
Network Working Group Alan Blount
INTERNET-DRAFT Derek Young
Category: Informational MetraTech Corp.
<draft-blount-acct-msix-00.txt>
28 July 1999

Metered Service Information eXchange
Protocol Specification

Version 1.2

Status of this Memo

 This document is an Internet-Draft, and is in full conformance with
 all provisions of Section 10 of RFC 2026 [1].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress.''

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 The distribution of this memo is unlimited. It is filed as <draft-
blount-acct-msix-00.txt>, and expires January 1, 2000. Please send

 comments to the authors.

Abstract

 This document defines MSIX, a protocol that enables transmission of
 service definitions and service usage information from client to
 server. Services can be defined dynamically such that a metering
 server can become capable of handling new metered service types
 during the normal course of business without need for recompilation
 or reconfiguration. Service usage description semantics support
 transactional data submission. Support for both simple and compound
 transactions is provided.

Table of Contents

 1. Introduction
 1.1. Service Definition
 1.2. Session Description
 1.3. Unsupported

https://datatracker.ietf.org/doc/html/draft-blount-acct-msix-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-blount-acct-msix-00.txt
https://datatracker.ietf.org/doc/html/draft-blount-acct-msix-00.txt

Blount, Young [Page 1]

INTERNET-DRAFT June 1999

 2. Terminology and Notation
 3. Protocol Foundation
 3.1. Protocol Base
 3.2. XML
 4. Common Element
 4.1. Message Wrappers
 4.2. Common Elements
 4.3. Status Responses
 5. Message Sets
 5.1. Service Definition
 5.2. Session Submission
 5.3. Utilities
 6. Security Considerations
 7. References
 8. Acknowledgments
 9. Authors' Addresses

Appendix A. Document Type Definition
Appendix B. Timestamps
Appendix C. Example Protocol Exchanges

1. Introduction

 This document defines the Metered Services Information eXchange
 (MSIX) specification. The acronym is pronounced "M6".

 +-------------+ +-------------+ +-------------+
 | Application |<----->| Application | MSIX | Metering |
 | Client | +-->| Server |<------>| Server |
 +-------------+ | +-------------+ +-------------+
 |
 +-------------+ |
 | Application |<--+
 | Client |
 +-------------+

 Fig. 1 -- MSIX Applicability

 MSIX is used between application servers and metering servers.
 Application servers provide services to end users. Metering servers
 record descriptions of instances of service usage.

 Any sort of metered service is applicable to description by MSIX: the
 transfer of information (a web page, an audio clip, a feature film, a
 phone call, a video or audio conference), processing of information
 (remote computation), storage of information (remote file systems).
 Service-usage information describes the aspects of the use of a
 server that a server records for later tracking, billing, and audit
 purposes.

 MSIX enables two communication facilities: service definition and
 session submission. MSIX itself does not define services. That is,
 MSIX has no built-in notion of the measurable properties of a phone
 call, network connection, or any other service. MSIX provides
 definition of base data types (integers, strings, floats, and so on).

Blount, Young [Page 2]

INTERNET-DRAFT June 1999

 MSIX clients (Application Servers) are free to provide their own
 service definitions, which contain collections of these base types,
 to MSIX metering servers. MSIX metering server administrators are
 responsible for providing their own mapping from the service
 descriptions to any back-end processing (rating functions, logging
 policy, and so forth). MSIX does not address any billing or tracking
 issues except metering.

 +---------+ +---------+
 | | | |
 metadata | service |<>-----o| ptype |
 | | | |
 +---------+ +---------+
 ^ ^
 | |

 | |
 +---------+ +---------+
 | | | |
 data | session |<>-----o|property |
 | | | |
 +---------+ +---------+

 Fig. 2 -- Object Schema

1.1. Service Definition

 Service definitions provide a schema for metered session description.
 Services are identified by a distinguished name (dn) and contain a
 set of property type, or "ptype" descriptions. Each ptype describes
 static type information for a particular property of a "session,"
 which is an instantiation of a service.

 A service relation facility enables the definition of "compound"
 services, which are services that refrerence other services as child
 or parent. These compounds services are useful for describing
 multifaceted billable events like telephone conference calls, which
 are events well represented as a collection of sub-events (the
 individual calls to or from the conference server). The explicit
 definition of a compound service enables an MSIX server to optionally
 verify that submitted sessions conform to a particular service
 hierarchy.

