
Network Working Group M. Bjorklund
Internet-Draft Tail-f Systems
Updates: 6020 (if approved) L. Lhotka
Intended status: Standards Track CZ.NIC
Expires: April 8, 2013 October 5, 2012

Operational Data in NETCONF and YANG
draft-bjorklund-netmod-operational-00

Abstract

 This document defines the concept of operational state data in the
 context of YANG and the Network Configuration Protocol (NETCONF). It
 updates RFC 6020 with rules for how to model the operational state,
 and defines NETCONF operations to retrieve and modify the operational
 state.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 8, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Bjorklund & Lhotka Expires April 8, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Operational Data in NETCONF and YANG October 2012

 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 3
1.1.1. Terms . 3

2. Objectives . 4
3. Problem Statement . 5
3.1. Modeling and Retrieving Operational State 5
3.1.1. Example: Interface List 5

3.2. Modifying the Operational State 6
3.2.1. Example: Routing Table Modification 7

4. Datastores . 8
4.1. Operational State Datastore 8
4.2. Configuration Datastore 9

5. Constraints . 10
5.1. Alternative A . 10
5.2. Alternative B . 10
5.3. Alternative C . 10

6. Protocol Operations . 11
6.1. <get-operational> . 11
6.1.1. Example: Ethernet Duplex 11

6.2. <edit-operational> . 12
7. YANG Module . 13
8. IANA Considerations . 15
9. Security Considerations 16
10. References . 17
10.1. Normative References 17
10.2. Informative References 17

Appendix A. Example: Interface List 18
Appendix B. Example: Ethernet Duplex 19
Appendix C. Example: Admin vs. Oper State 20

 Authors' Addresses . 21

Bjorklund & Lhotka Expires April 8, 2013 [Page 2]

Internet-Draft Operational Data in NETCONF and YANG October 2012

1. Introduction

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14, [RFC2119].

1.1.1. Terms

 The following terms are defined in [RFC6241] and are not redefined
 here:

 o client

 o configuration datastore

 o datastore

 o server

 The following terms are defined in [RFC6020] and are not redefined
 here:

 o data model

 o schema tree

 o data node

 The following terms are used within this document:

 o operational state data: The data in the operational state
 datastore.

 o operational state datastore: A conceptual data structure from
 which one can determine device state and behavior.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6020

Bjorklund & Lhotka Expires April 8, 2013 [Page 3]

Internet-Draft Operational Data in NETCONF and YANG October 2012

2. Objectives

 o Develop a general model applicable not only to NETCONF but also to
 other approaches (RESTful, editable state data etc.).

 o Develop a specific model for NETCONF and YANG.

 o As little changes to NETCONF and YANG as possible.

 o Clarification of the terms "operational state data" and
 "configuration".

Bjorklund & Lhotka Expires April 8, 2013 [Page 4]

Internet-Draft Operational Data in NETCONF and YANG October 2012

3. Problem Statement

3.1. Modeling and Retrieving Operational State

 The NETCONF operation <get> returns both device state data and the
 running configuration. Quite often, device parameters require a dual
 representation, both as configuration and state data.

 For instance, an IP address may be specified in an interface
 configuration but, depending on other circumstances, this address may
 not be used for that interface. In any case, an operator should be
 able to obtain the addresses that are in operational use.

 This implies that some state data must be modeled separately from the
 configuration data, which leads to a certain amount of duplication in
 data models. This approach has other drawbacks, too. It is counter-
 intuitive to data model designers, for whom configuration and state
 parameters are closely related (see Section 3.1.1 for an example).
 Data model duplication is error prone and leads to bigger data
 models, that are more difficult to understand. Further, there is no
 formal information in the data model about the relationship between
 the configuration and operational state data.

3.1.1. Example: Interface List

 Suppose we want to model a list of interfaces. We allow pre-
 configuration, i.e., it is legal to configure an interface for which
 there is currently no hardware present in the system. In this simple
 example, each interface has a name and a counter of the number of
 packets received. The counter is operational state data.

 list interface {
 key name;

 leaf name { ... }
 leaf in-packets {
 type yang:counter64;
 config false;
 }
 ...
 }

 A particular device has hardware for two interfaces with names "eth0"
 and "eth1". In the configuration there is:

Bjorklund & Lhotka Expires April 8, 2013 [Page 5]

Internet-Draft Operational Data in NETCONF and YANG October 2012

 <interface>
 <name>eth0</name>
 ...
 </interface>
 <interface>
 <name>eth2</name>
 ...
 </interface>

 We can see this by doing <get-config>.

 Operationally, however, the interfaces used are "eth0" and "eth1",
 although "eth1" does not have any configuration and does not send or
 receive packets.

