPRF (K, TAG, L) to designate the output of L bytes of the pseudo-
 random function identified by key K on TAG. A collision-resistant
 function is one on which, for sufficiently large L, an attacker
 cannot find two distinct inputs K_1, TAG_1 and K_2, TAG_2 such
 that CPRF (K_1, TAG_1, L) = CPRF (K_2, TAG_2, L). Collision
 resistance is important to assure the uniqueness of Session IDs,
 which are generated using the CPRF.

 The Extract and CPRF functions used by default are the Extract and
 Expand functions of HKDF [RFC5869]. These are defined as follows:

 HKDF-Extract(salt, IKM) -> PRK
 PRK = HMAC-Hash(salt, IKM)

 HKDF-Expand(PRK, TAG, L) -> OKM
 T(0) = empty string (zero length)
 T(1) = HMAC-Hash(PRK, T(0) | TAG | 0x01)
 T(2) = HMAC-Hash(PRK, T(1) | TAG | 0x02)
 T(3) = HMAC-Hash(PRK, T(2) | TAG | 0x03)
 ...

 OKM = first L octets of T(1) | T(2) | T(3) | ...

 The symbol | denotes concatenation, and the counter concatenated with
 TAG is a single octet.

 Because the public key cipher, the extract function, and the expand
 function all make use of cryptographic hashes in their constructions,
 the three algorithms are negotiated as a unit employing a single hash
 function. For example, the OAEP+-RSA [RFC2437] cipher, which uses a
 SHA-256-based mask-generation function, is coupled with HKDF
 [RFC5869] using HMAC-SHA256 [RFC2104].

 The encrypting phase employs an _authenticated encryption mode_ to
 encrypt all application data. This mode authenticates both
 application data and most of the TCP header (excepting header fields
 commonly modified by middleboxes).

 Note that public key generation, public key encryption, and shared
 secret generation all require randomness. Other tcpcrypt functions
 may also require randomness depending on the algorithms and modes of
 operation selected. A weak pseudo-random generator at either host
 will defeat tcpcrypt's security. Thus, any host implementing

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc2437
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc2104

Bittau, et al. Expires April 29, 2015 [Page 8]

Internet-Draft tcpcrypt October 2014

 tcpcrypt MUST have a cryptographically secure source of randomness or
 pseudo-randomness.

3.3. "C" and "S" roles

 Tcpcrypt transforms a single pseudo-random key (PRK) into
 cryptographic session keys for each direction. Doing so requires an
 asymmetry in the protocol, as the key derivation function must be
 perturbed differently to generate different keys in each direction.
 Tcpcrypt includes other asymmetries in the roles of the two hosts,
 such as the process of negotiating algorithms (e.g., proposing vs.
 selecting cipher suites).

 We use the terms "C" and "S" to denote the distinct roles of the two
 hosts in tcpcrypt's setup phase. In the case of key transport, "C"
 is the host that supplies a public key, while "S" is the host that
 encrypts a pre-master secret with the key belonging to "C". Which
 role a host plays can have performance implications, because for some
 public key algorithms encryption is much faster than decryption. For
 instance, on a machine at the time of writing, encryption with a
 2,048-bit RSA-3 key is over two orders of magnitude faster than
 decryption.

 Because servers often need to establish connections at a faster rate
 than clients, and because servers are often passive openers, by
 default the passive opener plays the "S" role. However, operating
 systems MUST provide a mechanism for the passive opener to reverse
 roles and play the "C" role, as discussed in Section 4.2.

3.4. Key exchange protocol

 Every machine C has a short-lived public encryption key or key
 agreement parameter, PK_C, which gets refreshed periodically and
 SHOULD NOT ever be written to persistent storage.

 When a host C connects to S, the two engage in the following
 protocol:

 C -> S: HELLO
 S -> C: PKCONF, pub-cipher-list
 C -> S: INIT1, sym-cipher-list, N_C, pub-cipher, PK_C
 S -> C: INIT2, sym-cipher, KX_S

 The parameters are defined as follows:

 o pub-cipher-list: a list of public key ciphers and parameters
 acceptable to S. These are defined in Figure 3.

Bittau, et al. Expires April 29, 2015 [Page 9]

Internet-Draft tcpcrypt October 2014

 o sym-cipher-list: a list of symmetric cipher suites acceptable to
 C. These are specified in Table 6 as parameters for ASM, discussed
 in Section 3.6.

 o N_C: Nonce chosen at random by C.

 o pub-cipher: the type of PK_C.

 o PK_C: C's public key or key agreement parameter.

 o sym-cipher: the symmetric cipher selected by S.

 o KX_S: key exchange information produced by S. KX_S will depend on
 whether key transport is being done (e.g., RSA) or key agreement
 (e.g., Diffie-Hellman). KX_S is defined in Table 1.

 +----------------+-----------------+----------------------+
 | Cipher | KX_S | PMS |
 +----------------+-----------------+----------------------+
 | OAEP+-RSA exp3 | ENC (PK_C, R_S) | R_S |
 | ECDHE | N_S, PK_S | key-agreement-output |
 +----------------+-----------------+----------------------+

 ENC (PK_C, R_S) denotes an encryption of R_S with public key PK_C.
 R_S and N_S are random values chosen by S. Their lengths are defined
 in Figure 3. PK_S is S's key agreement parameter. PMS is the Pre
 Master Secret from which keys are ultimately derived.

 Table 1

 The two sides then compute a pseudo-random key (PRK) from which all
 session keys are derived as follows:

 param := { num-pub-ciphers, pub-cipher-list, init1, init2 }
 PRK := Extract (N_C, { param, PMS })

 Here num-pub-ciphers is a single octet specifying how many three-byte
 algorithm specifiers were provided by the "S" host in a PKCONF
 suboption (described in Section 4.3.4). pub-cipher-list is this many
 three-byte specifiers, taken from the body of the PKCONF suboption.
 init1 and init2 are the complete data payload from the TCP segments
 with the INIT1 and INIT2 suboptions (detailed in Section 4.3.9).

 A series of "session secrets" and corresponding Session IDs are then
 computed as follows:

Bittau, et al. Expires April 29, 2015 [Page 10]

Internet-Draft tcpcrypt October 2014

 ss[0] := PRK
 ss[i] := CPRF (ss[i-1], CONST_NEXTK, K_LEN)

 SID[i] := CPRF (ss[i], CONST_SESSID, K_LEN)

 The value ss[0] is used to generate all key material for the current
 connection. SID[0] is the session ID for the current connection, and
 will with overwhelming probability be unique for each individual TCP
 connection. The most computationally expensive part of the key
 exchange protocol is the public key cipher. The values of ss[i] for
 i > 0 can be used to avoid public key cryptography when establishing
 subsequent connections between the same two hosts, as described in

Section 3.8. The TAG values are constants defined in Table 7. The
 K_LEN values and nonce sizes are negotiated, and are specified in
 Figure 3.

 Given a session secret, ss, the two sides compute a series of master
 keys as follows:

 mk[0] := CPRF (ss, CONST_REKEY | flags, K_LEN)
 mk[i] := CPRF (mk[i-1], CONST_REKEY, K_LEN)

 Where flags is a single octet from 0x0 to 0x3 computed as follows:

 bit 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0 0 0 0 0 0 s c|
 +-+-+-+-+-+-+-+-+

 Here bit "s" is set when the "S" mode host has indicated application-
 level support for tcpcrypt. The "c" bit is set when the "C" mode
 host has indicated application-level support for tcpcrypt. Both bits
 are 0 by default unless the application has enabled the
 TCP_CRYPT_SUPPORT option described in Section 6.

 Finally, each master key mk is used to generate keys for
 authenticated encryption for the "S" and "C" roles. Key k_cs is used
 by "C" to encrypt and "S" to decrypt, while k_sc is used by "S" to
 encrypt and "C" to decrypt.

 k_cs := CPRF (mk, CONST_KEY_C, ae_len)
 k_sc := CPRF (mk, CONST_KEY_S, ae_len)

 tcpcrypt does not use HKDF directly for key derivation because it
 requires multiple expand steps with different keys. This is needed
 for forward secrecy so that ss[n] can be forgotten once a session is
 established, and mk[n] can be forgotten once a session is rekeyed.

Bittau, et al. Expires April 29, 2015 [Page 11]

Internet-Draft tcpcrypt October 2014

 There is no key confirmation step in tcpcrypt. This is not required
 since in tcpcrypt's threat model, a connection to an adversary can be
 made and so keys need not be verified. If an erroneous key
 negotiation that yields two different keys occurs, all subsequent
 packets will be dropped due to an incorrect MAC, causing the TCP
 connection to hang. This is not a threat because in plain TCP, an
 active attacker could have modified sequence and ack numbers to hang
 the connection anyway.

3.5. Data encryption and authentication

 tcpcrypt encrypts and authenticates all application data. It also
 authenticates some parts of the TCP header. There are several TCP-
 specific constraints with regards to authenticated encryption that
 tcpcrypt must meet for performance and compatibility with
 middleboxes:

 o The ciphertext for a particular byte position in tcpcrypt's
 sequence must never change, even if reencryption occurs after
 coalescing and retransmission. This is because a middlebox may
 discard a changed payload on retransmission.

 o Authentication must occur only on fields not modified by
 middleboxes. In particular, port numbers must not be
 authenticated, and sequence and ack numbers must be authenticated
 according to an offset from the initial sequence number, because
 these can be modulated by a middlebox.

 o An efficient mechanism is needed for recomputing the
 authentication tag when only the ack numbers change. For example,
 on retransmissions, the authenticated encryption authentication
 tag can be efficiently updated without having to recompute the tag
 on the entire packet payload.

 Authenticated encryption modes such as GCM do not meet these
 criteria. For example, even with identical plaintext, ciphertext
 values depend on the byte position at which one starts encrypting a
 segment. Hence two small segments will appear to have different
 content from their coalesced counterpart; middleboxes might drop such
 coalesced retransmissions after falsely detecting subterfuge attacks.
 Furthermore, existing authenticated encryption modes do not allow
 efficient updating of the authentication tag when only small parts of
 the data have changed. A new mode is needed to meet all these
 constraints, and we introduce _Authenticated Sequence Mode_ (ASM) in

Section 3.6 as a solution.

 ASM takes three parameters: a cipher, a MAC and an ACK MAC. At a
 high-level, the cipher is used to encrypt the TCP payload in counter

Bittau, et al. Expires April 29, 2015 [Page 12]

Internet-Draft tcpcrypt October 2014

 mode, using a counter derived from TCP's sequence number. The MAC
 covers the ciphertext and parts of the TCP header. The ACK MAC
 covers the ACK numbers and is XORed with the previously computed MAC
 to produce the authenticated encryption authentication tag. This tag
 can be quickly updated if only the ACK numbers have changed. This
 approach is principled because ACK messages are conceptually separate
 from data packets, so MACing them separately is appropriate. In TCP,
 ACKs are piggybacked to data segments merely as an optimization.

