
NFSv4 Working Group David L. Black
Internet Draft Stephen Fridella
Expires: December 2005 EMC Corporation
 June 3, 2005

pNFS Block/Volume Layout
draft-black-pnfs-block-00.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that
 any applicable patent or other IPR claims of which he or she is
 aware have been or will be disclosed, and any of which he or she
 becomes aware will be disclosed, in accordance with Section 6 of
 BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire in December 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005). All Rights Reserved.

Abstract

 Parallel NFS (pNFS) extends NFSv4 to allow clients to directly access
 file data on the storage used by the NFSv4 server. This ability to
 bypass the server for data access can increase both performance and
 parallelism, but requires additional client functionality for data
 access, some of which is dependent on the class of storage used. The

Black Expires December 2005 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft pNFS Block/Volume Layout May 2005

 main pNFS operations draft specifies storage-class-independent
 extensions to NFS; this draft specifies the additional extensions
 (primarily data structures) for use of pNFS with block and volume
 based storage.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

Table of Contents

1. Introduction...3
2. Background and Architecture....................................3

2.1. Data Structures: Extents and Extent Lists.................4
2.1.1. Layout Requests and Extent Lists.....................6
2.1.2. Extents Have Lock-like Behavior......................6

2.2. Volume Identification.....................................7
3. Operations Issues..9

3.1. Ordering Issues..10
3.2. Crash Recovery Issues....................................11
3.3. Additional Features - Not Needed or Recommended..........12

4. Security Considerations.......................................12
5. Conclusions...13
6. Acknowledgments...13
7. References..13

7.1. Normative References.....................................13
7.2. Informative References...................................14

 Author's Addresses...14
 Intellectual Property Statement..................................14
 Disclaimer of Validity...15
 Copyright Statement..15
 Acknowledgment...15

 NOTE: This is an early stage draft. It's still rough in places, with
 significant work to be done.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Black Expires December 2005 [Page 2]

Internet-Draft pNFS Block/Volume Layout May 2005

1. Introduction

 Figure 1 shows the overall architecture of a pNFS system:

 +-----------+
 |+-----------+ +-----------+
 ||+-----------+ | |
 ||| | NFSv4 + pNFS | |
 +|| Clients |<------------------------------>| Server |
 +| | | |
 +-----------+ | |
 ||| +-----------+
 ||| | | |
 ||| |
 ||| +-----------+ |
 ||| |+-----------+ |
 ||+----------------||+-----------+ |
 |+-----------------||| | |
 +------------------+|| Storage |------------+
 +| Systems |
 +-----------+

 Figure 1 pNFS Architecture

 The overall approach is that pNFS-enhanced clients obtain sufficient
 information from the server to enable them to access the underlying
 storage (on the Storage Systems) directly. See [WELCH-OPS] for more
 details. This draft is concerned with access from pNFS clients to
 Storage Systems over storage protocols based on blocks and volumes,
 such as the SCSI protocol family (e.g., parallel SCSI, FCP for Fibre
 Channel, iSCSI, SAS). This class of storage is referred to as
 block/volume storage. While the Server to Storage System protocol is
 not of concern for interoperability here, it will typically also be a
 block/volume protocol when clients use block/volume protocols.

2. Background and Architecture

 The fundamental storage abstraction supported by block/volume storage
 is a storage volume consisting of a sequential series of fixed size
 blocks. This can be thought of as a logical disk; it may be realized
 by the Storage System as a physical disk, a portion of a physical
 disk or something more complex (e.g., concatenation, striping, RAID,
 and combinations thereof) involving multiple physical disks or
 portions thereof.

Black Expires December 2005 [Page 3]

Internet-Draft pNFS Block/Volume Layout May 2005

 A pNFS layout for this block/volume class of storage is responsible
 for mapping from an NFS file (or portion of a file) to the blocks of
 storage volumes that contain the file. The blocks are expressed as
 extents with 64 bit offsets and lengths using the existing NFSv4
 offset4 and length4 types. Clients must be able to perform I/O to
 the block extents without affecting additional areas of storage
 (especially important for writes), therefore extents MUST be aligned
 to 512-byte boundaries, and SHOULD be aligned to the block size used
 by the NFSv4 server in managing the actual filesystem (4 kilobytes
 and 8 kilobytes are common block sizes).

