Internet Engineering Task T0C

S. Blake
Force

Extreme
Internet-Draft

Networks
Intended status: Standards October 27,
Track 2009

Expires: April 30, 2010

Use of the IPv6 Flow Label as a Transport-Layer Nonce to Defend Against
off-Path Spoofing Attacks
draft-blake-ipv6-flow-label-nonce-02

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79. This document may contain material
from IETF Documents or IETF Contributions published or made publicly
available before November 10, 2008. The person(s) controlling the
copyright in some of this material may not have granted the IETF Trust
the right to allow modifications of such material outside the IETF
Standards Process. Without obtaining an adequate license from the
person(s) controlling the copyright in such materials, this document
may not be modified outside the IETF Standards Process, and derivative
works of it may not be created outside the IETF Standards Process,
except to format it for publication as an RFC or to translate it into
languages other than English.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 30, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of


http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

TCP and other transport-layer protocols are vulnerable to spoofing
attacks from off-path hosts. These attacks can be prevented through the
use of cryptographic authentication. However, it is difficult to use
cryptographic authentication in all circumstances. A variety of
obfuscation techniques -- such as initial sequence number randomization
and source port randomization -- increase the effort required of an
attacker to successfully guess the packet header fields which uniquely
identify a transport connection. This memo proposes the use of the IPv6
Flow Label field as a random, per-connection nonce value, to add
entropy to the set of packet header fields used to identify a transport
connection. This mechanism is easily implementable, allows for
incremental deployment, and is fully compliant with the rules for Flow
Label use defined in RFC 3697.

Table of Contents

Introduction
1.1. TCP's Vulnerability to Blind Spoofing Attacks
1.2. 1IPv6 Flow Label
Requirements Language
Additional Requirements on Flow Label Value Generation and Use
TCP Considerations
UDP Considerations
SCTP Considerations
DCCP Considerations
RTP Considerations
NAT Considerations
Support for Transport Connection Sub-Flows
Acknowledgements
IANA Considerations
Security Considerations
References
14.1. Normative References
14.2. Informative References
8§ Author's Address

=

R R R R R ©[oIN(o (S w N
EEREREPFIP P

T0C



1. Introduction

1.1. TCP's Vulnerability to Blind Spoofing Attacks TOC

Recent effort has been directed towards identifying and reducing the
vulnerability of TCP [RFC0793] (Postel, J., “Transmission Control
Protocol,” September 1981.) to a variety of "blind" spoofed packet
injection attacks from hosts that are off-path (i.e., not able to
intercept communications between a pair of hosts) [RFC4953] (Touch, J.,

“Defending TCP Against Spoofing Attacks,” July 2007.)[RFC5082] (Gill,
V., Heasley, J., Meyer, D., Savola, P., and C. Pignataro, “The
Generalized TTL Security Mechanism (GTSM),” October 2007.)
[I-D.ietf-tcpm-icmp-attacks] (Gont, F., “ICMP attacks against TCP,”
March 2008.) [I-D.ietf-tcpm-tcpsecure] (Ramaiah, A., Stewart, R., and
M. Dalal, “Improving TCP's Robustness to Blind In-Window Attacks,”
July 2008.) [I-D.ietf-tsvwg-port-randomization] (Larsen, M. and F.
Gont, “Port Randomization,” August 2008.). Off-path spoofing attacks
against TCP require an attacker to correctly guess the 4-tuple of
header fields <IP source address, TCP source port, IP destination
address, TCP destination port> uniquely identifying a TCP connection,
along with a valid (in-receive window) value for the 32-bit TCP
sequence number. By correctly guessing values for these fields, an
attacker is then able to inject ACK, DATA, RST, or SYN segments into a
TCP connection, enabling throughput reduction, data corruption, or
connection termination with a single correctly constructed packet.
Similarly, by correctly guessing values for these fields, an attacker
is able to forge ICMP messages to a host, with similar negative
consequences [I-D.ietf-tcpm-icmp-attacks] (Gont, F., “ICMP attacks
against TCP,” March 2008.).

Increased use of long-duration connections by applications, as well as
faster access link speeds, increase the ability of attackers to
transmit a sufficient number of spoof packets to successfully attack a
connection, especially when either the destination or source ports are
easily guessable. Cryptographic authentication mechanisms such as the
TCP MD5 Authentication Option [RFC2385] (Heffernan, A., “Protection of
BGP Sessions via the TCP MD5 Signature Option,” August 1998.), TCP
Authentication Option [I-D.ietf-tcpm-tcp-auth-opt] (Touch, J., Mankin,
A., and R. Bonica, “The TCP Authentication Option,” July 2008.), and
IPsec [RFC4301] (Kent, S. and K. Seo, “Security Architecture for the
Internet Protocol,” December 2005.) can secure against these attacks,
as well as some on-path (man-in-the-middle) attacks. However, key
management and computational overhead makes the deployment of
cryptographic authentication prohibitively expensive in some
environments and for some applications.