1.2. Session Submission

 A Session is a description of an instance of service usage. Sessions
 are composed of a client-assigned unique ID (uid), a reference to a
 service, and a collection of properties. The schema of a particular
 session must match the schema defined by the service it references.

1.2.1. Bulk Data Transfer

 Sessions can be transmitted in bulk during a single network
 connection, or piecewise over a number of subsequent network

Blount, Young [Page 3]

INTERNET-DRAFT June 1999

 connections. Each request from client to server carries a unique ID
 that can be used to correlate it to the server's response.

1.2.2. Transaction Support

 Sessions can be described and committed in a single message, or they
 can be started in one message, added to or updated in another, and
 committed in yet another.

1.3. Unsupported

 Facilities such as service and session deletion and query are out of
 the scope of this protocol. The authors expect that these facilities
 may become the subject of a related document that will address these
 and other administrative issues. This document deals with only those
 communication facilities necessary for an application server (MSIX
 client) to describe the service it performs to an MSIX server, and to
 submit descriptions of instances of service performance to an MSIX
 server.

2. Terminology and Notation

 The following terms are used throughout the document.

 Application Server
 An entity that provides application services to clients.
 Application servers are typically clients of MSIX servers.

 Exchange
 A client request followed by a server response, each bearing the
 same unique identifier. Some exchanges are transactional (for
 example, session submission), some are not (for example, service
 definition).

 Message
 An atomic, ordered collection of bytes that travels between client
 and server.

 Property
 A (typically metered) component of a session. A session
 describing a phone call, for instance, might have the property
 "twenty seconds", that describes its duration

 Ptype
 A component of a service definition that describes a property's
 metadata. A service definition for a phone call might have the
 ptype "duration", of type INT32.

 Request
 A message that travels from client to server.

 Response
 A message that travels from server to client.

Blount, Young [Page 4]

INTERNET-DRAFT June 1999

 Service
 A service is a type of task that is performed by an application
 server for a client.

 Session
 Describes a particular instance of service-usage by an end-user.

3. Protocol Foundation

3.1 Protocol Base

 MSIX requires a connection-oriented, reliable, byte stream protocol
 for transport. MSIX messages are transfered using the Hypertext
 Transfer Protocol (HTTP) [3], running over TCP/IP [8][7].

 If an MSIX client or server is to be deployed in a hostile network, a
 security layer is required as well. In such cases, MSIX is used atop
 the Secure Sockets Layer [4] or Transport Layer Security [6].

 +------+ +------+
 | MSIX | | MSIX |
 +------+ +------+
 | HTTP | | HTTP |
 +------+ or +------+
 | SSL | | TLS |
 +------+ +------+
 |TCP/IP| |TCP/IP|
 +------+ +------+

 Fig. 3 -- Protocol Stacks

 It is not strictly necessary that MSIX run atop a secure transport.
 In a secure network environment, entities could communicate by MSIX
 without the need for connection-level security. For the most part,
 MSIX is expected to be deployed in the open Internet and corporate
 intranets, where not all connected entities can be trusted.

3.2. XML

 MSIX messages are formatted using the eXtensible Markup Language
 (XML) [2], which provides for tagged data. An XML Document Type
 Declaration for MSIX is located in Appendix A.

4. Common Elements

 This section defines the MSIX root entity and details elements that
 appear throughout the protocol.

4.1. MSIX Root Entity

 MSIX is a request-response protocol. An exchange is comprised of a
 request-response pairs that travel between client and server. An
 exchange is distinguished by the uid attribute within the msix root
 element.

Blount, Young [Page 5]

INTERNET-DRAFT June 1999

 <!DOCTYPE msix [
 <!ELEMENT msix (defineservice | beginsession | updatesession |
 commitsession | abortsession | status |
 defineservicers | beginsessionrs | updatesessionrs |
 commitsessionrs | abortsessionrs)
 <!ATTLIST msix version CDATA #FIXED '1.2'
 timestamp CDATA #REQUIRED
 uid ID #REQUIRED >] >

 version
 MSIX Protocol version. The value of the version described by this
 document is fixed at '1.2'. MSIX versions are identified as
 follows:

 version ::= major.minor
 major ::= DIGIT+
 minor ::= DIGIT+

 Versions are ordered as floats, where the major number takes
 precedence over the minor.

 timestamp
 Denotes the time that the message was sent. Time is represented
 using a restricted form of the ISO 8601:1988 [9] timestamp. The
 definition is given in Appendix B.

 uid
 Identifies an MSIX client request/response pair. An MSIX server
 responds to a given request using the request's uid as its own.
 Also used as an attribute by messages that manipulate sessions.