 OPEN ISSUE: Client ability to ask server for block size - if block
 size is constant per filesystem (fsid), it can enable internal client
 optimizations. Constant filesystem block size is probably the common
 case - an additional (required) FS attribute would suffice.

 This draft draws extensively on the authors' familiarity with the the
 mapping functionality and protocol in EMC's HighRoad system. The
 protocol used by HighRoad is called FMP (File Mapping Protocol); it
 is an add-on protocol that runs in parallel with filesystem protocols
 such as NFSv3 to provide pNFS-like functionality for block/volume
 storage. While drawing on HighRoad FMP, the data structures and
 functional considerations in this draft differ in significant ways,
 based on lessons learned and the opportunity to take advantage of
 NFSv4 features such as COMPOUND operations.

2.1. Data Structures: Extents and Extent Lists

 A pNFS layout is a list of extents with associated properties. EAch
 extent MUST be at least 512-byte aligned.

 struct extent {

 offset4 file_offset;/* the logical location in the file */

 length4 extent_length; /* the size of this extent in file and
 and on storage */

 pnfs_deviceid4 volume_ID; /* the logical volume/physical device
 that this extent is on */

 offset4 storage_offset;/* the logical location of
 this extent in the volume */

 extentState4 es; /* the state of this extent */

 };

Black Expires December 2005 [Page 4]

Internet-Draft pNFS Block/Volume Layout May 2005

 enum extentState4 {

 VALID_DATA = 0, /* the data located by this extent is valid for
 reading and writing. */

 INVALID_DATA = 1, /* the location is valid; the data is invalid.
 It could be overwritten by the valid data.
 It is a newly (pre-) allocated extent. There
 is physical space. */

 NONE_DATA = 2, /* the location is invalid. It is a hole in the
 file. There is no physical space. */

 };

 The file_offset, extent_length, and es fields for an extent returned
 from the server are always valid. The interpretation of the
 storage_offset field depends on the value of es as follows:

 o VALID_DATA means that storage_offset is valid, and points to
 valid/initialized data which can and should be fetched from the
 disk to satisfy read requests (and partial-block write requests).

 o INVALID_DATA means that storage_offset is valid, but points to
 invalid uninitialized data. This data must not be physically read
 from the disk until it has been initialized. Read request from an
 INVALID_DATA extent, must fill the user buffer with zeros. Write
 requests must write whole blocks to the disk. Bytes not
 initialized by the user must be set to zero. INVALID_DATA extents
 are returned by requests for writeable extents; they are never
 returned if the request was only for reading..

 o NONE_DATA means that storage_offset is not valid, and this extent
 may not be used to satisfy write requests. Read requests may be
 satisfied by zero-filling as for INVALID_DATA. NONE_DATA extents
 are returned by requests for readable extents; they are never
 returned if the request was for a writeable extent.

 The volume_ID field for an extent returned by the server is used to
 identify the logical volume on which this extent resides, and its
 interpretation depends on the volume-management protocol being used
 by the client and server.

Black Expires December 2005 [Page 5]

Internet-Draft pNFS Block/Volume Layout May 2005

 The extent list lists all relevant extents in increasing order of the
 file_offset of each extent.

 typedef extent extentList<MAX_EXTENTS>; /* MAX_EXTENTS = 256; */

2.1.1. Layout Requests and Extent Lists

 Each request for a layout specifies at least three parameters:
 offset, desired size, and minimum size (the desired size is missing
 from the operations draft - see Section 3). If the status of a
 request indicates success, the extent list returned must meet the
 following criteria:

 o A request for a readable (but not writeable layout returns only
 VALID_DATA or NONE_DATA extents (but not INVALID_DATA extents).

 o A request for a writeable layout returns only VALID_DATA or
 INVALID_DATA extents (but not NONE_DATA extents).

 o The first extent in the list MUST contain the starting offset.

 o The total size of extents in the extent list MUST cover at least
 the minimum size and no more than the desired size. One exception
 is allowed: the total size MAY be smaller if only readable extents
 were requested and EOF is encountered.

 o Extents in the extent list MUST be logically contiguous and non-
 overlapping).