 XORing two PRF-based MACs together was shown secure by Katz and
 Lindell [aggregate-macs].

3.6. Authenticated Sequence Mode (ASM)

 ASM is parameterized by a cipher, MAC and ACK MAC. The operations
 supported by ASM are:

 ASM-Encrypt (PRK, Seq, Message, Assoc-Data, Up-Data) ->
 (Ciphertext, Auth-Tag)

 ASM-Decrypt (PRK, Seq, Cipher-Text, Assoc-Data, Up-Data, Auth-Tag) ->
 { (Valid, Message) OR
 (Invalid,)
 }

 ASM-Update (PRK, Up-Data-Prev, Up-Data-New, Auth-Tag-Prev) ->
 Auth-Tag

 The arguments and return values are:

 o _PRK_ a pseudo-random key.

 o _Seq_ the byte position in the stream of Message or Cipher-Text.
 In tcpcrypt, this is an extended version of TCP's sequence number.

 o _Message_ the Message to encrypt. In tcpcrypt, this is TCP's
 payload.

 o _Assoc-Data_ the associated data to be MACed but not encrypted.
 In tcpcrypt, this contains parts of the TCP header.

 o _Up-Data_ the updatable data to be MACed but not encrypted, that
 can also be efficiently updated and reMACed. In tcpcrypt, this
 will cover an extended version of TCP's ACK numbers.

Bittau, et al. Expires April 29, 2015 [Page 13]

Internet-Draft tcpcrypt October 2014

 o _Ciphertext_ the encrypted version of Message.

 o _Auth-Tag_ the authenticated encryption authentication tag. In
 tcpcrypt, this will be the MAC option.

 ASM-Decrypt returns one of the constants Valid or Invalid, depending
 on whether the authentication tag can be verified successfully or
 not. For Valid inputs, the Message is returned as well.

 The PRK supplied to ASM is expanded into keys used for individual
 operation as follows:

 k_enc := CPRF (PRK, CONST_KEY_ENC, cipher-key-len)
 k_mac := CPRF (PRK, CONST_KEY_MAC, mac-key-len)
 k_ack := CPRF (PRK, CONST_KEY_ACK, ack-mac-key-len)

 The next sections describe ASM operations in detail.

3.6.1. ASM-Encrypt

 The interface to encrypt is as follows:

 ASM-Encrypt (PRK, Seq, Message, Assoc-Data, Up-Data) ->
 (Ciphertext, Auth-Tag)

 Keys (denoted by k_*) are derived from PRK as explained in
Section 3.6.

 The following steps occur:

 1. Message is encrypted to produce Ciphertext using the cipher in
 counter mode. Seq is the counter and k_enc is the key. When
 encrypting Seq, its value must always be a multiple of the
 cipher's block size. In the event that the message does not
 begin on an even block boundary, Seq must be rounded down,
 encrypted, and leading bytes of its encryption discarded.

 2. The MAC is run over the concatenation of Ciphertext and Assoc-
 Data to produce MAC1, using k_mac as the key.

 3. The ACK MAC is run over Up-Data to produce MAC2, using k_ack as
 the key.

 4. MAC1 and MAC2 are XORed to produce Auth-Tag.

 Using AES-128 as an example, encryption in counter mode using Seq as
 the counter happens as follows.

Bittau, et al. Expires April 29, 2015 [Page 14]

Internet-Draft tcpcrypt October 2014

 o Compute B = Seq - (Seq % 16).

 o Let B* = 0^{128-|B|} | B be B in network (big-endian) byte order
 with enough 0 bits pre-pended to make B* exactly 128 bits long.

 o Let C = ENC-AES (k_enc, B*).

 o Discard the first (Seq-B) bytes on C and begin byte-by-byte XORing
 the remaining portion with the message.

 o Continue computing ENC-AES (k_enc, B* + 16), ENC-AES (k_enc, B* +
 32), etc. to generate enough bytes to XOR with the whole message.

 If AES-128 is used as the ACK MAC, the Ack number (64-bit extended,
 offset from ISN) is first padded on the left with enough zeros to
 produce a 128-bit big-endian value. The number is then encrypted
 using AES.

3.6.2. ASM-Decrypt

 The interface to decrypt is as follows:

 ASM-Decrypt (PRK, Seq, Cipher-Text, Assoc-Data, Up-Data, Auth-Tag) ->
 { (Valid, Message) OR
 (Invalid,)

 Keys (denoted by k_*) are derived from PRK as explained in
Section 3.6.

 The following steps occur:

 1. The MAC is run over the concatenation of Ciphertext and Assoc-
 Data to produce MAC1, using k_mac as the key.

 2. The ACK MAC is run over Up-Data to produce MAC2, using k_ack as
 the key.

 3. MAC1 and MAC2 are XORed and compared to Auth-Tag. If different,
 the process stops and the constant Invalid is returned along with
 no message. Otherwise the process continues.

 4. Ciphertext is decrypted to produce Message using the cipher in
 counter mode. Seq is the counter and k_enc is the key. The
 Valid constant is returned along with Message.

Bittau, et al. Expires April 29, 2015 [Page 15]

Internet-Draft tcpcrypt October 2014

3.6.3. ASM-Update

 The interface to update the authenticated encryption authentication
 tag is as follows:

 ASM-Update (PRK, Up-Data-Prev, Up-Data-New, Auth-Tag-Prev) ->
 Auth-Tag

 Keys (denoted by k_*) are derived from PRK as explained in
Section 3.6.

 The following steps occur:

 1. The ACK MAC is run over Up-Data-Prev using k_ack to produce MAC2-
 Prev.

 2. MAC2-Prev is XORed with Auth-Tag-Prev to produce MAC1.

 3. The ACK MAC is run over Up-Data to produce MAC2, using k_ack as
 the key.

 4. MAC1 and MAC2 are XORed to produce Auth-Tag.

3.7. Re-keying

 We refer to the two encryption keys (k_cs, k_sc) as a _key set_. We
 refer to the key set generated by mk[i] as the key set with
 generation number i within a session. Initially, the two hosts use
 the key set with generation number 0.

 Either host may decide to evolve the encryption key at one or more
 points within a session, by incrementing the generation number of its
 transmit keys. When switching keys to generation j, a host must
 label the segments it transmits with a REKEY option containing j, so
 that the recipient host knows to check the MAC and decrypt the
 segment using the new keyset:

 A -> B: REKEY<j>, MAC<...>, Data<...>

 Upon receiving a REKEY<j> segment, a recipient using transmit keys
 from a generation less than j must also update its transmit keys and
 start including a REKEY<j> option in all of its segments. A host
 must continue transmitting REKEY options until all segments with
 other generation numbers have been processed at both ends.

 Implementations MUST always transmit and retransmit identical
 ciphertext Data bytes for the same TCP sequence numbers. Thus, a
 retransmitted segment MUST always use the same keyset as the original

Bittau, et al. Expires April 29, 2015 [Page 16]

Internet-Draft tcpcrypt October 2014

 segment. Hosts MUST NOT combine segments that were encrypted with
 different keysets.

 Implementations SHOULD delete older-generation keys from memory once
 they have received all segments they will need to decrypt with the
 old keys and received acknowledgments for all segments that would
 need to be retransmitted encrypted under old keys.

3.8. Session caching

 When two hosts have already negotiated session secret ss[i-1], they
 can establish a new connection without public key operations using
 ss[i]. The four-message protocol of Section 3.4 is replaced by:

 A -> B: NEXTK1, SID[i]
 B -> A: NEXTK2

 Which symmetric keys a host uses for transmitted segments is
 determined by its role in the original session ss[0]. It does not
 depend on which host is the passive opener in the current session.
 If A had the "C" role in the first session, then A uses k_cs for
 sending segments and k_sc for receiving. Otherwise, if A had the "S"
 role originally, it uses k_sc and k_cs, respectively. B similarly
 uses the transmit keys that correspond to its role in the original
 session.

 After using ss[i] to compute mk[0], implementations SHOULD compute
 and cache ss[i+1] for possible use by a later session, then erase
 ss[i] from memory. Hosts SHOULD keep ss[i+1] around for a period of
 time until it is used or the memory needs to be reclaimed. Hosts
 SHOULD NOT write a cached ss[i+1] value to non-volatile storage.

 It is an implementation-specific issue as to how long ss[i+1] should
 be retained if it is unused. If the passive opener times it out
 before the active opener does, the only cost is the additional ten
 bytes to send NEXTK1 for the next connection. The behavior then
 falls back to a normal public-key handshake.

3.8.1. Session caching control

 Implementations MUST allow applications to control session caching by
 setting the following option:

 TCP_CRYPT_CACHE_FLUSH When set on a TCP endpoint that is in the
 ENCRYPTING state, this option causes the operating system to flush
 from memory the cached ss[i+1] (or ss[i+1+n] if other connections
 have already been established). When set on an endpoint that is
 in the setup phase, causes any cached ss[i] that would have been

Bittau, et al. Expires April 29, 2015 [Page 17]

Internet-Draft tcpcrypt October 2014

 used to be flushed from memory. In either case, future
 connections will have to undertake another round of the public key
 protocol in Section 3.4. Applications SHOULD set
 TCP_CRYPT_CACHE_FLUSH whenever authentication of the session ID
 fails.

4. Extensions to TCP

 The tcpcrypt extension adds two new kinds of option: CRYPT and MAC.
 Both are described in this section. During the setup phase, all TCP
 segments MUST have the CRYPT option. In the ENCRYPTING state, all
 segments MUST have the MAC option and may include the CRYPT option
 for various purposes such as re-keying or keep-alive probes.

 The idealized protocol of the previous section is embedded in the TCP
 handshake. Unfortunately, since the maximum TCP header size is 60
 bytes and the basic TCP header fields require 20 bytes, there are at
 most 40 option payload bytes available, which is not enough to hold
 the INIT1 and INIT2 messages. Tcpcrypt therefore uses the Data
 portion of TCP segments (after the SYN exchanges) to send the body of
 these messages.

 Operating systems MUST keep track of which phase a data segment
 belongs to, and MUST only deliver data to applications from segments
 that are processed in the ENCRYPTING or DISABLED states.

4.1. Protocol states

 The setup phase is divided into six states: CLOSED, NEXTK-SENT,
 HELLO-SENT, C-MODE, LISTEN, and S-MODE. Together with the ENCRYPTING
 and DISABLED states already discussed, this means a tcpcrypt endpoint
 can be in one of eight states.