Network ingress filtering of IP source addresses has been widely
deployed at network boundaries, significantly reducing the set of
networks that a particular host can inject spoof packets into [RFC2827]
(Ferguson, P. and D. Senie, “Network Ingress Filtering: Defeating
Denial of Service Attacks which employ IP Source Address Spoofing,”
May 2000.)[RFC3704] (Baker, F. and P. Savola, “Ingress Filtering for
Multihomed Networks,” March 2004.). But network ingress filtering is
not universally deployed, leaving many networks vulnerable to spoofed
packet attacks (including the attacker's network). Note also that
network ingress filtering typically provides no protection against ICMP
spoofing attacks, since the attacker does not need to spoof the IP
source address in the ICMP packet header (only the IP destination
address in the ICMP message payload).

Obfuscation techniques can be employed to increase the effort required
of an attacker. Initial sequence number randomization [RFC1948]
(Bellovin, S., “Defending Against Sequence Number Attacks,” May 1996.)
[I-D.ietf-tcpm-tcpsecure] (Ramaiah, A., Stewart, R., and M. Dalal,
“Improving TCP's Robustness to Blind In-Window Attacks,” July 2008.)
can be implemented by both the client (the host initiating a
connection) and server. For typical window sizes of approximately 32
Kbytes, this technique forces an attacker to send approximately 57000
RST packets on average to reset a connection [RFC4953] (Touch, J.,
“Defending TCP Against Spoofing Attacks,” July 2007.). Source port
randomization [I-D.ietf-tsvwg-port-randomization] (Larsen, M. and F.
Gont, “Port Randomization,” August 2008.) can also be implemented by a
client to increase the number of guesses an attacker must make to
successfully attack a connection. This mechanism can provide an
additional ~15 bits of entropy (depending on implementation). Source
port randomization can also be used with other transport protocols.
Both obfuscation schemes are compliant with [RFC0793] (Postel, J.,
“Transmission Control Protocol,” September 1981.), and are
incrementally deployable. Both schemes used in combination introduce
approximately 32 bits of entropy (~17 + ~15) with typical window sizes
in use today. However, as access link speeds (and consequently, receive
windows) increase in size, the amount of entropy declines just as the
number of spoof packets an attacker can generate in a given interval
increases. Therefore, the margin of protection provided by these
obfuscation mechanisms will decrease over time.

1.2. IPv6 Flow Label TOC

IPv6 [RFC2460] (Deering, S. and R. Hinden, “Internet Protocol, Version
6 (IPv6) Specification,” December 1998.) includes a 20-bit Flow Label
field, which can be used by hosts to uniquely label a uni-directional
sequence of packets from a host to a particular unicast, anycast, or

multicast destination. The tuple of <IP source address, IP destination




address, Flow Label> is intended to uniquely identify a particular flow
during its lifetime (plus a subsequent quarantine period). Rules for
the generation and usage of Flow Label values are defined in [RFC3697
(Rajahalme, J., Conta, A., Carpenter, B., and S. Deering, “IPv6 Flow
Label Specification,” March 2004.). Because transport-layer port fields
may be located at a variable offset within a packet due to IPv6
extension headers, or may be obscured due to encryption, the Flow Label
provides a fixed field in the IPv6 header to facilitate flow
classification in routers.

While originally intended to facilitate flow-specific packet handling
in routers (e.g., QoS, fast switching), the Flow Label can also be used
by hosts to uniquely label one or more transport connections. An
originating host may select a random Flow Label value at the beginning
of a connection, and continue to use it for the connection's duration.
The host (or hosts for multicast) at the other end of the connection
can record this Flow Label value, and use it as part of the connection
demultiplexing key, while also labeling response packets with the same
or a different Flow Label value. The originating host can similarly
record the Flow Label value in response packets, and use it as part of
its connection demultiplexing key. In this way an additional 20 bits of
entropy is added to the set of header fields used to identify a
transport connection. When used in addition to source port
randomization, the total amount of entropy is approximately 34-35 bits.
When TCP initial sequence number randomization is also used (i.e., in
TCP), the entropy is increased to > 40 bits (even for large windows),
making off-path snooping attacks impractical.

The Flow Label field is not included in the pseudo header checksum of
any of the standard transport protocols. Corruption of the Flow Label
value (that is not detected by any link-layer checksum) will be
interpreted by the receiving host as evidence of an attack (rather than
otherwise being ignored). The recommended response by the receiving
host (to silently discard the packet) is the same as in the case of a
packet with a checksum error.

The concept of labeling transport connections to prevent off-path
spoofing attacks was proposed in [McGann@5] (McGann, 0. and D. Malone,
“Flow lLabel Filtering Feasibility,” December 2005.), in the context of
stateful firewalls. This scheme may be useful for other transport
protocols such as SCTP [RFC4960] (Stewart, R., “Stream Control
Transmission Protocol,” September 2007.), UDP [RFCO768] (Postel, J.,
“User Datagram Protocol,” August 1980.), UDP-Lite [RFC3828] (Larzon, L-
A., Degermark, M., Pink, S., Jonsson, L-E., and G. Fairhurst, “The
Lightweight User Datagram Protocol (UDP-Lite),” July 2004.), DCCP
[RFC4340] (Kohler, E., Handley, M., and S. Floyd, “Datagram Congestion
Control Protocol (DCCP),” March 2006.), and RTP [RFC3550] (Schulzrinne,
H., Casner, S., Frederick, R., and V. Jacobson, “RTP: A Transport
Protocol for Real-Time Applications,” July 2003.). Host implementations
in compliance with [RFC3697] (Rajahalme, J., Conta, A., Carpenter, B.,
and S. Deering, “IPv6 Flow Label Specification,” March 2004.) which do
not allocate multiple flows to a single transport connection will




either label all packets in the connection with a Flow Label value of
O, or with some other constant. Therefore, this scheme is incrementally
deployable by either peer in a connection. By introducing an incentive
for hosts to begin utilizing the Flow Label, its utility for other
network applications (e.g., as part of the ECMP load balancing key in
routers) is improved.