2.1.2. Extents Have Lock-like Behavior

 Extents returned to pNFS clients function as locks in that they grant
 clients permission to read or write. Both read/write and write/write
 conflicts must be controlled by the pNFS server as a read/write
 conflict may cause a read to return a mixture of before-write and
 after-write data from a block-based storage system and a write/write
 conflict may cause the result on the block-based storage system to be
 a mixture of data from the two write operations; both of these
 outcomes are unacceptable, as in the absence of pNFS, the NFSv4
 server would have correctly sequenced the conflicting operations to
 avoid this mixing. This is particularly nasty if the underlying
 storage is striped and the operations complete in different orders on
 the different stripes.

 A client which makes a layout request that conflicts with an existing
 layout delegation will be rejected with the error NFS4_Locked
 (OPEN_ISSUE: New error code needed?). This client is then expected

Black Expires December 2005 [Page 6]

Internet-Draft pNFS Block/Volume Layout May 2005

 to retry the request after a short interval. During this interval
 the server needs to recall the conflicting portion of the layout
 delegation from the client that currently holds it. It has been
 noted that this mode of reject/retry operation does not prevent a
 requesting client from being starved when there is contention for the
 layout of a particular file. For this reason a pNFS server SHOULD
 implement a mechanism to prevent starvation. One possibility is that
 the server can maintain a queue of rejected layout requests. Each
 new layout request can be checked to see if it conflicts with a
 previous rejected request, and if so, the newer request can be
 rejected. Once the original requesting client retries its request,
 its entry in the rejected request queue can be cleared, or the entry
 in the rejected request queue can be removed when it reaches a
 certain age.

 NFSv4 supports mandatory locks and share reservations. These are
 mechanisms that clients can use to restrict the set of IO operations
 that are permissible to other clients. Since all IO operations
 ultimately arrive at the NFSv4 server for processing, the server is
 in a position to enforce these restrictions. However, with pNFS
 layout delegations, IOs will be issued from the clients that hold the
 delegations directly to the storage devices that host the data.
 These devices have no knowledge of files, mandatory locks, or share
 reservations, and are not in a position to enforce such restrictions.
 For this reason the NFSv4 server must not grant layout delegations
 that conflict with mandatory locks or share reservations.
 Furthermore, if a conflicting mandatory lock request or a conflicting
 open request arrives at the server, the server must recall the part
 of the layout delegation in conflict with the request before
 processing the request.

2.2. Volume Identification

 Storage Systems such as storage arrays can have multiple physical
 network ports that need not be connected to a common network,
 resulting in a pNFS client having simultaneous multipath access to
 the same storage volumes via different ports on different networks.
 The networks may not even be the same technology - for example,
 access to the same volume via both iSCSI and Fibre Channel is
 possible, hence network address are difficult to use for volume
 identification. For this reason, this pNFS block layout identifies
 storage volumes by content, for example providing the means to match
 (unique portions of) labels used by volume managers. Any block pNFS
 system using this layout MUST support a means of content-based unique
 volume identification that can be employed via the data structure
 given here.

Black Expires December 2005 [Page 7]

Internet-Draft pNFS Block/Volume Layout May 2005

 A volume is content-identified by a disk signature made up of extents
 within blocks and contents that must match.

 block_device_addr_list - A list of the disk signatures for the
 physical volumes on which the file system resides. This is list of
 variable number of diskSigInfo structures. This is the
 device_addr_list<> as returned by GETDEVICELIST in [WELCH-OPS]

 typedef diskSigInfo block_device_addr_list<MAX_DEVICE>;
 /* disksignature info */

 where diskSigInfo is:

 struct diskSigInfo { /* used in DISK_SIGNATURE */
 diskSig ds; /* disk signature */

 pnfs_deviceid4 volume_ID; /* volume ID the server will use in
 extents. */

 };

 where diskSig is defined as:

 typedef sigComp diskSig<MAX_SIG_COMPONENTS>;

 struct sigComp { /* disk signature component */

 offset4 sig_offset; /* byte offset of component */

 length4 sig_length; /* byte length of component */

 sigCompContents contents; /* contents of this component of the
 signature (this is opaque) */

 };

 sigCompContents MUST NOT be interpreted as a zero-terminated string,
 as it may contain embedded zero-valued octets. It contains
 sig_length octets. There are no restrictions on alignment (e.g.,
 neither sig_offset nor sig_length need to be multiples of 4).