 In addition to tcpcrypt's state, each endpoint will also be in one of
 the 11 TCP states described in the TCP protocol specification
 [RFC0793]. Not all pairs of states are valid. Table 2 shows which
 TCP states an endpoint can be in for each tcpcrypt state.

https://datatracker.ietf.org/doc/html/rfc0793

Bittau, et al. Expires April 29, 2015 [Page 18]

Internet-Draft tcpcrypt October 2014

 +-------------+--------------------------+--------------------------+
 | Tcpcrypt | TCP states for an active | TCP states for a passive |
 | state | opener | opener |
 +-------------+--------------------------+--------------------------+
CLOSED	CLOSED	CLOSED
NEXTK-SENT	SYN-SENT	n/a
HELLO-SENT	SYN-SENT	SYN-RCVD
C-MODE	ESTABLISHED, FIN-WAIT-1	ESTABLISHED, FIN-WAIT-1
LISTEN	n/a	LISTEN
S-MODE	(SYN-RCVD), ESTABLISHED	SYN-RCVD
ENCRYPTING	(SYN-RCVD), ESTABLISHED+	SYN-RCVD, ESTABLISHED+
DISABLED	any	any
 +-------------+--------------------------+--------------------------+

 Valid tcpcrypt and TCP state combinations. States in parentheses
 occur only with simultaneous open. ESTABLISHED+ means ESTABLISHED or
 any later state (FIN-WAIT-1, FIN-WAIT-2, CLOSING, TIME-WAIT, CLOSE-
 WAIT, or LAST-ACK).

 Table 2

 Figure 1 shows how tcpcrypt transitions between states. Each
 transition is labeled by events that may trigger the transition above
 the line, and an action the local host is permitted to take in
 response below the line. "snd" and "rcv" denote sending and receiving
 segments, respectively. "internal" means any possible event except
 for receiving a segment (i.e., timers and system calls). "drop" means
 discarding the last received segment and preventing it from having
 any effect on TCP's state. "mac" means any valid TCP action,
 including no action, except that any segments transmitted must be
 encrypted and contain a valid TCP MAC option. "x" indicates that a
 host sends no segments when taking a transition.

 A segment is described as "F/Op". F specifies constraints on the
 control bits of the TCP header, as follows:

 +----+------------------------------+
 | F | Meaning |
 +----+------------------------------+
 | S | SYN=1, ACK=0, FIN=0, RST=0 |
 | SA | SYN=1, ACK=1, FIN=0, RST=0 |
 | A | SYN=0, ACK=1, FIN=0, RST=0 |
 | S? | SYN=1, ACK=any, FIN=0, RST=0 |
 | ?A | SYN=any, ACK=1, FIN=0, RST=0 |
 | R | RST=1 |
 | * | any |
 +----+------------------------------+

Bittau, et al. Expires April 29, 2015 [Page 19]

Internet-Draft tcpcrypt October 2014

 Op designates message types in the abstract protocol, which also
 correspond to particular suboptions of the TCP CRYPT option,
 described in Section 4.3, or "MAC" for a valid TCP MAC option, as
 described in Section 4.4. A segment with SYN=1 and ACK=0 that
 contains the NEXTK1 suboption will also explicitly or implicitly
 contain the HELLO suboption; such a segment matches event constraints
 on either option--e.g., it matches any of the "rcv S/HELLO", "rcv
 S?/HELLO", and "rcv S/NEXTK1" events. An empty Op matches any
 segment with the appropriate control bits. A segment MUST contain
 the TCP MAC option if and only if Op is "MAC".

 The "drop" transitions from NEXTK-SENT and HELLO-SENT to HELLO-SENT
 change TCP slightly by ignoring a segment and preventing a TCP
 transition from SYN-SENT to SYN-RCVD that would otherwise occur
 during simultaneous open. Therefore, these transitions SHOULD be
 disabled by default. They MAY be enabled on one side by an
 application that wishes to enable tcpcrypt on simultaneous open, as
 discussed in Section 4.2.1.

Bittau, et al. Expires April 29, 2015 [Page 20]

Internet-Draft tcpcrypt October 2014

 active OPEN passive OPEN
 ------------ +----------+ ------------ +----------+
 snd S/NEXTK1 | CLOSED | x | LISTEN |
 +-------------------| |------------->| |---------+
 | +----------+ +----------+ |
 | +---+ |active OPEN | | | | |
 | rcv S/HELLO| | |----------- rcv S/HELLO| | rcv S/NEXTK1|
 | -----------| | |snd S/HELLO ------------| | -------------|
 V drop| V V snd SA/HELLO| | snd SA/NEXTK2|
 +----------+ | +----------+ | | |
 | NEXTK- |___/ \| HELLO- |<------------------+ | |
 | SENT | | SENT | |rcv S/HELLO |
 +----------+ +----------+ |------------- |
 | | | | |rcv S?/HELLO |snd SA/PKCONF | | |
 | | |rcv S?/HELLO | |------------- V |
 | | |------------- | |snd ?A/PKCONF +----------+ |
 | | |snd ?A/PKCONF | +---------------->| S-MODE | |
 | | +----------------|------------------>| | |
 | +----------------+ | +----------+ |
 | rcv SA/PKCONF| |rcv ?A/PKCONF | |
 | -------------| |------------- |rcv A/INIT1 |
 | snd A/INIT1| |snd A/INIT1 |----------- |
 | V V |snd A/INIT2 |
 | +----------+ | |
 |rcv SA/NEXTK2 | C-MODE | +---+ | +---+ |
 |------------- | | rcv */ | | | | |internal |
 |snd A/MAC +----------+ -------| | | | |or rcv */MAC |
 | == or == |rcv A/INIT2 drop| | | | |or rcv R/ |
 |rcv S/NEXTK1 |----------- | V V V |------------ |
 |------------ |x +----------+ |mac |
 |snd SA/NEXTK2 +------------------>|ENCRYPTING|-+ |
 +------------------------------------->| |<---------------+
 +----------+

 State diagram for tcpcrypt. Transitions to DISABLED and CLOSED are
 not shown.

 Figure 1

 Any segment that would be discarded by TCP (e.g., for being out of
 window) MUST also be ignored by tcpcrypt. However, certain segments
 that might otherwise be accepted by TCP MUST be dropped by tcpcrypt
 and prevented from affecting TCP's state.

 Except for these drop actions, tcpcrypt MUST abide by the TCP
 protocol specification [RFC0793]. Thus, any segment transmitted by a
 host MUST be permitted by the TCP specification in addition to
 matching either a transition in Figure 1 or one of the transitions to

https://datatracker.ietf.org/doc/html/rfc0793

Bittau, et al. Expires April 29, 2015 [Page 21]

Internet-Draft tcpcrypt October 2014

 DISABLED or CLOSED described below. In particular, a host MUST NOT
 acknowledge an INIT1 segment unless either the acknowledgment
 contains an INIT2 or the host transitions to DISABLED.

 Various events cause transitions to DISABLED from states other than
 ENCRYPTING. In particular:

 o Operating systems MUST provide a mechanism for applications to
 transition to DISABLED from the CLOSED and LISTEN states.

 o A host in the setup phase MUST transition to DISABLED upon
 receiving any segment without a TCP CRYPT option.

 o A host in the setup phase MUST transition to DISABLED upon
 receiving any segment with the FIN or RST control bit set.

 o A host in the setup phase MUST transition to DISABLED upon sending
 a segment with the FIN bit set. (As discussed below, however, a
 host MUST NOT send a FIN segment from the C-MODE state.)

 Other specific conditions cause a transition to DISABLED and are
 discussed in the sections that follow.

 CLOSED is a pseudo-state representing a connection that does not
 exist. A tcpcrypt connection's lifetime is identical to that of its
 associated TCP connection. Thus, tcpcrypt transitions to CLOSED
 exactly when TCP transitions to CLOSED.

 A host MUST NOT send a FIN segment from the C-MODE state. The reason
 is that the remote side can be in the ENCRYPTING state and would thus
 require the segment to contain a valid MAC, yet a host in C-MODE
 cannot compute the necessary encryption keys before receiving the
 INIT2 segment.

 If a CLOSE happens in C-MODE, a host MUST delay sending a FIN segment
 until receiving an ACK for its INIT1 segment. If the remote host is
 in ENCRYPTING, the ACK segment will contain INIT2 and the local host
 can transition to ENCRYPTING before sending the FIN. If the remote
 host is not in ENCRYPTING, the ACK will not contain INIT2, and thus
 the local host can transition to DISABLED before sending the FIN.

 If a CLOSE happens in C-MODE, an implementation MAY delay processing
 the CLOSE event and entering the TCP FIN-WAIT-1 state until sending
 the FIN. If it does not, the implementation MUST ensure all relevant
 timers correspond to the time of transmission of the FIN segment, not
 the time of entry into the FIN-WAIT-1 state.

 The only valid tcpcrypt state transition from ENCRYPTING is to

Bittau, et al. Expires April 29, 2015 [Page 22]

Internet-Draft tcpcrypt October 2014

 CLOSED, which occurs only when TCP transitions to CLOSED. tcpcrypt
 per se cannot cause TCP to transition to CLOSED.

4.2. Role negotiation

 A passive opener receiving an S/HELLO segment may choose to play the
 "S" role (by transitioning to S-MODE) or the "C" role (by
 transitioning to HELLO-SENT). An active opener may accept the role
 not chosen by the passive opener, or may instead disable tcpcrypt.
 During simultaneous open, one endpoint must choose the "C" role while
 the other chooses the "S" role. Operating systems MUST allow
 applications to guide these choices on a per-connection basis.

 Applications SHOULD be able to exert this control by setting a per-
 connection _CMODE disposition_, which can take on one of the
 following five values:

 TCP_CRYPT_CMODE_DEFAULT This disposition SHOULD be the default. A
 passive opener will only play the "S" role, but an active opener
 can play either the "C" or the "S" role. Simultaneous open
 without session caching will cause tcpcrypt to be disabled unless
 the remote host has set the TCP_CMODE_ALWAYS[_NK] disposition.

 TCP_CRYPT_CMODE_ALWAYS

 TCP_CRYPT_CMODE_ALWAYS_NK With this disposition, a host will only
 play the "C" role. The _NK version additionally prevents the use
 of session caching if the session was originally established in
 the "S" role.

 TCP_CRYPT_CMODE_NEVER

 TCP_CRYPT_CMODE_NEVER_NK With this disposition, a host will only
 play the "S" role. The _NK version additionally prevents the use
 of session caching if the session was originally established in
 the "C" role.

 The CMODE disposition prohibits certain state transitions, as
 summarized in Table 3. If an event occurs for which all valid
 transitions in Figure 1 are prohibited, a host MUST transition to
 DISABLED. Operating systems MAY add additional CMODE dispositions,
 for instance to force or prohibit session caching.