Section 3 (Additional Requirements on Flow Label Value Generation and
Use) specifies additional requirements on Flow Label generation.
Section 4 (TCP Considerations) describes the use of this scheme with
TCP. Section 5 (UDP Considerations) describes the use of this scheme
with UDP and UDP-Lite. Section 6 (SCTP Considerations) describes the
use of this scheme with SCTP. Section 7 (DCCP Considerations) describes
the use of this scheme with DCCP. Section 8 (RTP Considerations)
describes the use of this scheme with RTP over UDP or DCCP. Section 9
(NAT Considerations) describes the implications of IPv6 network address
translation with respect to this scheme. Section 10 (Support for
Transport Connection Sub-Flows) describes an alternative receiver
behavior which allows support for multiple sub-flows within a transport
connection.

2. Requirements Language TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

3. Additional Requirements on Flow Label Value Generation and TOC
Use

[RFC3697] (Rajahalme, J., Conta, A., Carpenter, B., and S. Deering,
“IPv6 Flow Label Specification,” March 2004.) specifies the rules
governing use of the IPv6 Flow Label. The primary requirements relevant
to our purpose are as follows (quoting directly):

*A Flow Label of zero is used to indicate packets not part of any
flow.

*The Flow Label value set by the source MUST be delivered
unchanged to the destination node(s).



*To enable Flow Label based classification, source nodes SHOULD
assign each unrelated transport connection and application data
stream to a new flow.

*The source node SHOULD be able to select unused Flow Label values
for flows not requesting a specific value to be used.

*A source node MUST ensure that it does not unintentionally reuse
Flow Label values it is currently using or has recently used when
creating new flows.

*Flow Label values previously used with a specific pair of source
and destination addresses MUST NOT be assigned to new flows with
the same address pair within 120 seconds of the termination of
the previous flow.

*The source node SHOULD provide the means for the applications and
transport protocols to specify quarantine periods longer than the
default 120 seconds for individual flows.

*To avoid accidental Flow Label value reuse, the source node
SHOULD select the new Flow Label value in a well-defined
sequence, (e.g., sequential or pseudo-random) and use an initial
value that avoids reuse of recently used Flow Label values each
time the system restarts. The initial value SHOULD be derived
from a previous value stored in non-volatile memory, or in the
absence of such history, a randomly generated initial value using
techniques that produce good randomness properties SHOULD be
used.

We wish to use the Flow Label value as an unguessable nonce. Hence, the
following additional requirements are implied:

*Source hosts MUST assign each unrelated transport connection and
application data stream to a new flow (i.e., with a non-zero Flow
Label value).

*Source hosts MUST be able to select unused Flow Label values for
flows not requesting a specific value to be used. The selected
Flow Label value must remain constant for the duration of the
flow.

*The Flow Label value MUST be practically unguessable, in a manner
similar to the TCP source port or initial sequence number when
they are randomized. A random number generator with good
randomness properties (i.e., uniformly distributed) as specified
in [RFC4086] (Eastlake, D., Schiller, J., and S. Crocker,
“Randomness Requirements for Security,” June 2005.) MUST be used
to generate Flow Label values not explicitly requested by an
application.




*Flow Label state for a transport connection or application data
stream MUST be cleaned-up by hosts as part of the transport
connection/application data stream state clean-up.

*Flow Label values previously used with a specific pair of source
and destination addresses MUST NOT be assigned to new flows with
the same address pair within X seconds of the termination of the
previous flow, where X is the maximum of either 120 seconds, or
the duration for which transport connection state might linger at
a host after traffic flow has ceased (e.g., TIME-WAIT state in
TCP).

We assume that the requirement of [RFC3697] (Rajahalme, J., Conta, A.,
Carpenter, B., and S. Deering, “IPv6 Flow Label Specification,”

March 2004.) that "The Flow Label value set by the source MUST be
delivered unchanged to the destination node(s)" applies also when the
Flow Label value is 0. By implication we assume that intermediate nodes
are not allowed to assign a packet to a flow, whether or not the source
node did so.

For this particular application of the Flow Label field, no problem
would be posed if multiple flows from a source host in unrelated
transport connections/application data streams coincidentally shared
the same Flow Label value, as long as the other previous requirements
are adhered to. However, the prohibition in [RFC3697] (Rajahalme, J.,
Conta, A., Carpenter, B., and S. Deering, “IPv6 Flow Label
Specification,” March 2004.) against simultaneous reuse of Flow Label
values MUST be observed. Any application request to assign a specific
Flow Label value already in use by another flow MUST be rejected.
Transport-specific requirements on Flow Label use are provided in the
subsequent sections. However, as a general requirement, if a packet is
received on a transport connection/application data stream with an
unexpected Flow Label value, the packet MUST be silently discarded. If
excessive Flow Label errors are received, this event SHOULD be logged.
ICMPv6 error messages contain the IPv6 header of the packet triggering
the error [RFC4443] (Conta, A., Deering, S., and M. Gupta, “Internet
Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification,” March 2006.). A host receiving an ICMPv6 error
message can validate the Flow Label value in the message payload to
protect against ICMPv6 spoofing attacks [I-D.ietf-tcpm-icmp-attacks]
(Gont, F., “ICMP attacks against TCP,” March 2008.).