 How can an operator learn about the presence of "eth1"? The <get>
 operation returns the running configuration and state data together.
 So, <get> will not show "eth1", since it is not present in the
 running configuration.

 With NETCONF as currently defined, the only alternative is to
 duplicate the data model:

 list interface {
 key name;

 leaf name { ...}
 ...
 }

 list interface-oper {
 config false;
 key name;

 leaf name { ...}
 leaf in-packets { ... }
 ...
 }

3.2. Modifying the Operational State

 In some cases, it is useful for clients to directly modify the
 operational state. An example of this is the recent discussions
 around an Interface to the Routing System (IRS), where a client needs
 to modify the routing table, without storing routes in the
 configuration.

 With NETCONF as currently designed, the only way to do this is to

Bjorklund & Lhotka Expires April 8, 2013 [Page 6]

Internet-Draft Operational Data in NETCONF and YANG October 2012

 define separate rpc operations. This leads to another kind of data
 model duplication, where every writable parameter is modeled both as
 state data that can be retrieved using the <get> operation, and also
 as input parameters to at least one rpc operation.

3.2.1. Example: Routing Table Modification

 Suppose we want to model IPv4 routing tables as operational state,
 and we also want to be able to let a client modify this data. We
 have to do:

 list routing-table {
 config false;
 key name;

 leaf name { ... }
 list route {
 key id;

 leaf id { ... }
 leaf dest-prefix { ... }
 leaf next-hop { ... }
 ...
 }
 }

 rpc add-route {
 input {
 leaf routing-table-name { ... }
 leaf route-id { ... }
 leaf dest-prefix { ... }
 leaf next-hop { ... }
 }
 }

 rpc delete-route {
 input {
 leaf routing-table-name { ... }
 leaf route-id { ... }
 }
 }

Bjorklund & Lhotka Expires April 8, 2013 [Page 7]

Internet-Draft Operational Data in NETCONF and YANG October 2012

4. Datastores

 The fundamental idea of this document is to define operational state
 data as an explicit data structure called the operational state
 datastore. It is available to all management interfaces, which
 includes NETCONF but also other interfaces such as SNMP.

 The "running" configuration datastore is viewed as a separate overlay
 data structure whose layout is identical to the subset of the
 operational state datastore that represents configuration.

4.1. Operational State Datastore

 The operational state datastore consists of all parameters that
 provide information about the instantaneous state of the device and
 immediately influence the device's behavior.

 The operational state datastore is a conceptual data structure. This
 means that implementations may choose any suitable representation of
 the datastore, or even generate it dynamically upon request.

 Operational state may be modified through one or more management
 interfaces, or through the operation of network protocols. All such
 means of accessing and changing the operational state act
 conceptually on the same data - the operational state datastore. It
 means, for instance, that any change caused by a network protocol is
 immediately visible to all management interfaces.

 The schema for the operational state datastore is made up of all data
 nodes defined in YANG modules, specifically both "config true" and
 "config false" data nodes.

 Note that when <get-config> is used to retrieve a "config true" node,
 the value stored in the configuration datastore is returned. When
 <get-operational> is used to retrieve the same node, the value
 actually used by the device is returned. This value may or may not
 be the same as the value in the datastore.

 +---+
 | Open Question |
 +---+
 | Should there be a YANG statement 'operational <bool>' so that |
 | config true nodes can be marked as not being part of the |
 | operational schema? |
 +---+

 Nodes in the operational data store cannot be directly modified using
 the standard NETCONF operations.

Bjorklund & Lhotka Expires April 8, 2013 [Page 8]

Internet-Draft Operational Data in NETCONF and YANG October 2012

 +---+
 | Open Question |
 +---+
 | introduce oper:writable for nodes that can be modified by |
 | <edit-operational>. |
 +---+

4.2. Configuration Datastore

 The configuration datastore can be thought of as a blueprint for the
 operational datastore. Specifically, the schema for the
 configuration datastore is congruent to a subtree of the schema for
 operational state datastore containing only "config true" nodes. In
 other words, every data node in the configuration datastore schema
 has a corresponding data node with the same name in the operational
 datastore schema, and the latter data node is "config true".

 Whenever a NETCONF client modifies the configuration datastore, the
 server MUST immediately attempt to project the changes into the
 operational state datastore. Most of the time, it simply means
 copying the values in the configuration datastore to the
 corresponding nodes in the operational state datastore. If a leaf's
 default value is in use (See section 7.6.1. of RFC 6020), the default
 value is copied to the operational data store.

 The configuration datastore may contain data nodes that are not
 projected into the operational state datastore. This happens in the
 following three scenarios:

 1. Pre-provisioned configuration prepared for hardware components
 that are not yet present in the device. See Section 3.1.1 above.