Bittau, et al. Expires April 29, 2015 [Page 23]

Internet-Draft tcpcrypt October 2014

 +-----------------------------+---------------------------+
 | CMODE disposition | Prohibited transitions |
 +-----------------------------+---------------------------+
 | TCP_CRYPT_CMODE_DEFAULT | LISTEN --> HELLO-SENT |
 | | HELLO-SENT --> HELLO-SENT |
 | | NEXTK-SENT --> HELLO-SENT |
 | | |
 | TCP_CRYPT_CMODE_ALWAYS[_NK] | any --> S-MODE |
 | | |
 | TCP_CRYPT_CMODE_NEVER[_NK] | LISTEN --> HELLO-SENT |
 | | HELLO-SENT --> HELLO-SENT |
 | | NEXTK-SENT --> HELLO-SENT |
 | | any --> C-MODE |
 +-----------------------------+---------------------------+

 State transitions prohibited by each CMODE disposition

 Table 3

4.2.1. Simultaneous open

 During simultaneous open, two ends of a TCP connection are both
 active openers. If both hosts attempt to use session caching by
 simultaneously transmitting S/NEXTK1 segments, and if both transmit
 the same session ID, then both may reply with SA/NEXTK2 segments and
 immediately enter the ENCRYPTING state. In this case, the host that
 played "C" when the session was initially negotiated MUST use the
 symmetric encryption keys for "C" (i.e., encrypt with k_cs, decrypt
 with k_sc), while the host that initially played "S" uses the "S"
 keys for the new connection.

 If both hosts in a simultaneous open do not attempt to use session
 caching, or if the two hosts use incompatible Session IDs, then they
 MUST engage in public-key-based key negotiation to use tcpcrypt.
 Doing so requires one host to play the "C" role and the other to play
 the "S" role. With the TCP_CRYPT_CMODE_DEFAULT disposition, these
 roles are usually determined by the passive opener choosing the "S"
 role. With no passive opener, both active openers will end up in
 S-MODE, then transition to DISABLED upon receiving an unexpected
 PKCONF.

 Simultaneous open can work with key negotiation if exactly one of the
 two hosts selects the TCP_CRYPT_CMODE_ALWAYS disposition. This host
 will then drop S/HELLO segments and remain in C-MODE while the other
 host transitions to S-MODE. Applications SHOULD NOT set
 TCP_CRYPT_CMODE_ALWAYS on both sides of a simultaneous open, as this
 will result in tcpcrypt being disabled. The reception of two
 simultaneous HELLO (or NEXTK) messages will disable tcpcrypt because

Bittau, et al. Expires April 29, 2015 [Page 24]

Internet-Draft tcpcrypt October 2014

 it is not explicit as to who is playing the "C" or "S" role.

4.3. The TCP CRYPT option

 A CRYPT option has the following format:

 Byte 0 1 2 N
 +-------+-------+-------...-------+
 | Kind= |Length=| Suboptions |
 | OPT1 | N | |
 +-------+-------+-------...-------+

 Format of TCP CRYPT option

 Kind is always OPT1. Length is the total length of the option,
 including the two bytes used for Kind and Length. These first two
 bytes are then followed by zero or more suboptions. Suboptions
 determine the meaning of the TCP CRYPT option. When a TCP header
 contains more than one CRYPT option, a host MUST interpret them the
 same as if all the suboptions appeared in a single CRYPT option.
 This makes tcpcrypt options future-proof as new suboptions can be
 placed in a separate CRYPT option, which can be ignored if not
 understood, while other CRYPT options can still be processed.

 Each suboption begins with an Opcode byte. The specific format of
 the option depends on the two most significant bits of the Opcode.

 Suboptions with opcodes from 0x00 to 0x3f contain no data other than
 the single opcode byte:

 bit 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | Opcode = |
 |0 0 x x x x x x|
 +-+-+-+-+-+-+-+-+

 Hosts MUST ignore any opcodes of this format that they do not
 recognize.

 Suboptions with opcodes from 0x40 to 0x7f contain an opcode, a length
 field, and data bytes.

 0 1
 bit 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------...
 | Opcode = | Length = | N-2 bytes
 |0 1 x x x x x x| N | of suboption data
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------...

Bittau, et al. Expires April 29, 2015 [Page 25]

Internet-Draft tcpcrypt October 2014

 Hosts MUST ignore any opcodes of this format that they do not
 recognize.

 Suboptions with opcodes from 0x80 to 0xbf contain zero or more bytes
 of data whose length depends on the opcode. These suboptions can be
 either fixed length or variable length; implementations that
 understand these opcodes will known which they are; if the suboption
 is fixed length the implementation will know the length; otherwise it
 will know where to look for the length field.

 bit 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+-------...
 | Opcode = | data
 |1 0 x x x x x x|
 +-+-+-+-+-+-+-+-+-------...

 If a host sees an unknown opcode in this range, it MUST ignore the
 suboption and all subsequent suboptions in the same TCP CRYPT option.
 However, if more than one CRYPT option appears in the TCP header, the
 host MUST continue processing suboptions from the next TCP CRYPT
 option. Skipping suboptions in the TCP CRYPT option applies only to
 this option range since the length of the suboption cannot be
 determined by the receiver. In other cases, where the length is
 known, the receiver skips to the next suboption.

 Suboptions with opcodes from 0xc0 to 0xff also contain an opcode-
 specific length of data. As before, these suboptions can be either
 fixed length or variable length. Suboptions in this range are
 classed as mandatory as far as the protocol is concerned. However,
 they are not MANDATORY to implement unless otherwise stated, as
 discussed below.

 bit 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+-------...
 | Opcode = | data
 |1 1 x x x x x x|
 +-+-+-+-+-+-+-+-+-------...

 Should a host encounter an unknown opcode greater than or equal to
 0xc0 during the setup phase of the protocol, the host MUST transition
 to the DISABLED state. It SHOULD respond with both a DECLINE
 suboption and an UNKNOWN suboption specifying the opcode of the
 unknown mandatory suboption, after which the host MUST NOT send any
 further CRYPT options.

 Should a host encounter an unknown opcode greater than or equal to
 0xc0 while in the ENCRYPTING state, the host MUST respond with an
 UNKNOWN suboption specifying the opcode of the unknown mandatory

Bittau, et al. Expires April 29, 2015 [Page 26]

Internet-Draft tcpcrypt October 2014

 suboption, and should ensure the session continues with the same
 encryption and authentication state as it had before the segment was
 received. This may require ignoring other suboptions within the same
 message, or reverting any half-negotiated state.

 Table 4 summarizes the opcodes discussed in this document. It is
 MANDATORY that all implementations support every opcode in this
 table. Each opcode is listed with the length in bytes of the
 suboption (including the opcode byte), or * for variable-length
 suboptions. The last column specifies in which of the (S)etup phase,
 (E)NCRYPTING state, and (D)ISABLED state an opcode may be used. A
 host MUST NOT send an option unless it is in one of the stages
 indicated by this column.

 +-------+--------+---------------------+--------+
 | Value | Length | Name | Stages |
 +-------+--------+---------------------+--------+
 | 0x01 | 1 | HELLO | S |
 | 0x02 | 1 | HELLO-app-support | S |
 | 0x03 | 1 | HELLO-app-mandatory | S |
 | 0x04 | 1 | DECLINE | SD |
 | 0x05 | 1 | NEXTK2 | S |
 | 0x06 | 1 | NEXTK2-app-support | S |
 | 0x07 | 1 | INIT1 | S |
 | 0x08 | 1 | INIT2 | S |
 | 0x41 | * | PKCONF | S |
 | 0x42 | * | PKCONF-app-support | S |
 | 0x43 | * | UNKNOWN | SED |
 | 0x44 | * | SYNCOOKIE | S |
 | 0x45 | * | ACKCOOKIE | SED |
 | 0x80 | 5 | SYNC_REQ | E |
 | 0x81 | 5 | SYNC_OK | E |
 | 0x82 | 2 | REKEY | E |
 | 0x83 | 6 | REKEYSTREAM | E |
 | 0x84 | 10 | NEXTK1 | S |
 +-------+--------+---------------------+--------+

 Opcodes for suboptions of the TCP CRYPT option.

 Table 4

 If a TCP segment (sent by an active opener) has the SYN flag set, the
 ACK flag clear, and one or more TCP CRYPT options, there is an
 implicit HELLO suboption even if that suboption does not appear in
 the segment. In particular, when such a SYN segment contains a
 single, empty, two-byte TCP CRYPT option, the passive opener MUST
 interpret that option as equivalent to the three-byte TCP option
 composed of bytes OPT1, 3, 1 (Kind = OPT1, Length = 3, Suboption =

Bittau, et al. Expires April 29, 2015 [Page 27]

Internet-Draft tcpcrypt October 2014

 HELLO).

 A host MUST enter the DISABLED state if, during the setup phase, it
 receives a segment containing neither a TCP CRYPT nor a TCP MAC
 option. This is for robustness against middleboxes that strip
 options. A host MUST also enter DISABLED if, during the setup phase,
 it receives a DECLINE suboption or any unrecognized suboption with
 opcode greater than or equal to 0xc0. The DECLINE option is the
 preferred way for a host to refuse tcpcrypt. A host MAY also choose
 reply without a TCP CRYPT option to disable tcpcrypt. Once a host
 has entered DISABLED, it MUST NOT include the MAC option in any
 transmitted segment. The host MAY include a CRYPT option in the next
 segment transmitted, but only if the segment also contains the
 DECLINE suboption. All subsequently transmitted packets MUST NOT
 contain the CRYPT option.

 We now precisely specify the format of each suboption. In the
 sections that follow, all multi-byte values are encoded in big-endian
 format.

4.3.1. The HELLO suboption

 The HELLO dataless suboption MUST only appear in a segment with the
 SYN control bit set. It is used by an active opener to indicate
 interest in using tcpcrypt for a connection, and by a passive opener
 to indicate that the passive opener wishes to play the "C" role.

 The initial SYN segment from an active opener wishing to use tcpcrypt
 MUST contain a TCP CRYPT option with either an explicit or an
 implicit HELLO suboption.

 After receiving a SYN segment with the HELLO suboption, a passive
 opener MUST respond in one of three ways:

 o To continue setting up tcpcrypt and play the "S" role, the passive
 opener MUST respond with a PKCONF suboption in the SYN-ACK segment
 and transition to S-MODE.

 o To continue setting up tcpcrypt and play the "C" role, the passive
 opener MUST respond with a HELLO suboption in the SYN-ACK segment
 and transition to HELLO-SENT.

 o To continue without tcpcrypt, the passive opener MUST respond with
 either no CRYPT option or the DECLINE suboption in the SYN-ACK
 segment, then transition to the DISABLED state.