Use of the Flow Label value as an unguessable nonce is incrementally
deployable, whether a source host fails to support setting the Flow
Label to a non-zero value, or a destination host fails to check its
value. However, a Flow Label value of 0 is easily guessable, so
resistance to spoofing attacks is not improved. Hosts SHOULD NOT rely
on the mechanisms defined in this document when operating in high-
threat environments.

The additional requirements given here for Flow Label generation and
use are not in conflict with the requirements in [RFC3697] (Rajahalme,




J., Conta, A., Carpenter, B., and S. Deering, “IPv6 Flow Label
Specification,” March 2004.). Therefore, additional applications of the
Flow Label field (e.g., for special QoS handling, load balancing, etc.)
can be applied simultaneously with the use of the Flow Label field as a
transport-layer nonce, so long as an additional application does not
limit the permissible values of the Flow Label in any way which
violates the requirement that the value be unpredictable.

4. TCP Considerations TOC

Uni-directional traffic in a TCP connection is assumed to constitute a
single flow, and hence MUST be assigned a unique Flow Label value by
the source host; either explicitly by the application or automatically
by the host's TCP/IP stack. Given the Flow Label value's additional use
as a packet classification field in routers (for QoS or other
purposes), there is no compelling reason to sub-divide traffic within a
TCP connection into multiple flows for classification purposes.

For this application of the Flow Label field, it would not pose a
problem if multiple TCP connections from a source host (whether to one
or a multiple of destination hosts) reused the same Flow Label value.
However, because of the additional uses of the Flow Label field, a host
MUST NOT assign the same Flow Label value to multiple TCP connections.
Both directions of traffic flow in a TCP connection are not required to
share the same Flow Label value, nor are they prohibited from doing so.
A host originating a TCP connection (client) selects a unique Flow
Label value for the connection, which it stores as the OUTGOING_FLOW_ID
in its Transport Control Block (TCB) for this connection. The Flow
Label selection algorithm can run simultaneously with TCP source port
and initial sequence number selection (e.g., by generating a single
random variable and assigning bit-ranges within it to each field). This
Flow Label value is included in the first (and subsequent) SYN
packet(s) sent to the destination host (server). The server receiving
the first SYN packet records the Flow Label value in its TCB for this
connection as the INCOMING_FLOW_ID. The server then selects a unique
Flow Label value for the connection, which it stores as the
OUTGOING_FLOW_ID in the connection's TCB. It includes this Flow Label
value in the first (and subsequent) SYN-ACK packet(s) sent to the
client. The client receiving the SYN-ACK packet from the server records
the Flow Label value in its TCB for this connection as the
INCOMING_FLOW_ID. It sends all additional packets of the connection to
the server using OUTGOING_FLOW_ID, and checks all incoming packets of
the connection from the server to ensure that they include
INCOMING_FLOW_ID. The server performs identical processing. Any packets
received with a Flow Label value that does not match INCOMING_FLOW_ID
MUST be silently discarded. If a significant number of such packets are
received, this event SHOULD be logged.



When a server implements a SYN cache and/or SYN cookies, the Flow Label
value used in the SYN-ACK packet MUST be consistent with the Flow Label
value used in subsequent packets [McGann05] (McGann, 0. and D. Malone,
“Flow Label Filtering Feasibility,” December 2005.) [RFC4987] (Eddy,
W., “TCP SYN Flooding Attacks and Common Mitigations,” August 2007.).
For the SYN cache case, this can be handled easily by including
INCOMING_FLOW_ID and OUTGOING_FLOW_ID as part of each cache entry. For
SYN cookies, one approach to satisfying the requirement without storing
state is to derive the Flow Label value from a hash of the the
connection 4-tuple plus a random secret [McGann05] (McGann, O. and D.
Malone, “Flow Label Filtering Feasibility,” December 2005.). Another
approach is to use the Flow Label value received in the SYN
(INCOMING_FLOW_ID) as the Flow Label value in the SYN-ACK
(OUTGOING_FLOW_ID). When the connection is established, the same Flow
Label value will be used in both directions of traffic. This approach
leaves a small window of vulnerability to spoofing before the
connection is established.