 2. Pre-provisioned configuration for components (hardware,
 protocols, etc.) that are intended to replace an existing item
 but are of a different type.

 3. Parts of configuration that are momentarily not applicable.

https://datatracker.ietf.org/doc/html/rfc6020#section-7.6.1

Bjorklund & Lhotka Expires April 8, 2013 [Page 9]

Internet-Draft Operational Data in NETCONF and YANG October 2012

5. Constraints

 This document updates section 8 of RFC 6020 with rules for the
 operational state datastore.

 NOTE: The rest of this section documents some alternatives that the
 authors want to discuss

 There are a couple of design alternatives here:

5.1. Alternative A

 No constraints ("must", "mandatory", "unique", "min-elements",
 "max-elements") are enforced on the operational state datastore. For
 example, this means that a mandatory "config true" leaf does not have
 to be present in the operational state datastore.

 The problem with this approach is that there is no way to formally
 define constraints on the OSD in the data model. This may be needed
 in order to allow for coexistence of NETCONF with other management
 interfaces that do not use the configuration datastore. Such
 constraints can be specified in description statement though.

5.2. Alternative B

 Change the definitions of mandatory, must, to work on osd instead of
 config.

 This would be a major backwards incompatible change to YANG, and it
 would not be possible to define constraints on the configuration.

5.3. Alternative C

 Introduce new YANG statements for OSD constraints, e.g. osd:must,
 osd:mandatory etc.

 The drawback with this is that it adds complexity.

https://datatracker.ietf.org/doc/html/rfc6020#section-8

Bjorklund & Lhotka Expires April 8, 2013 [Page 10]

Internet-Draft Operational Data in NETCONF and YANG October 2012

6. Protocol Operations

6.1. <get-operational>

 This document introduces a new operation <get-operational>, which is
 used to retrieve the operational state data from a device. Note how
 this operation differs from <get>, which is used to retrieve both the
 running configuration and state data.

 <get-operational> takes the same parameters as <get>.

 Since leafs with default values defined in the data model are always
 explicitly set in the operational data store, there is no need for
 :with-defaults handling in the <get-operational> operation.

6.1.1. Example: Ethernet Duplex

 As an example, consider a very simplified data model with a single
 leaf for ethernet duplex:

 leaf duplex {
 type enumeration {
 enum "half";
 enum "full";
 enum "auto";
 }
 config true;
 }

 Suppose a device with this data model implements the candidate
 datastore. The following is an example of data from such a device:

 get-config from candidate:

 <duplex>half</duplex>

 get-config from running:

 <duplex>auto</duplex>

 get-operational:

 <duplex>full</duplex>

Bjorklund & Lhotka Expires April 8, 2013 [Page 11]

Internet-Draft Operational Data in NETCONF and YANG October 2012

 In this example, the running configuration tells the device to
 negotiate the duplex mode, and the current, operationally used, value
 is "full". At the same time, the (uncommitted) candidate
 configuration contains the value "half".

6.2. <edit-operational>

 [Editor's note: NOT FINISHED - not clear if we need this]

 Introduce edit-operational. This modifies the subset of the
 operational data tree that is also marked as writable.

 Drawback: does not handle persistent operational data. If we have
 persistent operational data, this has to be its own data store that
 can be read and written.

 A data model w/o the writable markers cannot be written to. This is
 a problem, since it is not obvious that the original designer though
 about future use cases. For example, our route tables are read-only.
 Then IRS comes along and wants to write to this data. Do we have to
 update our spec? Not good. One option is for IRS to publish a
 deviation data model that added the writable statement to our model.
 This would be backwards compliant and good. Even better would be if
 they could publish a conformance statement in a module, w/o the need
 for deviations.

Bjorklund & Lhotka Expires April 8, 2013 [Page 12]

Internet-Draft Operational Data in NETCONF and YANG October 2012

7. YANG Module

 RFC Ed.: update the date below with the date of RFC publication and
 remove this note.