 An active opener receiving HELLO in a SYN-ACK segment must either
 transition to S-MODE and respond with a PKCONF suboption, or

Bittau, et al. Expires April 29, 2015 [Page 28]

Internet-Draft tcpcrypt October 2014

 transition to DISABLED.

 There are three variants of the HELLO option used for application-
 level authentication, each encoded differently as shown in Table 4.
 The variants are: a plain HELLO where the application is not
 tcpcrypt-aware (but the kernel is), an "application supported" HELLO
 where the application is tcpcrypt-aware and is advertising the fact,
 and a "application mandatory" HELLO where the application requires
 the remote application to support tcpcrypt otherwise the connection
 MUST revert to plain TCP. The application supported HELLO can be
 used, for example, when implementing HTTP digest authentication - an
 application can check whether the peer's application is tcpcrypt
 aware and proceed to authenticate tcpcrypt's session ID over HTTP,
 otherwise reverting to standard HTTP digest authentication. The
 application mandatory HELLO can be used, for example, when
 implementing an SSL library that attempts tcpcrypt but reverts to SSL
 if the peer's SSL library does not support tcpcrypt. The application
 mandatory HELLO avoids double encrypting (SSL-over-tcpcrypt) since
 the connection will revert to plain TCP if the remote SSL library is
 not tcpcrypt-aware.

4.3.2. The DECLINE suboption

 The DECLINE dataless suboption is sent by a host to indicate that the
 host will not enable tcpcrypt on a connection. If a host is in the
 DISABLED state or transitioning to the DISABLED state, and the host
 transmits a segment containing a CRYPT option, then the segment MUST
 contain the DECLINE suboption.

 A passive opener SHOULD send a DECLINE suboption in response to a
 HELLO suboption or NEXTK1 suboption in a received SYN segment if it
 supports tcpcrypt but does not wish to engage in encryption for this
 particular session.

 Implementations MUST NOT send segments containing the DECLINE
 suboption from the C-MODE or ENCRYPTING states.

4.3.3. The NEXTK1 and NEXTK2 suboptions

 The NEXTK1 suboption MUST only appear in a segment with the SYN
 control bit set and the ACK bit clear. It is used by the active
 opener to initiate a TCP session without the overhead of public key
 cryptography. The new session key is derived from a previously
 negotiated session secret, as described in Section 3.8.

 The suboption is always 10 bytes in length; the data contains the
 first nine bytes of SID[i] and is used to to start the session with
 session secret ss[i]. The format of the suboption is:

Bittau, et al. Expires April 29, 2015 [Page 29]

Internet-Draft tcpcrypt October 2014

 Byte 0 1 2 3
 +-------+-------+-------+-------+
 0 |Opcode | Bytes 0-2 |
 | 0x84 | of SID[i] |
 +-------+-------+-------+-------+
 4 | Bytes 3-6 |
 | of SID[i] |
 +-------+-------+-------+-------+
 8 | Bytes 7-8 |
 | of SID[i] |
 +-------+-------+

 Format of the NEXTK1 suboption

 The active opener MUST use the lowest value of i that has not already
 appeared in a NEXTK1 segment exchanged with the same host and for the
 same pre-session seed.

 If the passive opener recognizes SID[i] and knows ss[i], it SHOULD
 respond with a segment containing the dataless NEXTK2 suboption. The
 NEXTK2 option MUST only appear in a segment with both the SYN and ACK
 bits set.

 If the passive opener does not recognize SID[i], or SID[i] is not
 valid or has already been used, the passive opener SHOULD respond
 with a PKCONF or HELLO option and continue key negotiation as usual.

 When two hosts have previously negotiated a tcpcrypt session, either
 host may use the NEXTK1 option regardless of which host was the
 active opener or played the "C" role in the previous session.
 However, a given host must either encrypt with k_cs for all sessions
 derived from the same pre-session seed, or k_sc. Thus, which keys a
 host uses to send segments depends only whether the host played the
 "C" or "S" role in the initial session that used ss[0]; it is not
 affected by which host was the active opener transmitting the SYN
 segment containing a NEXTK1 suboption.

 A host MUST reject a NEXTK1 message if it has previously sent or
 received one with the same SID[i]. In the event that two hosts
 simultaneously send SYN segments to each other with the same SID[i],
 but the two segments are not part of a simultaneous open, both
 connections will have to revert to public key cryptography. To avoid
 this limitation, implementations MAY chose to implement session
 caching such that a given pre-session key is only good for either
 passive or active opens at the same host, not both.

 In the case of simultaneous open, two hosts that simultaneously send
 SYN packets with NEXTK1 and the same SID[i] may establish a

Bittau, et al. Expires April 29, 2015 [Page 30]

Internet-Draft tcpcrypt October 2014

 connection, as described in Section 4.2.1.

4.3.4. The PKCONF suboption

 The PKCONF option has one of the following two formats:

 Byte 0 1 2 N
 +-------+-------+-------...-------+
 |Opcode=|Length=| Algorithm |
 | 0x41 | N | Specifiers |
 +-------+-------+-------...-------+

 Byte 0 1 2 N
 +-------+-------+-------...-------+
 |Opcode=|Length=| Algorithm |
 | 0x42 | N | Specifiers |
 +-------+-------+-------...-------+

 Formats of the PKCONF suboption

 The two are treated identically by tcpcrypt, except that opcode 0x42
 (PKCONF-app-support) signals that the application on the sending host
 has set the TCP_CRYPT_SUPPORT option to non-zero, and hence the
 receiving host should return 1 for the TCP_CRYPT_PEER_SUPPORT socket
 option, as discussed in Section 6.

 The suboption data, whose length (N-2) must be divisible by 3,
 contains one or more 3-byte algorithm specifiers of the following
 form:

 0 1 2
 bit 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 |0| Algorithm identifier |
 +-+

 Format of algorithm specifier within PKCONF. Fields starting with 1
 are reserved for future use by algorithm identifiers longer than
 three bytes.

 The algorithm identifier specifies a number of parameters, defined in
 Figure 3.

 Hosts MUST implement OAEP+-RSA3 and ECDHE-P256 and ECDHE-P521, but
 MAY by default disable certain algorithms and key sizes. In
 particular, implementations SHOULD disable larger RSA keys (Algorithm
 identifiers 0x102-0x103) by default unless such larger keys and
 ciphertexts can fit into a single TCP segment.

Bittau, et al. Expires April 29, 2015 [Page 31]

Internet-Draft tcpcrypt October 2014

 Servers demanding utmost performance SHOULD use RSA because the RSA
 encrypt operation is must faster than Diffie-Hellman operations,
 resulting in a higher connection rate.

 Depending on the encoding of the PKCONF suboption (see Table 4), it
 can indicate whether "S's" application is tcpcrypt-aware or not. For
 the "C" role, the encoding of the HELLO suboption does this. This
 mechanism can be used for bootstrapping application-level
 authentication without requiring probing in upper layer protocols to
 check for support (which may not be possible). The application
 controls these encodings via the TCP_CRYPT_SUPPORT socket option.

4.3.5. The UNKNOWN suboption

 The UNKNOWN option has the following format:

 Byte 0 1 2 N
 +-------+-------+-------........-------+
 |Opcode=|Length=| N-2 unknown one-byte |
 | 0x42 | N | opcodes received |
 +-------+-------+-------........-------+

 Format of the UNKNOWN suboption

 This suboption is sent in response to an unknown suboption that has
 been received. The contents of the option are a complete list of the
 mandatory suboption opcodes from the received packet that were not
 understood. Note that this option is only sent once, in the next
 packet that the host sends. This means that it is reliable when sent
 in a SYN-ACK, but unreliable otherwise. Any mechanism sending new
 mandatory attributes must take this into account. If multiple
 packets, each containing unknown options, are received before an
 UNKNOWN suboption can be sent, the options list MUST contain the
 union of the two sets. The order of the opcode list is not
 significant.

 If a host receives an unknown option, it SHOULD reply with the
 UNKNOWN suboption to notify the other side. If the host transitions
 to DISABLED as a result of the unknown option, then the host MUST
 also include the DECLINE suboption if it sends an UNKNOWN suboption
 (or more generally if it includes a CRYPT option in the next packet).

 As a special case, if PKCONF (0x41) or INIT1 (0x06) appears in the
 unknown opcode list, it does not mean the sender does not understand
 the option (since these options are MANDATORY). Instead, it means
 the sender does not implement any of the algorithms specified in the
 PKCONF or INIT1 message. In either case, the segment must also
 contain a DECLINE suboption.

Bittau, et al. Expires April 29, 2015 [Page 32]

Internet-Draft tcpcrypt October 2014

4.3.6. The SYNCOOKIE and ACKCOOKIE suboptions

 A passive opener MAY include the SYNCOOKIE suboption in a segment
 with both the SYN and ACK flags set. SYNCOOKIE allows a server to be
 stateless until the TCP handshake has completed. It has the
 following format:

 Byte 0 1 2 N
 +-------+-------+-------...-------+
 |Opcode=|Length=| N-2 bytes of |
 | 0x43 | N | opaque data |
 +-------+-------+-------...-------+

 Format of the SYNCOOKIE suboption

 The data is opaque as far as the protocol is concerned; it is
 entirely up to implementations how to make use of this suboption to
 hold state. It is OPTIONAL to send a SYNCOOKIE, but MANDATORY to
 understand and respond to them.

 The ACKCOOKIE suboption echoes the contents of a SYNCOOKIE; it MUST
 be sent in a packet acknowledging receipt of a packet containing a
 SYNCOOKIE, and MUST NOT be sent in any other packet. It has the
 following format:

 Byte 0 1 2 N
 +-------+-------+-------...-------+
 |Opcode=|Length=| N-2 bytes of |
 | 0x44 | N | SYNCOOKIE data |
 +-------+-------+-------...-------+

 Format of the ACKCOOKIE suboption

 Servers that rely on suboption data from ACKCOOKIE to reconstruct
 session state SHOULD embed a cryptographically strong message
 authentication code within the SYNCOOKIE data so as to be able to
 reject forged ACKCOOKIE suboptions.

 Though an implementation MUST NOT send a SYNCOOKIE in any context
 except the SYN-ACK packet returned by a passive opener,
 implementations SHOULD accept SYNCOOKIEs in other contexts and reply
 with the appropriate ACKCOOKIE if possible.

4.3.7. The SYNC_REQ and SYNC_OK suboptions

 Many hosts implement TCP Keep-Alives [RFC1122] as an option for
 applications to ensure that the other end of a TCP connection still
 exists even when there is no data to be sent. A TCP Keep-Alive

https://datatracker.ietf.org/doc/html/rfc1122

Bittau, et al. Expires April 29, 2015 [Page 33]

Internet-Draft tcpcrypt October 2014

 segment carries a sequence number one prior to the beginning of the
 send window, and may carry one byte of "garbage" data. Such a
 segment causes the remote side to send an acknowledgment.