[RECO793] (Postel, J., “Transmission Control Protocol,”

September 1981.) specifies that a connection should remain in TIME_WAIT
state for 2 * MSL (Maximum Segment Lifetime) seconds. [RFC0793]
(Postel, J., “Transmission Control Protocol,” September 1981.)
specifies MSL as 120 seconds, although many implementations default to
a lower value. The Flow Label value quarantine period MUST be no less
than the maximum of either 2 * MSL for the connection, or 120 seconds.
The specified behavior at the client and server will work even if
either the client or server fails to set a non-zero outgoing Flow Label
value, or check the incoming Flow Label value. However, resistance to
spoofing attacks is not improved. Further, no mechanism for detecting
whether a peer is supporting the Flow Label nonce is defined, although
receipt of an initial packet with a non-zero Flow Label suggests that
the sending host may support this specification. Therefore, some
cryptographic authentication mechanism SHOULD be used when operating in
a high-threat environment [RFC2385] (Heffernan, A., “Protection of BGP
Sessions via the TCP MD5 Signature Option,” August 1998.)
[I-D.ietf-tcpm-tcp-auth-opt] (Touch, J., Mankin, A., and R. Bonica,
“The TCP Authentication Option,” July 2008.) [RFC4301] (Kent, S. and K.
Seo, “Security Architecture for the Internet Protocol,”

December 2005.).

5. UDP Considerations TOC

UDP is a connectionless protocol, which is also vulnerable to spoofing
attacks. The level of vulnerability is specific to each application-
layer protocol running over UDP. Source port randomization can be
utilized with UDP, but UDP does not have sequence numbers, so it is
arguably more vulnerable than TCP with source port and initial sequence



number randomization. With the exception of connected SOCk_DGRAM
sockets, UDP/IP stacks (usually) do not maintain sufficient state to
maintain INCOMING_FLOW_ID or OUTGOING_FLOW_ID values for each
application data stream between a source host and a destination host or
multicast group. Therefore, Flow Label generation and validation must
happen at the application layer.

For purposes of discussion, we define a UDP connection as a flow of
traffic matching the tuple <IP source address, UDP source port, IP
destination/group address, UDP destination port>. Note that a UDP
connection consists of uni-directional traffic flow between a pair of
hosts, or between a host and the receivers of a multicast group. UDP
applications MUST assign each connection to a unique flow, and hence
MUST assign each connection a unique Flow Label value. One exception is
where multiple application data streams are multiplexed onto the same
address/port pairs. In this case UDP applications MUST assign
application data streams to unique flows (as appropriate for the
intended QoS or other handling), and MUST use application-layer
demultiplexing to associate incoming data streams with flows.
Maintenance of INCOMING_FLOW_ID and OUTGOING_FLOW_ID values for each
flow MUST be provided by the application. Applications MUST check the
Flow Label value of a received packet against INCOMING_FLOW_ID for the
associated flow, and MUST silently discard the packet if the values do
not match. If a significant number of such packets are received, this
event SHOULD be logged. Note that an alternative to multiplexing
multiple application data streams onto the same address/port pair is to
utilize different source and/or destination port values for each data
stream.

Note that the Flow Label nonce does not provide any additional
protection for multicast applications. Source address spoofing is
usually prevented through use of reverse path forwarding (RPF) checks
as part of the multicast forwarding procedure, and in cases where RPF
is not in use (e.g., in BIDIR-PIM) [RFC5015] (Handley, M., Kouvelas,
I., Speakman, T., and L. Vicisano, “Bidirectional Protocol Independent
Multicast (BIDIR-PIM),” October 2007.)[RFC5294] (Savola, P. and J.
Lingard, “Host Threats to Protocol Independent Multicast (PIM),”

August 2008.), the attacker can learn the Flow Label values used by one
or more senders by joining the multicast group.

There is no standard, widely implemented sockets API for either setting
the Flow Label value in outgoing packets, nor retrieving it in incoming
packets [RFC3493] (Gilligan, R., Thomson, S., Bound, J., McCann, J.,
and W. Stevens, “Basic Socket Interface Extensions for IPv6,”

February 2003.)[RFC3542] (Stevens, W., Thomas, M., Nordmark, E., and T.

Jinmei, “Advanced Sockets Application Program Interface (API) for
IPv6,"” May 2003.). There is also no standard sockets API for specifying
that a non-zero Flow Label value be used in outgoing packets. Therefore
the requirements above cannot be satisfied, except where a non-standard
API is available, or the functionality is provided automatically within
the UDP/IP stack. It would be worthwhile to define a standard sockets
API for Flow Label management.




One application where the use of the Flow Label as a nonce would be
beneficial is in protection against blind DNS cache poisoning attacks
[I-D.weaver-dnsext-comprehensive-resolver] (Weaver, N., “Comprehensive
DNS Resolver Defenses Against Cache Poisoning,” September 2008.). If
DNS queries are each assigned a unique Flow Label value, and if DNS
servers send responses with an outgoing Flow Label value equal to the
incoming Flow Label value received in the request, then the client can
validate with high-probability that the request was generated by the
targeted server, since the UDP source port, DNS transaction ID, and
Flow Label together provide approximately 51 bits of entropy.

The procedures described above for UDP are equally applicable for UDP-
Lite [RFC3828] (Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E.,
and G. Fairhurst, “The Lightweight User Datagram Protocol (UDP-Lite),”

July 2004.).

6. SCTP Considerations TOC

Use of the Flow Label with SCTP will be discussed in a subsequent
revision of this document.

7. DCCP Considerations TOC

Use of the Flow Label with DCCP will be discussed in a subsequent
revision of this document.

8. RTP Considerations TOC

Use of the Flow Label with RTP applications will be discussed in a
subsequent revision of this document.