 <CODE BEGINS> file "ietf-netconf-operational.yang"

 module ietf-netconf-operational {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-operational";
 prefix "oper";

 import ietf-yang-types {
 prefix yang;
 }
 import ietf-inet-types {
 prefix inet;
 }
 import ietf-netconf {
 prefix nc;
 }

 rpc get-operational {
 input {
 choice filter-spec {
 anyxml subtree-filter {
 description
 "This parameter identifies the portions of the
 operational state datastore to retrieve.";
 reference "RFC 6241, Section 6.";
 }
 leaf xpath-filter {
 if-feature nc:xpath;
 type yang:xpath1.0;
 description
 "This parameter contains an XPath expression
 identifying the portions of the operational state
 datastore to retrieve.";
 }
 }
 }

 output {
 anyxml data {
 description
 "Copy of the operational state data that matched the filter
 criteria (if any). An empty data container indicates that
 the request did not produce any results.";

https://datatracker.ietf.org/doc/html/rfc6241#section-6

Bjorklund & Lhotka Expires April 8, 2013 [Page 13]

Internet-Draft Operational Data in NETCONF and YANG October 2012

 }
 }
 }

 rpc edit-operational {
 input {
 leaf default-operation {
 type enumeration {
 enum merge {
 description
 "The default operation is merge.";
 }
 enum replace {
 description
 "The default operation is replace.";
 }
 enum none {
 description
 "There is no default operation.";
 }
 }
 default "merge";
 description
 "The default operation to use.";
 }

 choice edit-content {
 mandatory true;
 description
 "The content for the edit operation.";

 anyxml data {
 description
 "Inline data content.";
 }
 leaf url {
 if-feature nc:url;
 type inet:uri;
 description
 "URL-based config content.";
 }
 }
 }
 }
 }

 <CODE ENDS>

Bjorklund & Lhotka Expires April 8, 2013 [Page 14]

Internet-Draft Operational Data in NETCONF and YANG October 2012

8. IANA Considerations

 This document registers a URI in the IETF XML registry [RFC3688].
 Following the format in RFC 3688, the following registration is
 requested to be made.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-operational

 Registrant Contact: The NETMOD WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 This document registers a YANG module in the YANG Module Names
 registry [RFC6020].

 name: ietf-netconf-operational
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-operational
 prefix: oper
 reference: RFC XXXX

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc6020

Bjorklund & Lhotka Expires April 8, 2013 [Page 15]

Internet-Draft Operational Data in NETCONF and YANG October 2012

9. Security Considerations

 This document does not introduce any new security concerns in
 addition to those specified in [RFC6020] and [RFC6241].

Bjorklund & Lhotka Expires April 8, 2013 [Page 16]

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241

Internet-Draft Operational Data in NETCONF and YANG October 2012

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, June 2011.

10.2. Informative References

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688

Bjorklund & Lhotka Expires April 8, 2013 [Page 17]

Internet-Draft Operational Data in NETCONF and YANG October 2012

Appendix A. Example: Interface List

 With the proposed solution, the interface list example from ^ex-if-
 list-2, can be solved with a single list:

 list interface {
 key name;

 leaf name { ... }
 leaf in-packets {
 type yang:counter64;
 config false;
 }
 ...
 }

 The operation <get-operational> will return the interfaces available
 on the device:

 <interface>
 <name>eth0</name>
 ...
 </interface>
 <interface>
 <name>eth1</name>
 ...
 </interface>

 And <get-config> on running will return the configured interfaces,
 just as before:

 <interface>
 <name>eth0</name>
 ...
 </interface>
 <interface>
 <name>eth2</name>
 ...
 </interface>

Bjorklund & Lhotka Expires April 8, 2013 [Page 18]

Internet-Draft Operational Data in NETCONF and YANG October 2012

Appendix B. Example: Ethernet Duplex

 A typical problem is when the value space for the configuration data
 is a super set of the value space for the operational state data. An
 example of this is Ethernet duplex, which can be configured as
 "half", "full", or "auto", but the operationally used value is either
 "half" or "full". Without the definition of operational state in
 this document, this would have to be modeled as two separate leafs:

 leaf duplex {
 type enumeration {
 enum "half";
 enum "full";
 enum "auto";
 }
 }

 leaf oper-duplex {
 type enumeration {
 enum "half";
 enum "full";
 }
 }

 With the solution defined in this document, a single leaf is
 sufficient:

 leaf duplex {
 type enumeration {
 enum "half";
 enum "full";
 enum "auto";
 }
 }

Bjorklund & Lhotka Expires April 8, 2013 [Page 19]

Internet-Draft Operational Data in NETCONF and YANG October 2012

Appendix C. Example: Admin vs. Oper State

 Another common problem is when the value space for the configured
 data is a subset of the operational state data. An example is an
 interface's desired state, and its operational state. The desired
 state can be "up" or "down", but the operational state can be "up",
 "lower-layer-down", "testing", etc.

 These kind of situations are still best modeled as two separate
 leafs, one "admin-state" and one "oper-state".

Bjorklund & Lhotka Expires April 8, 2013 [Page 20]

Internet-Draft Operational Data in NETCONF and YANG October 2012

Authors' Addresses

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com

 Ladislav Lhotka
 CZ.NIC

 Email: lhotka@nic.cz

Bjorklund & Lhotka Expires April 8, 2013 [Page 21]