 Unfortunately, Keep-Alive acknowledgments might not contain unique
 data. Hence, an old but cryptographically valid acknowledgment could
 be replayed by an attacker to prolong the existence of a session at
 one host after the other end of the connection no longer exists.
 (Such an attack might prevent a process with sensitive data from
 exiting, giving an attacker more time to compromise a host and
 extract the sensitive data.)

 The TCP Timestamps Option (TSopt) [RFC1323] could alternatively have
 been used to make Keep-Alives unique. However, because some
 middleboxes change the value of TSopt in packets, tcpcrypt does not
 protect the contents of the TCP TSopt option. Hence the SYNC_REQ and
 SYNC_OK suboptions allow the cryptographically protected TCP CRYPT
 option to contain unique data.

 The SYNC_REQ suboption is always 5 bytes, and has the following
 format:

 Byte 0 1 2 3 4
 +-------+-------+-------+-------+-------+
 |Opcode=| Clock |
 | 0x80 | |
 +-------+-------+-------+-------+-------+

 Format of the SYNC_REQ suboption

 Clock is a 32-bit non-decreasing value. A host MUST increment Clock
 at least once for every interval in which it sends a Keep-Alive.
 Implementations that support TSopt MAY chose to use the same value
 for Clock that they would put in the TSval field of the TCP TSopt.
 However, implementations SHOULD "fuzz" any system clocks used to
 avoid disclosing either when a host was last rebooted or at what rate
 the hardware clock drifts.

 A host that receives a SYNC_REQ suboption MUST reply with a SYNC_OK
 suboption, which is always five bytes and has the following format:

 Byte 0 1 2 3 4
 +-------+-------+-------+-------+-------+
 |Opcode=| Received-Clock |
 | 0x81 | |
 +-------+-------+-------+-------+-------+

 Format of the SYNC_OK suboption

https://datatracker.ietf.org/doc/html/rfc1323

Bittau, et al. Expires April 29, 2015 [Page 34]

Internet-Draft tcpcrypt October 2014

 The value of Received-Clock depends on the values of the Clock fields
 in SYNC_REQ messages a host has received. A host must set Received-
 Clock to a value at least as high as the most recently received
 Clock, but no higher than the highest Clock value received this
 session. If a host delays acknowledgment of multiple packets with
 SYNC_REQ suboptions, it SHOULD send a single SYNC_OK with Received-
 Clock set to the highest Clock in the packets it is acknowledging.

 Because middleboxes sometimes "correct" inconsistent retransmissions,
 Keep-Alive segments with one byte of garbage data MUST use the same
 ciphertext byte as previously transmitted for that sequence number.
 Otherwise, a middlebox might change the byte back to its value in the
 original transmission, causing the cryptographic MAC to fail.

4.3.8. The REKEY and REKEYSTREAM suboptions

 The REKEY and REKEYSTREAM suboptions are used to evolve encryption
 keys. Exactly one of the two options is valid for any given
 symmetric encryption algorithm. All algorithms in Table 6 use the
 REKEY option. REKEYSTREAM is reserved for future use should tcpcrypt
 evolve to support a stream cipher. We refer to a segment containing
 either option as a REKEY segment.

 REKEY allows hosts to wipe from memory keys that could decrypt
 previously transmitted segments. It also allows the use of message
 authentication codes that are only secure up to a fixed number of
 messages. However, implementations MUST work in the presence of
 middleboxes that "correct" inconsistent data retransmissions. Hence,
 the value of ciphertext bytes must be the same in the original
 transmission and all retransmissions of a particular sequence number.
 This means a host MUST always use the same encryption key when
 transmitting or retransmitting the same range of sequence numbers.
 Re-keying only affects data transmitted in the future. Moreover,
 segments encrypted with different keysets MUST NOT be combined in
 retransmissions.

 When switching keys, the REKEY suboption specifies which key set has
 been used to encrypt and integrity-protect the current segment. The
 suboption is always two bytes, and has the following format:

 Byte 0 1
 +-------+-------+
 |Opcode=|KeyLSB |
 | 0x82 | |
 +-------+-------+

 Format of the REKEY suboption

Bittau, et al. Expires April 29, 2015 [Page 35]

Internet-Draft tcpcrypt October 2014

 KeyLSB is the generation number of the keys used to encrypt and MAC
 the current segment, modulo 256. REKEYSTREAM is the same as REKEY
 but includes the TCP Sequence Number offset at which the key change
 took effect, for cases in which decryption requires knowing how many
 bytes have been encrypted thus far with a key. To interoperate with
 middleboxes that rewrite sequence numbers, offsets from the Initial
 Sequence Number (ISN) are used instead of TCP sequence numbers
 throughout tcpcrypt. The same occurs when dealing with
 acknowledgment numbers.

 Byte 0 1 2 3 4 5
 +-------+-------+-------+-------+-------+-------+
 |Opcode=|KeyLSB | Sequence Number Offset |
 | 0x83 | | from ISN |
 +-------+-------+-------+-------+-------+-------+

 Format of the REKEYSTREAM suboption

 A host MAY use REKEY to increment the session key generation number
 beyond the highest generation it knows the other side to be using.
 We call this process _initiating_ re-keying. When one host initiates
 re-keying, the other host MUST increment its key generation number to
 match, as described below (unless the other host has also
 simultaneously initiated re-keying).

 A host MAY initiate re-keying by including a REKEY suboption in a
 syncable segment. A syncable segment is one that either contains
 data, or is acknowledgment-only but contains a SYNC_REQ suboption
 with a fresh Clock value--i.e., higher than any Clock value it has
 previously transmitted. We say a syncable segment is _synced_ when
 the transmitter knows the remote side has received it and all
 previous sequence numbers. A data segment is synced when the
 transmitter receives a cumulative acknowledgment for its sequence
 number (a Selective Acknowledgment [RFC2018] is insufficient). An
 acknowledgment-only segment is synced when the sender receives an
 acknowledgment for its sequence number and a SYNC_OK with a high
 enough Clock number.

 A host MUST NOT initiate re-keying with an acknowledgment-only
 segment that has either no SYNC_REQ suboption or a SYNC_REQ with an
 old Clock value, because such a segment is not syncable. A host MUST
 NOT initiate re-keying with any KeyLSB other than its current key
 number plus one modulo 256.

 When a host receives a segment containing a REKEY suboption, it MUST
 proceed as follows:

https://datatracker.ietf.org/doc/html/rfc2018

Bittau, et al. Expires April 29, 2015 [Page 36]

Internet-Draft tcpcrypt October 2014

 1. The receiver computes RECEIVE-KEY-NUMBER to be the closest
 integer to its own transmit key number that also equals KeyLSB
 modulo 256. If no number is closest (because KeyLSB is exactly
 128 away from the transmit number modulo 256), the receiver MUST
 discard the segment. If RECEIVE-KEY-NUMBER is negative, the
 receiver MUST also discard the segment.

 2. The receiver MUST authenticate and decrypt the segment using the
 receive keys with generation number RECEIVE-KEY-NUMBER. The
 receiver MUST discard the packet as usual if the MAC is invalid.

 3. If RECEIVE-KEY-NUMBER is greater than the receiver's current
 transmit key number, the receiver must wait to receive all
 sequence numbers prior to the REKEY segment's. Once it receives
 segments covering all these missing sequence numbers (if any), it
 MUST increase its transmit number to RECEIVE-KEY-NUMBER and
 transmit a REKEY suboption. If the receiver has gotten multiple
 REKEY segments with different KeyLSB values, it MUST increase its
 transmit key number to the highest RECEIVE-KEY-NUMBER of any
 segment for which it is not missing prior sequence numbers.

 After sending a REKEY (whether initiating re-keying or just
 responding), a host MUST continue to send REKEY in all subsequent
 segments until at least one of the following holds:

 o One of the REKEY segments the host transmitted for its current
 transmit key number was syncable, and it has been synced.

 o The host receives a cumulative acknowledgment for one of its REKEY
 segments with the current transmit key number, and the cumulative
 acknowledgment is in a segment encrypted with the new key but not
 containing a REKEY suboption.

 A host SHOULD erase old keys from memory once the above requirements
 are met.

 A host MUST NOT initiate re-keying if it initiated a re-keying less
 than 60 seconds ago and has not transmitted at least 1 Megabyte
 (increased its sequence number by 1,048,576) since the last re-
 keying. A host MUST NOT initiate re-keying if it has outstanding
 unacknowledged REKEY segments for key numbers that are 127 or more
 below the current key. A host SHOULD not initiate more than one
 concurrent re-key operation if it has no data to send.

Bittau, et al. Expires April 29, 2015 [Page 37]

Internet-Draft tcpcrypt October 2014

4.3.9. The INIT1 and INIT2 suboptions

 The INIT1 dataless suboption indicates that the Data portion of the
 TCP segment contains the following data structure:

 Byte 0 1 2 3
 +-------+-------+-------+-------+
 | INIT1_MAGIC |
 +-------+-------+-------+-------+
 | # bytes INIT1 |
 +-------+-------+-------+-------+
 | 0 | pub-cipher |
 +-------+-------+-------+-------+
 | 0 | # sym-ciphers |
 +-------+-------+-------+-------+
 | sym-cipher-list |
 : :
 +-------+-------+-------+-------+
 | N_C |
 : :
 +-------+-------+-------+-------+
 | PK_C |
 : :
 +-------+-------+-------+-------+

 The constant INIT1_MAGIC is specified in Table 7. # bytes INIT1
 specifies the length of the entire INIT1 structure, including the
 four-byte INIT1_MAGIC that precedes the length. pub-cipher is a
 three-byte public key suite as specified in Figure 3, which specifies
 both the length of N_C and the type of PK_C. sym-cipher-list is a
 list of four-byte symmetric algorithm specifiers from Table 6. Of
 those listed, 0x00000100 (AES-128 / HMAC-SHA-256-128 / AES-128) is
 MANDATORY to implement, and the others OPTIONAL. # sym-ciphers
 specifies the number of four-byte entries in this list.

 The INIT2 dataless suboption indicates that the Data portion of the
 TCP segment contains the following data structure:

Bittau, et al. Expires April 29, 2015 [Page 38]

Internet-Draft tcpcrypt October 2014

 Byte 0 1 2 3
 +-------+-------+-------+-------+
 | INIT2_MAGIC |
 +-------+-------+-------+-------+
 | # bytes INIT2 |
 +-------+-------+-------+-------+
 | sym-cipher |
 +-------+-------+-------+-------+
 | key material (KX_S) |
 : :
 +-------+-------+-------+-------+

 Format of the INIT2 suboption

 Figure 2

 The INIT2_MAGIC constant is specified in Table 7. # bytes INIT2 is
 the total length of the INIT2 structure, including the 4-byte
 INIT2_MAGIC constant preceding the length. sym-cipher specifies which
 entry of sym-cipher-list from the INIT1 message the host transmitting
 the INIT2 segment has selected.