9. NAT Considerations TOC

IPv6 network address translators (NATs) are not common, and there is no
widely accepted definition for their correct behavior. One proposal
[I-D.mrw-behave-nat66] (Wasserman, M. and F. Baker, “IPv6-to-IPv6
Network Address Translation (NAT66),” March 2009.) assumes that the
NAT66 device performs stateless one-to-one address translation between
internal and external addresses. In this scenario there is no address
multiplexing, and the Flow Label values SHOULD NOT be changed by the




NAT66 device. The same is true for protocols permitting locator
translation, such as ILNP [I-D.rja-ilnp-intro] (Atkinson, R., “ILNP
Concept of Operations,” February 2010.).

An IPv6 NAT device performing address multiplexing (e.g., a NAPT) must
obey the same Flow Label rules in Section 3 (Additional Requirements on
Flow Label Value Generation and Use) as any host; i.e., no two
independent flows originating from the same translated address may
share the same Flow Label value. Therefore, such a NAT device MUST
modify the Flow Label value of any arriving flow of packets to ensure
that it does not collide with any currently in-use Flow Label values
originating from the same translated address.

10. Support for Transport Connection Sub-Flows TOC

The procedures described in this specification mandate that each
transport connection must be assigned to a new flow with a unique Flow
Label value. This does not permit the use of multiple IPv6 flows within
a TCP connection. Such a capability would be useful for some approaches
to TCP multi-path, such as [I-D.van-beijnum-le-mp-tcp] (Beijnum, I.,
“One-ended multipath TCP,” May 2009.), which use the same address/port
pairs for all sub-flows of the connection, and which would like to
utilize the IPv6 Flow Label as part of the ECMP load balancing key in
routers.

To enable the instantiation of multiple IPv6 flows per-transport
connection, while retaining the benefits of the Flow Label as a nonce,
we propose the following alternative procedures:

*Source hosts MUST assign each flow within a single transport
connection with an OUTGOING_FLOW_ID sharing the same value for
the least-significant 16 bits.

*Destination hosts check on the least-significant 16 bits of
INCOMING_FLOW_ID for each transport connection.

This modified procedure does not significantly weaken the overall
strenght of Flow Label nonce mechanism (when combined with other
obfuscation techniques), while enabling up to 16 sub-flows per-
transport connection).

11. Acknowledgements TOC

[McGann®5] (McGann, 0. and D. Malone, “Flow Label Filtering
Feasibility,” December 2005.) describes the use of the Flow Label as a
transport-layer nonce. If others are aware of when and where this




concept might have been discussed previously, please contact the
author.

The author would like to thank Brian Carpenter, Gorry Fairhurst, Joe
Touch, Bob Briscoe, Iljitsch van Beijnum, and Marcelo Bagnulo Braun for
their valuable feedback.

This document was produced using the xml2rfc tool [RFC2629] (Rose, M.,
“Writing I-Ds and RFCs using XML,"” June 1999.).

12. IANA Considerations TOC

This memo includes no request to IANA.

13. Security Considerations TOC

This memo describes the use of the IPv6 Flow Label as a transport-layer
nonce to help protect transport connections and application data
streams from blind spoofed packet injection attacks. Blind spoofed
packet injection attacks have been described in several publications,
and are well known to the community. This memo addresses the use of
this mechanism with different transport protocols. This mechanism is
only applicable for hosts communicating via the IPv6 protocol. This
mechanism does not provide protection for any on-path (man-in-the-
middle attacks); therefore, additional security mechanisms should be
used in high threat environments.

14. References TOC

14.1. Normative References
TOC
[RFCO768] Postel, J., “User Datagram Protocol,” STD 6, RFC 768,
August 1980 (TXT).
[RFCO793] Postel, J., “Transmission Control Protocol,” STD 7,
RFC 793, September 1981 (TXT).
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).

[RFC2460]


http://tools.ietf.org/html/rfc768
http://www.rfc-editor.org/rfc/rfc768.txt
http://tools.ietf.org/html/rfc793
http://www.rfc-editor.org/rfc/rfc793.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml

[RFC3550]

[RFC3697]

[RFC3828]

[RFC4086]

[RFC4340]

[RFC4443]

[RFC4960]

Deering, S. and R. Hinden, “Internet Protocol, Version 6
(IPv6) Specification,” RFC 2460, December 1998 (TXT,
HTML, XML).

Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, “RTP: A Transport Protocol for Real-Time
Applications,” STD 64, RFC 3550, July 2003 (TXT, PS,
PDF) .

Rajahalme, J., Conta, A., Carpenter, B., and S. Deering,
“IPv6 Flow Label Specification,” RFC 3697, March 2004
(TXT).

Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
G. Fairhurst, “The Lightweight User Datagram Protocol
(UDP-Lite),” RFC 3828, July 2004 (TXT).

Eastlake, D., Schiller, J., and S. Crocker, “Randomness
Requirements for Security,” BCP 106, RFC 4086, June 2005
(TXT).

Kohler, E., Handley, M., and S. Floyd, “Datagram
Congestion Control Protocol (DCCP),” RFC 4340, March 2006
(TXT).

Conta, A., Deering, S., and M. Gupta, “Internet Control
Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification,” RFC 4443, March 2006
(TXT).