Black Expires December 2005 [Page 8]

Internet-Draft pNFS Block/Volume Layout May 2005

3. Operations Issues

 This section collects issues in the operations draft encountered in
 writing this block/volume layout draft.

 1. Request for a layout (LAYOUTGET) only conveys minimum required
 size - for the block storage class, a desired size is also useful.
 This allows the client to ask for a good size for performance but
 allow the server to reduce the size when other clients are
 actively writing different areas of the file for conflict
 management.

 2. The operations draft treats a layout returned by an operation as
 an indivisible object (at least for callback and return - commit
 seems to only be able to handle one extent). For block storage
 layouts, it is important to be able to recall, commit, or return a
 portion of a layout. The server needs to be in control of the
 conflict granularity to minimize the impact of false sharing, and
 the client needs to be able to manage its layout state in a
 flexible fashion.

 3. Need a callback to set EOF. The underlying issue here is that
 block pNFS clients have to handle EOF enforcement because the
 Storage Systems have no concept of file, let alone EOF. Hence
 client interactions based on EOF changes (e.g., one client
 truncates file, another tries to write beyond new EOF) require
 updates to tell clients that the EOF has moved. Calling back
 layouts beyond the new EOF to force the client to check for EOF
 change is both inefficient and overkill.

 4. HighRoad supports three additional types of layout recalls -
 "everything in a file", "everything in a list of files",
 "everything in a filesystem". HighRoad also supports an
 "everything in a file" layout return. The "everything in a file"
 type is very convenient to get rid of all state for a file. The
 "everything in a filesystem" is crucial to get unmount of a busy
 filesystem to actually work. The "everything in a list of files"
 turns out to be useful for quota situations, although it's a bit
 blunt - when a user is nearing her quota, recall her writeable
 layouts to force the commits needed to manage the quota. OPEN
 ISSUE: This may not be the best way to handle approaching a quota
 limit.

 5. Access and Modify time behavior. Any LAYOUTCOMMIT operation
 should implicitly set both the Access and Modify times.
 LAYOUTRETURN needs flags saying whether to set Access time or
 Access and Modify times or neither.

Black Expires December 2005 [Page 9]

Internet-Draft pNFS Block/Volume Layout May 2005

 6. The disk signature approach to volume identification is noted in
 the [WELCH-OPS] draft, but the data structures in the -01 version
 of that draft do not support it.

3.1. Ordering Issues

 This deserves its own subsection because there is some serious
 subtlety here. High Road uses two mechanisms for ordering:

 1. In contrast to NFSv4 callbacks that expect immediate responses,
 HighRoad layout callback responses may be delayed to allow a
 client to perform any required commits, etc. prior to responding
 to the callback. This allows the reply to the callback to serve
 as an implicit return of the recalled range or ranges. For a
 simple return case, this saves a round trip (client replies to
 callback, doesn't have to issue a separate return). Another
 useful case is that the response to a set EOF callback discards
 all layout info beyond the block containing the new EOF (need
 filesystem block size attribute for this to work). If NFSv4 style
 callbacks that expect immediate responses are used, the client has
 to perform an explicit LAYOUTRETURN.

 2. HighRoad uses a server message number for operation sequencing,
 which appears to correspond well to the layout stateid in [WELCH-
 OPS], except that the server message number has per-file rather
 than per-layout scope. The pNFS layout stateid should probably
 have per-file scope in order to deal well with Issue 1 in Section

3 above. The server message number serves to ensure that a pNFS
 client can process pNFS server replies (operation completions) and
 callbacks *in the same order* as the pNFS server.