 The key material depends on the public key cipher selected, as
 described in Section 3.4. When ECDHE is used, key material is
 encoded as follows:

 +---...---+---...---+
 | N_S | PK_S |
 | | |
 +---...---+---...---+

 The length of N_S depends on pub-cipher and is given in Figure 3.
 PK_S uses the rest of the message. When OAEP+-RSA exp3 is used, KX_S
 is simply a ciphertext in big-endian format.

 Hosts MUST set the TCP PSH control bits on INIT1 and INIT2 segments.
 Implementations MUST NOT set the TCP FIN control bit on INIT
 segments.

4.4. The TCP MAC option

 The MAC option is used to authenticate a TCP segment. Once a host
 has entered the encrypting phase for a session, the HOST must include
 a TCP MAC option in all segments it sends. Furthermore, once in the
 encrypting phase, a host MUST ignore any segments it receives that do
 not have a valid MAC option, except for segments with the RST bit set
 if the application has not requested cryptographic verification of
 RST segments.

Bittau, et al. Expires April 29, 2015 [Page 39]

Internet-Draft tcpcrypt October 2014

 The length of the MAC option is determined by the symmetric message
 authentication code selected. The format of the MAC option is:

 Byte 0 1 2 N+1
 +-------+-------+------...------+
 | Kind | Len= | N-byte |
 | OPT2 | 2+N | MAC |
 +-------+-------+------...------+

 Format of TCP MAC option

 The MAC is the authentication tag as output from authenticated
 encryption. Apart from payload, two headers are included in the
 authenticated encryption process: a pseudo-header structure we call
 Assoc-Data, and an acknowledgment structure we call Up-Data. The
 format of Assoc-Data is as follows:

 Byte 0 1 2 3
 +-------+-------+-------+-------+
 0 | 0x8000 | length |
 +-------+-------+-------+-------+
 4 | off | flags | window |
 +-------+-------+---------------+
 8 | 0x0000 | urg |
 +-------+-------+-------+-------+
 12 | seqno offset hi |
 +-------+-------+-------+-------+
 16 | seqno offset |
 +-------+-------+-------+-------+
 20 | options |
 : :
 +-------+-------+-------+-------+

 Assoc-Data data structure

 The fields of Assoc-Data are defined as follows:

 length
 Total size of the TCP segment from the start of the TCP header to
 the end of the IP datagram.

 off
 Byte 12 of the TCP header (Data Offset)

 flags
 Byte 13 of the TCP header (Control Bits)

Bittau, et al. Expires April 29, 2015 [Page 40]

Internet-Draft tcpcrypt October 2014

 window
 Bytes 14-15 of the TCP header (Window)

 urg
 Bytes 18-19 of the TCP header (Urgent Pointer)

 seqno offset hi
 Number of times the seqno offset field has wrapped from 0xffffffff
 -> 0

 seqno offset
 The low 32 bits of the sequence number offset (the Sequence Number
 in the TCP header - ISN)

 options
 These are bytes 20-off of the TCP header. However, where the
 TSOPT (8), Skeeter (16), Bubba (17), MD5 (19), TCP-AO (29), and
 MAC (OPT2) options appear, their contents (all but the kind and
 length bytes) are replaced with all zeroes.

 The format of the Up-Data structure is as follows:

 Byte 0 1 2 3
 +-------+-------+-------+-------+
 0 | ackno offset hi |
 +-------+-------+-------+-------+
 4 | ackno offset |
 +-------+-------+-------+-------+

 Up-Data data structure

 The fields of Up-Data are defined as follows:

 ackno offset hi The number of times ackno offset has wrapped from
 0xffffffff -> 0.

 ackno offset The lower 32 bits of the acknowledgment number offset
 from the remote end's ISN (TCP's acknowledgment header - ISN
 received).

 The two structures, Assoc-Data and Up-Data, are used in ASM to
 calculate the TCP MAC option. All multi-byte values are encoded in
 big-endian format.

5. Examples

 To illustrate these suboptions, consider the following series of ways

Bittau, et al. Expires April 29, 2015 [Page 41]

Internet-Draft tcpcrypt October 2014

 in which a TCP connection may be established from host A to host B.
 We use notation S for SYN-only packet, SA for SYN-ACK packet, and A
 for packets with the ACK bit but not SYN bit. These examples are not
 normative.

5.1. Example 1: Normal handshake

 (1) A -> B: S CRYPT<>
 (2) B -> A: SA CRYPT<PKCONF<0x200,0x201>>
 (3) A -> B: A data<INIT1...>
 (4) B -> A: A data<INIT2...>
 (5) A -> B: A MAC<m> data<...>

 (1) A indicates interest in using tcpcrypt. In (2), the server
 indicates willingness to use ECDHE with curves P256 and P521.
 Messages (3) and (4) complete the INIT1 and INIT2 key exchange
 messages described above, which are embedded in the data portion of
 the TCP segment. (5) From this point on, all messages are encrypted
 and their integrity protected by a MAC option.

5.2. Example 2: Normal handshake with SYN cookie

 (1) A -> B: S CRYPT<>
 (2) B -> A: SA CRYPT<PKCONF<0x200,0x201>, SYNCOOKIE<val>>
 (3) A -> B: A CRYPT<ACKCOOKIE<val>> data<INIT1...>
 (4) B -> A: A data<INIT2...>
 (5) B -> A: A MAC<m> data<...>

 Same as previous example, except the server sends the client a SYN
 cookie value, which the client must echo in (3). Here also the
 application level protocol begins by B transmitting data, while in
 the previous example, A was the first to transmit application-level
 data.

5.3. Example 3: tcpcrypt unsupported

 (1) A -> B: S CRYPT<>
 (2) B -> A: SA
 (3) A -> A: A

 (1) A indicates interest in using tcpcrypt. (2) B does not support
 tcpcrypt, or a middle box strips out the CRYPT TCP option. (3) the
 client completes a normal three-way handshake, and tcpcrypt is not
 enabled for the connection.

Bittau, et al. Expires April 29, 2015 [Page 42]

Internet-Draft tcpcrypt October 2014

5.4. Example 4: Reusing established state

 (1) A -> B: S CRYPT<NEXTK1<ID>>
 (2) B -> A: SA CRYPT<NEXTK2>
 (3) A -> A: A MAC<m>

 (1) A indicates interest in using tcpcrypt with a session key derived
 from an existing key, to avoid the use of public key cryptography for
 the new session. (2) B supports tcpcrypt, has ID in its session ID
 cache, and is willing to proceed with session caching. (3) the client
 completes tcpcrypt's handshake within TCP's three-way handshake and
 tcpcrypt is enabled for the connection.

5.5. Example 5: Decline of state reuse

 (1) A -> B: S CRYPT<NEXTK1<ID>>
 (2) B -> A: SA CRYPT<PKCONF<0x200,0x201>>
 (3) A -> B: A data<INIT1...>
 (4) B -> A: A data<INIT2...>
 (5) A -> B: A MAC<m> data<...>

 A wishes to use a key derived from a previous session key, but B does
 not recognize the session ID or has flushed it from its cache.
 Therefore, session establishment proceeds as in the first connection,
 using public key cryptography to negotiate a new series of session
 secrets (ss[i] values).

5.6. Example 6: Reversal of client and server roles

 (1) A -> B: S CRYPT<>
 (2) B -> A: SA CRYPT<HELLO>
 (3) A -> B: A CRYPT<PKCONF<0x100>>
 (4) B -> A: A data<INIT1...>
 (5) A -> B: A data<INIT2...>
 (6) B -> A: A MAC<m> data<...>

 Here the passive opener, B, wishes to play the role of the decryptor
 using RSA. By sending a HELLO suboption, B causes A to switch roles,
 so that now A is "S" and B plays the role of "C".

6. API extensions

 The getsockopt call should have new options for IPPROTO_TCP:

 TCP_CRYPT_SESSID -> returns the session ID and MUST return an
 error if tcpcrypt is in not in the ENCRYPTING state (e.g., because
 it has transitioned to DISABLED).

Bittau, et al. Expires April 29, 2015 [Page 43]

Internet-Draft tcpcrypt October 2014

 TCP_CRYPT_CMODE -> returns 1 if the local host played the "C" role
 in session key negotiation, 0 otherwise.

 TCP_CRYPT_CONF -> returns the four-byte authenticated encryption
 algorithm in use by the connection (as specified in Table 6). In
 addition, implementations SHOULD provide the three-byte public key
 cipher (Figure 3) initially used to negotiate the session keys, as
 well as the public key length for algorithms with variable key
 sizes (e.g., OAEP+-RSA3).

 TCP_CRYPT_PEER_SUPPORT -> returns 1 if the remote application is
 tcpcrypt-aware, as indicated by the remote host's use of a HELLO-
 app-support, HELLO-app-mandatory, or PKCONF-app-support CRYPT
 suboption (see Table 4).

 The setsockopt call should have:

 TCP_CRYPT_CACHE_FLUSH -> setting this option to non-zero wipes
 cached session keys. Useful if application-level authentication
 discovers a man in the middle attack, to prevent the next
 connection from using NEXTK.

 The following options should be readable and writable with getsockopt
 and setsockopt:

 TCP_CRYPT_ENABLE -> one bit, enables or disables tcpcrypt
 extension on an unconnected (listening or new) socket.

 TCP_CRYPT_RSTCHK -> one bit, means ignore unauthenticated RST
 packets for this connection when set to 1.

 TCP_CRYPT_CMODE_{DEFAULT,NEVER,ALWAYS}[_NK] -> As described in
Section 4.2.

 TCP_CRYPT_PKCONF -> set of allowed public key algorithms and CPRFs
 this host advertises in CRYPT PKCONF suboptions.

 TCP_CRYPT_CCONF -> set of allowed symmetric ciphers and message
 authentication codes this host advertises in CRYPT INIT1 segments.

 TCP_CRYPT_SCONF -> order of preference of symmetric ciphers.