Stewart, R., “Stream Control Transmission Protocol,”

RFC 4960, September 2007 (TXT).



mailto:deering@cisco.com
mailto:hinden@iprg.nokia.com
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2460
http://www.rfc-editor.org/rfc/rfc2460.txt
http://xml.resource.org/public/rfc/html/rfc2460.html
http://xml.resource.org/public/rfc/xml/rfc2460.xml
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3550
http://www.rfc-editor.org/rfc/rfc3550.txt
http://www.rfc-editor.org/rfc/rfc3550.ps
http://www.rfc-editor.org/rfc/rfc3550.pdf
http://tools.ietf.org/html/rfc3697
http://www.rfc-editor.org/rfc/rfc3697.txt
http://tools.ietf.org/html/rfc3828
http://tools.ietf.org/html/rfc3828
http://www.rfc-editor.org/rfc/rfc3828.txt
http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc4086
http://www.rfc-editor.org/rfc/rfc4086.txt
http://tools.ietf.org/html/rfc4340
http://tools.ietf.org/html/rfc4340
http://www.rfc-editor.org/rfc/rfc4340.txt
http://tools.ietf.org/html/rfc4443
http://tools.ietf.org/html/rfc4443
http://tools.ietf.org/html/rfc4443
http://www.rfc-editor.org/rfc/rfc4443.txt
http://tools.ietf.org/html/rfc4960
http://www.rfc-editor.org/rfc/rfc4960.txt

14.2. Informative References TOC

[RFC1948]

[RFC2385]

[RFC2629]

[RFC2827]

[RFC3493]

[RFC3542]

[RFC3704]

[RFC4301]

[RFC4953]

[RFC4987]

[RFC5015]

[RFC5082]

[RFC5294]

[I-D.ietf-tcpm-

icmp-attacks]

[I-D.ietf-tcpm-
tcpsecure]

Bellovin, S., “Defending Against Sequence
Number Attacks,” RFC 1948, May 1996 (TXT).
Heffernan, A., “Protection of BGP Sessions via
the TCP MD5 Signature Option,” RFC 2385,

August 1998 (TXT, HTML, XML).

Rose, M., “Writing I-Ds and RFCs using XML,"”
RFC 2629, June 1999 (TXT, HTML, XML).

Ferguson, P. and D. Senie, “Network Ingress
Filtering: Defeating Denial of Service Attacks
which employ IP Source Address Spoofing,”

BCP 38, RFC 2827, May 2000 (TXT).

Gilligan, R., Thomson, S., Bound, J., McCann,
J., and W. Stevens, “Basic Socket Interface
Extensions for IPv6,” RFC 3493, February 2003
(IXT).

Stevens, W., Thomas, M., Nordmark, E., and T.
Jinmei, “Advanced Sockets Application Program
Interface (API) for IPv6,” RFC 3542, May 2003
(TXT).

Baker, F. and P. Savola, “Ingress Filtering for
Multihomed Networks,” BCP 84, RFC 3704,

March 2004 (TXT).

Kent, S. and K. Seo, “Security Architecture for
the Internet Protocol,” RFC 4301, December 2005
(TXT).

Touch, J., “Defending TCP Against Spoofing
Attacks,” RFC 4953, July 2007 (TXT).

Eddy, W., “TCP SYN Flooding Attacks and Common
Mitigations,” RFC 4987, August 2007 (TXT).
Handley, M., Kouvelas, I., Speakman, T., and L.
Vicisano, “Bidirectional Protocol Independent
Multicast (BIDIR-PIM),” RFC 5015, October 2007
(TXT).

Gill, V., Heasley, J., Meyer, D., Savola, P.,
and C. Pignataro, “The Generalized TTL Security
Mechanism (GTSM),” RFC 5082, October 2007
(TXT).

Savola, P. and J. Lingard, “Host Threats to
Protocol Independent Multicast (PIM),”

RFC 5294, August 2008 (TXT).

Gont, F., “ICMP attacks against TCP,” draft-
ietf-tcpm-icmp-attacks-03 (work in progress),
March 2008 (TXT).

Ramaiah, A., Stewart, R., and M. Dalal,
“Improving TCP's Robustness to Blind In-Window