 The delayed callback response creates an ordering issue in that the
 client may immediately issue a LAYOUTGET for the range that its
 callback reply returns - if that request crosses the callback reply
 on the wire, the server must detect this reordering and tell the
 client to retry. This does not require a sequence number/stateid
 mechanism - the server must wait for the callback to finish before
 processing any conflicting LAYOUTGET from the same client. With an
 NFSv4-style callback, the client must wait for its LAYOUTRETURN to
 complete before issuing the LAYOUTGET, so this issue does not arise.

 In the reverse direction, the same "cross on the wire" scenario
 applies, and requires a sequencing mechanism. The server may issue a
 recall for a range covered by a LAYOUTGET immediately after returning
 the layout to the client. If the recall arrives first, the client
 has to queue it until the LAYOUTGET result comes back and process the
 callback against that new layout. A variant on this that appears

Black Expires December 2005 [Page 10]

Internet-Draft pNFS Block/Volume Layout May 2005

 similar to the client but requires a different response occurs when
 the server issued the recall before processing the LAYOUTGET; in this
 case the server will reject the LAYOUTGET as having a stale sequence
 number/stateid (because that number/stateid was incremented by the
 recall callback) and the client needs to process the callback before
 retrying the LAYOUTGET.

3.2. Crash Recovery Issues

 Client recovery for layout delegations works in much the same way as
 NFSv4 client recovery for other lock/delegation state. When an NFSv4
 client reboots, it will lose all information about the layout
 delegations that it previously owned. There are two methods by which
 the server can reclaim these resources and begin providing them to
 other clients. The first is through the expiry of the client's
 lock/delegation lease. If the client recovery time is longer than
 the lease period, the client's lock/delegation lease will expire and
 the server will know to reclaim any state held by the client. On the
 other hand, the client may recover in less time than it takes for the
 lease period to expire. In such a case, the client will be required
 to contact the server through the standard SETCLIENTID protocol. The
 server will find that the client's id matches the id of the previous
 client invocation, but that the verifier is different. The server
 uses this as a signal to reclaim all the state associated with the
 client's previous invocation.

 The server recovery case is slightly more complex. In general, the
 recovery process will again follow the standard NFSv4 recovery model:
 the client will discover that the server has rebooted when it
 receives an unexpected STALE_STATEID or STALE_CLIENTID reply from the
 server; it will then proceed to try to reclaim its previous
 delegations during the server's recovery grace period. However there
 is an important safety concern associated with layout delegations
 that does not come into play in the standard NFSv4 case. If a
 standard NFSv4 client makes use of a stale delegation, the
 consequence could be to deliver stale data to an application.
 However, the pNFS layout delegation enables the client to directly
 access the file system storage---if this access is not properly
 managed by the NFSv4 server the client can potentially corrupt the
 file system data or meta-data.

 Thus it is vitally important that the client discover that the server
 has rebooted as soon as possible, and that the client stops using
 stale layout delegations before the server gives the delegations away
 to other clients. To ensure this, the client must be implemented so
 that layout delegations are never used to access the storage after
 the client's lease timer has expired. This prohibition applies to

Black Expires December 2005 [Page 11]

Internet-Draft pNFS Block/Volume Layout May 2005

 all accesses, especially the flushing of dirty data to storage. If
 the client's lease timer expires because the client could not contact
 the server for any reason, the client MUST immediately stop using the
 layout delegation until the server can be contacted and the
 delegation can be officially recovered or reclaimed.

3.3. Additional Features - Not Needed or Recommended

 This subsection is a place to record things that existing SAN or
 clustered filesystems do that aren't needed or recommended for pNFS:

 o Callback for write-to-read downgrade. Writers tend to want to
 remain writers, so this feature isn't very useful.

 o HighRoad FMP implements several frequently used operation
 combinations as single RPCs for efficiency; these can be
 effectively handled by NFSv4 COMPOUNDs. One subtle difference is
 that a single RPC is treated as a single operation, whereas NFSv4
 COMPOUNDs are not atomic in any sense. This can cause operation
 ordering subtleties, such as having to set the new EOF *before*
 returning the layout extent that contains the new EOF, even within
 a single COMPOUND.