 TCP_CRYPT_SUPPORT -> set to 1 if the application is tcpcrypt-
 aware. set to 2 if the application is tcpcrypt-aware and wishes to
 enter the DISABLED state if the remote application is not
 tcpcrypt-aware. An active opener SHOULD set the default value of
 0 for each new connection. A passive opener SHOULD use a default
 value of 0 for each port, but SHOULD inherit the value of the

Bittau, et al. Expires April 29, 2015 [Page 44]

Internet-Draft tcpcrypt October 2014

 listening socket for accepted connections. The behavior for each
 value is as follows:

 When set to 0 The host MUST transition to the DISABLED state upon
 receiving a HELLO-app-mandatory option. The host MUST NOT send
 the HELLO-app-support, HELLO-app-mandatory, NEXTK2-app-support,
 or PKCONF-app-support options.

 When set to 1 The "C" role host MUST use HELLO-app-support in
 place of the HELLO option, while the "S" role host MUST use the
 "PKCONF-app-support" in place of the "PKCONF" option. Either
 role must use NEXTK2-app-support in place of NEXTK2.

 When set to 2 The "C" role host MUST use HELLO-app-mandatory
 option in place of the HELLO option, while the "S" role host
 MUST use "PKCONF-app-support" in place of the "PKCONF" option.
 Either role must use NEXTK2-app-support in place of NEXTK2.
 Either host MUST transition to DISABLED upon receipt of a HELLO
 or PKCONF option, but MUST proceed as usual in response to
 HELLO-app-support, HELLO-app-mandatory, and PKCONF-app-support.

 Finally, system administrators must be able to set the following
 system-wide parameters:

 o Default TCP_CRYPT_ENABLE value

 o Default TCP_CRYPT_PKCONF value

 o Default TCP_CRYPT_CCONF value

 o Default TCP_CRYPT_SCONF value

 o Types, key lengths, and regeneration intervals of local host's
 short-lived public keys

 The session ID can be used for end-to-end security. For instance,
 applications might sign the session ID with public keys to
 authenticate their ends of a connection. Because session IDs are not
 secret, servers can sign them in batches to amortize the cost of the
 signature over multiple connections. Alternatively, DSA signatures
 are cheaper to compute than to verify, so might be a good way for
 servers to authenticate themselves. A voice application could
 display the session ID on both parties' screens, and if they confirm
 by voice that they have the same ID, then the conversation is secure.

Bittau, et al. Expires April 29, 2015 [Page 45]

Internet-Draft tcpcrypt October 2014

7. Acknowledgments

 This work was funded by gifts from Intel (to Brad Karp) and from
 Google, by NSF award CNS-0716806 (A Clean-Slate Infrastructure for
 Information Flow Control), and by DARPA CRASH under contract #N66001-
 10-2-4088.

8. IANA Considerations

 The following numbers need assignment by IANA:

 o New TCP option kind number for CRYPT

 o New TCP option kind number for MAC

 A new registry entitled "tcpcrypt CRYPT suboptions" needs to be
 maintained by IANA as per the following table.

 +---------------------+-------+
 | Symbol | Value |
 +---------------------+-------+
 | HELLO | 0x01 |
 | HELLO-app-support | 0x02 |
 | HELLO-app-mandatory | 0x03 |
 | DECLINE | 0x04 |
 | NEXTK2 | 0x05 |
 | NEXTK2-app-support | 0x06 |
 | INIT1 | 0x07 |
 | INIT2 | 0x08 |
 | PKCONF | 0x41 |
 | PKCONF-app-support | 0x42 |
 | UNKNOWN | 0x43 |
 | SYNCOOKIE | 0x44 |
 | ACKCOOKIE | 0x45 |
 | SYNC_REQ | 0x80 |
 | SYNC_OK | 0x81 |
 | REKEY | 0x82 |
 | REKEYSTREAM | 0x83 |
 | NEXTK1 | 0x84 |
 | IV | 0x85 |
 +---------------------+-------+

 TCP CRYPT suboptions.

 Table 5

 A "tcpcrypt Algorithm Identifiers" registry needs to be maintained by

Bittau, et al. Expires April 29, 2015 [Page 46]

Internet-Draft tcpcrypt October 2014

 IANA as per the following table.

 +---+
 | Algorithm Identifier | Value |
 +--+----------+
 | Cipher: OAEP+-RSA with exponent 3 | |
 | min/max key size 2048/4096 bits ... | 0x000100 |
 | min/max key size 4096/8192 bits ... | 0x000101 |
 | min/max key size 8192/16384 bits .. | 0x000102 |
 | min key size 16384 bits | 0x000103 |
 | Extract: HKDF-Extract-SHA256 | |
 | CPRF: HKDF-Expand-SHA256 | |
 | N_C len: 32 bytes | |
 | R_S len: 48 bytes | |
 | K_LEN: 32 bytes | |
 +--+----------+
 | Cipher: ECDHE-P256 | 0x000200 |
 | Extract: HKDF-Extract-SHA256 | |
 | CPRF: HKDF-Expand-SHA256 | |
 | N_C len: 32 bytes | |
 | N_S len: 32 bytes | |
 | K_LEN: 32 bytes | |
 +--+----------+
 | Cipher: ECDHE-P521 | 0x000201 |
 | Extract: HKDF-Extract-SHA256 | |
 | CPRF: HKDF-Expand-SHA256 | |
 | N_C len: 32 bytes | |
 | N_S len: 32 bytes | |
 | K_LEN: 32 bytes | |
 +--+----------+

 TCP CRYPT algorithm identifiers.

 Figure 3

 A "tcpcrypt ASM parameter" registry needs to be maintained by IANA as
 per the following table.

Bittau, et al. Expires April 29, 2015 [Page 47]

Internet-Draft tcpcrypt October 2014

 +---------+------------------+---------+------------+
 | Cipher | MAC | ACK MAC | Sym-cipher |
 +---------+------------------+---------+------------+
 | AES-128 | HMAC-SHA-256-128 | AES-128 | 0x00000100 |
 | AES-128 | Poly1305-AES-128 | AES-128 | 0x00000200 |
 | AES-128 | CMAC-AES-128 | AES-128 | 0x00000300 |
 +---------+------------------+---------+------------+

 ASM parameters corresponding to 4-byte sym-cipher specifiers in INIT1
 and INIT2 messages. ASM itself is specified in Section 3.6. HMAC-
 SHA-256-128 is HMAC-SHA-256 with a 128-bit key and output truncated
 to 128 bits.

 Table 6

9. Security Considerations

 Tcpcrypt guarantees that no man-in-the-middle attacks occurred if
 Session IDs match on both ends of a connection, unless the attacker
 has broken the underlying cryptographic primitives (e.g., RSA). A
 proof has been published [tcpcrypt].

 If the application performs no authentication, then there are no
 guarantees against active attackers. Session IDs can be logged on
 both ends and man-in-the-middle attacks can be detected after the
 fact by comparing Session IDs offline.

 Session IDs are not confidential.

 Tcpcrypt can be downgraded to regular TCP during the connection setup
 phase by removing any of the CRYPT options. The downgrade, and
 absence of protection, can of course be detected by the application
 as no Session ID will be returned.

 By default tcpcrypt does not protect against RST packet injection.
 The connection must be configured with TCP_CRYPT_RSTCHK enabled to
 protect against malicious (unMACed) RSTs.

 tcpcrypt uses short-lived keys to provide some forward secrecy. If a
 key is compromised all connections (new and cached) derived from that
 key will be compromised. The life of these keys should be kept to a
 minimum for stronger protection. A life of less than two minutes is
 recommended. Keys can be generated as frequently as practical, for
 example when servers have idle CPU time. For ECDHE-based key
 agreement, a new key can be chosen for each connection.

 In the 4-way handshake, tcpcrypt does not have a key confirmation

Bittau, et al. Expires April 29, 2015 [Page 48]

Internet-Draft tcpcrypt October 2014

 step. Hence, an active attacker can cause a connection to hang,
 though this is possible even without tcpcrypt by altering sequence
 and ack numbers.

 Attackers cannot force passive openers to move forward in their
 session caching chain without guessing the content of the NEXTK1
 option, which will be hard without key knowledge.

10. References

10.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2437] Kaliski, B. and J. Staddon, "PKCS #1: RSA Cryptography
 Specifications Version 2.0", RFC 2437, October 1998.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, May 2010.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

10.2. Informative References

 [I-D.narten-iana-considerations-rfc2434bis]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs",

draft-narten-iana-considerations-rfc2434bis-09 (work in

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2437
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/draft-narten-iana-considerations-rfc2434bis-09

Bittau, et al. Expires April 29, 2015 [Page 49]

Internet-Draft tcpcrypt October 2014

 progress), March 2008.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 July 2003.

 [aggregate-macs]
 Katz, J. and A. Lindell, "Aggregate Message Authentication
 Codes", Topics in Cryptology - CT-RSA , 2008.

 [tcpcrypt]
 Bittau, A., Hamburg, M., Handley, M., Mazieres, D., and D.
 Boneh, "The case for ubiquitous transport-level
 encryption", USENIX Security , 2010.

Appendix A. Protocol constant values

 +------------+---------------+
 | Value | Name |
 +------------+---------------+
 | 0x01 | CONST_NEXTK |
 | 0x02 | CONST_SESSID |
 | 0x03 | CONST_REKEY |
 | 0x04 | CONST_KEY_C |
 | 0x05 | CONST_KEY_S |
 | 0x06 | CONST_KEY_ENC |
 | 0x07 | CONST_KEY_MAC |
 | 0x08 | CONST_KEY_ACK |
 | 0x15101a0e | INIT1_MAGIC |
 | 0x097105e0 | INIT2_MAGIC |
 +------------+---------------+

 Protocol constants.

 Table 7

https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552

Bittau, et al. Expires April 29, 2015 [Page 50]

Internet-Draft tcpcrypt October 2014

Authors' Addresses

 Andrea Bittau
 Stanford University
 Department of Computer Science
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Phone: +1 650 723 8777
 Email: bittau@cs.stanford.edu

 Dan Boneh
 Stanford University
 Department of Computer Science
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Phone: +1 650 725 3897
 Email: dabo@cs.stanford.edu

 Mike Hamburg
 Stanford University
 Department of Computer Science
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Phone: +1 650 725 3897
 Email: mike@shiftleft.org

 Mark Handley
 University College London
 Department of Computer Science
 University College London
 Gower St.
 London WC1E 6BT
 UK

 Phone: +44 20 7679 7296
 Email: M.Handley@cs.ucl.ac.uk

Bittau, et al. Expires April 29, 2015 [Page 51]

Internet-Draft tcpcrypt October 2014

 David Mazieres
 Stanford University
 Department of Computer Science
 353 Serra Mall, Room 290
 Stanford, CA 94305
 US

 Phone: +1 415 490 9451
 Email: dm@uun.org

 Quinn Slack
 Stanford University
 Department of Computer Science
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Phone: +1 650 723 8777
 Email: sqs@cs.stanford.edu

Bittau, et al. Expires April 29, 2015 [Page 52]