mailto:smb@research.att.com
http://tools.ietf.org/html/rfc1948
http://tools.ietf.org/html/rfc1948
http://www.rfc-editor.org/rfc/rfc1948.txt
mailto:ahh@cisco.com
http://tools.ietf.org/html/rfc2385
http://tools.ietf.org/html/rfc2385
http://www.rfc-editor.org/rfc/rfc2385.txt
http://xml.resource.org/public/rfc/html/rfc2385.html
http://xml.resource.org/public/rfc/xml/rfc2385.xml
mailto:mrose@not.invisible.net
http://tools.ietf.org/html/rfc2629
http://www.rfc-editor.org/rfc/rfc2629.txt
http://xml.resource.org/public/rfc/html/rfc2629.html
http://xml.resource.org/public/rfc/xml/rfc2629.xml
http://tools.ietf.org/html/rfc2827
http://tools.ietf.org/html/rfc2827
http://tools.ietf.org/html/rfc2827
http://www.rfc-editor.org/rfc/rfc2827.txt
http://tools.ietf.org/html/rfc3493
http://tools.ietf.org/html/rfc3493
http://www.rfc-editor.org/rfc/rfc3493.txt
http://tools.ietf.org/html/rfc3542
http://tools.ietf.org/html/rfc3542
http://www.rfc-editor.org/rfc/rfc3542.txt
http://tools.ietf.org/html/rfc3704
http://tools.ietf.org/html/rfc3704
http://www.rfc-editor.org/rfc/rfc3704.txt
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc4301
http://www.rfc-editor.org/rfc/rfc4301.txt
http://tools.ietf.org/html/rfc4953
http://tools.ietf.org/html/rfc4953
http://www.rfc-editor.org/rfc/rfc4953.txt
http://tools.ietf.org/html/rfc4987
http://tools.ietf.org/html/rfc4987
http://www.rfc-editor.org/rfc/rfc4987.txt
http://tools.ietf.org/html/rfc5015
http://tools.ietf.org/html/rfc5015
http://www.rfc-editor.org/rfc/rfc5015.txt
http://tools.ietf.org/html/rfc5082
http://tools.ietf.org/html/rfc5082
http://www.rfc-editor.org/rfc/rfc5082.txt
http://tools.ietf.org/html/rfc5294
http://tools.ietf.org/html/rfc5294
http://www.rfc-editor.org/rfc/rfc5294.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-icmp-attacks-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-icmp-attacks-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcpsecure-10.txt

[I-D.ietf-tsvwg-
port-randomization]

[I-D.ietf-tcpm-tcp-

auth-opt]

[I-D.weaver-dnsext-
comprehensive-
resolver]

[I-D.mrw-behave-
nat66]
[I-D.rja-ilnp-

intro]

[I-D.van-
beijnum-1e-mp-tcp]

[McGann@G5]

Author's Address

Phone:
Email:

Attacks,” draft-ietf-tcpm-tcpsecure-10 (work in
progress), July 2008 (TXT).

Larsen, M. and F. Gont, “Port Randomization,”
draft-ietf-tsvwg-port-randomization-02 (work in
progress), August 2008 (TXT).

Touch, J., Mankin, A., and R. Bonica, “The TCP
Authentication Option,” draft-ietf-tcpm-tcp-
auth-opt-01 (work in progress), July 2008
(TXT).

Weaver, N., “Comprehensive DNS Resolver
Defenses Against Cache Poisoning,” draft-
weaver-dnsext-comprehensive-resolver-00 (work
in progress), September 2008 (TXT).

wWasserman, M. and F. Baker, “IPv6-to-IPv6
Network Address Translation (NAT66),"” draft-
mrw-behave-nat66-02 (work in progress),

March 2009 (TXT).

Atkinson, R., “ILNP Concept of Operations,”
draft-rja-ilnp-intro-03 (work in progress),
February 2010 (TXT).

Beijnum, I., “One-ended multipath TCP,” draft-
van-beijnum-le-mp-tcp-00 (work in progress),
May 2009 (TXT).

McGann, 0. and D. Malone, “Flow Label Filtering
Feasibility,” European Conference on Computer
Network Defence, December 2005.

_T0C
Steven Blake
Extreme Networks
Pamlico Building One, Suite 100
3306/08 E. NC Hwy 54
RTP, NC 27709
USA
+1 919 884 3211
sblake@extremenetworks.com



http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcpsecure-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcpsecure-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-port-randomization-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-port-randomization-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcp-auth-opt-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcp-auth-opt-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcp-auth-opt-01.txt
http://www.ietf.org/internet-drafts/draft-weaver-dnsext-comprehensive-resolver-00.txt
http://www.ietf.org/internet-drafts/draft-weaver-dnsext-comprehensive-resolver-00.txt
http://www.ietf.org/internet-drafts/draft-weaver-dnsext-comprehensive-resolver-00.txt
http://www.ietf.org/internet-drafts/draft-mrw-behave-nat66-02.txt
http://www.ietf.org/internet-drafts/draft-mrw-behave-nat66-02.txt
http://www.ietf.org/internet-drafts/draft-mrw-behave-nat66-02.txt
http://www.ietf.org/internet-drafts/draft-rja-ilnp-intro-03.txt
http://www.ietf.org/internet-drafts/draft-rja-ilnp-intro-03.txt
http://www.ietf.org/internet-drafts/draft-van-beijnum-1e-mp-tcp-00.txt
http://www.ietf.org/internet-drafts/draft-van-beijnum-1e-mp-tcp-00.txt
mailto:sblake@extremenetworks.com

	Use of the IPv6 Flow Label as a Transport-Layer Nonce to Defend Against Off-Path Spoofing Attacksdraft-blake-ipv6-flow-label-nonce-02
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1.  Introduction
	1.1.  TCP's Vulnerability to Blind Spoofing Attacks
	1.2.  IPv6 Flow Label
	2.  Requirements Language
	3.  Additional Requirements on Flow Label Value Generation and Use
	4.  TCP Considerations
	5.  UDP Considerations
	6.  SCTP Considerations
	7.  DCCP Considerations
	8.  RTP Considerations
	9.  NAT Considerations
	10.  Support for Transport Connection Sub-Flows
	11.  Acknowledgements
	12.  IANA Considerations
	13.  Security Considerations
	14.  References
	14.1. Normative References
	14.2. Informative References
	Author's Address