 o Queued request support. The HighRoad FMP protocol specification
 allows the server to return an "operation blocked" result code
 with a cookie that is later passed to the client in a "it's done
 now" callback. This has not proven to be of great use vs. having
 the client retry with some sort of back-off. Recommendations on
 how to back off should be added to the ops draft.

 o Additional client and server crash detection mechanisms. As a
 separate protocol, HighRoad FMP had to handle this on its own. As
 an NFSv4 extension, NFSv4's SETCLIENTID, STALE CLIENTID and STALE
 STATEID mechanisms combined with implicit lease renewal and (per-
 file) layout stateids should be sufficient for pNFS.

 o The use of separate read and write layouts to enable client
 participation in copy-on-write (as in IBM's SAN.FS) does not seem
 to be important to pNFS; this may be an implementation approach
 that is unique to SAN.FS .

4. Security Considerations

 Certain security responsibilities are delegated to pNFS clients.
 Block/volume storage systems generally control access at a volume
 granularity, and hence pNFS clients have to be trusted to only
 perform accesses allowed by the layout extents it currently holds

Black Expires December 2005 [Page 12]

Internet-Draft pNFS Block/Volume Layout May 2005

 (e.g., and not access storage for files on which a layout extent is
 not held). This also has implications for some NFSv4 functionality
 outside pNFS. For instance, if a file is covered by a mandatory
 read-only lock, the server can ensure that only read-layout-
 delegations for the file are granted to pNFS clients. However, it is
 up to each pNFS client to ensure that the read layout delegation is
 used only to service read requests, and not to allow writes to the
 existing parts of the file. Since block/volume storage systems are
 generally not capable of enforcing such file-based security, in
 environments where pNFS clients cannot be trusted to enforce such
 policies, block/volume-based pNFS SHOULD NOT be used.

 <TBD: Need discussion about security for block/volume protocol vis-a-
 vis NFSv4 security. Client may not even use same identity for both
 (e.g., for Fibre Channel, same identity as NFSv4 is impossible).
 Need to talk about consistent security protection of data via NFSv4
 vs. direct block/volume access. Some of this extends discussion in
 previous paragraph about client responsibility for security as part
 of overall system.>

5. Conclusions

 <TBD: Add any conclusions>

6. Acknowledgments

 This draft draws extensively on the authors' familiarity with the the
 mapping functionality and protocol in EMC's HighRoad system. The
 protocol used by HighRoad is called FMP (File Mapping Protocol); it
 is an add-on protocol that runs in parallel with filesystem protocols
 such as NFSv3 to provide pNFS-like functionality for block/volume
 storage. While drawing on HighRoad FMP, the data structures and
 functional considerations in this draft differ in significant ways,
 based on lessons learned and the opportunity to take advantage of
 NFSv4 features such as COMPOUND operations.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [WELCH-OPS] Welch, B., et. al. "pNFS Operations Summary", draft-
welch-pnfs-ops-01.txt, Work in Progress, May 2005.

 TODO: Need to reference RFC 3530.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-welch-pnfs-ops-01.txt
https://datatracker.ietf.org/doc/html/draft-welch-pnfs-ops-01.txt
https://datatracker.ietf.org/doc/html/rfc3530

Black Expires December 2005 [Page 13]

Internet-Draft pNFS Block/Volume Layout May 2005

7.2. Informative References

 OPEN ISSUE: HighRoad and/or SAN.FS references?

Author's Addresses

 David L. Black
 EMC Corporation
 176 South Street
 Hopkinton, MA 01748

 Phone: +1 (978) 263-0937
 Email: black_david@emc.com

 Stephen Fridella
 EMC Corporation
 32 Coslin Drive
 Southboro, MA 01772

 Phone: +1 (508) 305-8512
 Email: fridella_stephen@emc.com

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Black Expires December 2005 [Page 14]

Internet-Draft pNFS Block/Volume Layout May 2005

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Black Expires December 2005 [Page 15]

https://datatracker.ietf.org/doc/html/bcp78