 Clients are responsible to provide a uid that is unique to the
 MSIX server. An MSIX server must reject client requests that have
 uids that conflict with uids of other messages (1) to which the
 server has not yet responded or (2) that contain a transactional
 request that is currently in the OPEN state. An MSIX server may
 reject a client message if it is unsatisfied with the uniqueness
 of its uid for any reason.

 The value of the uid is to be treated by both client and server as
 an opaque string. Implementations must not extract information
 from this string for other uses.

 Two forms of uids are suggested. The first, to be generally used,
 has the following production:

 uid ::= "gen:/" hostname "/" unixtime "/" random "/" counter

 hostname ::= ALPHANUM+ (.ALPHANUM+)*
 Hostname of client

 unixtime ::= DIGIT+
 Time of message creation, in seconds since 12:00 a.m. January
 1, 1970 UTC.

Blount, Young [Page 6]

INTERNET-DRAFT June 1999

 random ::= DIGIT+
 A large (8+ digit) random number.

 counter ::= DIGIT+
 A monotonically increasing counter, incremented for each
 message sent. Client should ensure that this counter does not
 reset to zero at system restarts.

 Example: "gen:/foo.msix.org/929383942/6001338297/723"

 The second form is used when the MSIX client is reading service
 usage information from a flat file that contains a plurality of
 transaction records. The client wishes to prevent accidental
 reruns, such that if the same client is run a second time against
 the same file, the MSIX server will reject the requests as
 duplicates. This is useful in instances where a flat file created
 by a legacy system lacks unique transaction identifiers.

 uid ::= "hash:/" hostname "/" hash "/" recordno

 hostname ::= ALPHANUM+ (.ALPHANUM+)*
 Hostname of client

 hash ::= 32ALPHANUM
 The MD5 [5] hash of the source file.

 recordno ::= DIGIT+
 Zero-based index of record count.

 Example: "hash:/foo.msix.org/8df6f439509bb7c0d430718a7c558321/15"

4.2. Common Elements

 There are a number of elements used throughout the protocol.

 <!ELEMENT dn (#PCDATA)>
 Distinguished Name. Used to distinguish services and ptypes.

 <!ELEMENT description (#PCDATA)>
 <!ATTLIST description xml:lang NMTOKEN #IMPLIED>

 Human-readable description. Generally more verbose than the
 distinguished name. Not intended to be programatically parsed.

4.3. Status Responses

 A status response is composed of a status code, an optional status
 message, and an optional status detail. The status code element is
 the string "msix.org/" followed by a three digit integer result code
 of the attempt to understand and satisfy the request. The status

 message is intended to give a short textual description of the status
 code. The status detail may be used to provide additional
 information about the results. The status code is intended for use

Blount, Young [Page 7]

INTERNET-DRAFT June 1999

 by automata and the status message and detail are intended for the
 human user. The client is not required to examine or display the
 status message or status detail.

 The first digit of the status code defines the class of response. The
 last two digits do not have any categorization role. There are four
 values for the first digit:

 msix.org/1xx: Informational - Request received, continuing process

 msix.org/2xx: Success - The action was successfully received,
 understood, and accepted

 msix.org/4xx: Client Error - The request contains bad syntax or
 cannot be fulfilled

 msix.org/5xx: Server Error - The server failed to fulfill an
 apparently valid request

 Each element of a status code is an alphanumeric string, without
 whitespace and optionally with dashes or underscores. Elements are
 separated by single slashes ("/"). The top-level vendor element is a
 domain name that belongs to the organization defining the status
 code.

 The msix.org vendor prefix is specified so that user-specified status
 codes can be used in future versions of this protocol. This feature
 is not currently addressed or specified.

 Status responses are represented as follows:

 <!ELEMENT status (code, message?, detail?) >

 <!ELEMENT code (#PCDATA)>
 Short human-speakable identifier. A unique distinguished name.

 <!ELEMENT message (#PCDATA)>
 Human-readable status message.

 <!ELEMENT detail (#PCDATA)>
 Optional additional information about a particular instance of an
 error.

 There are a number of status response messages that are common to
 several different requests. They are as follows:

Blount, Young [Page 8]

INTERNET-DRAFT June 1999

 +==============+==+
 | code | message |
 +==============+==+
msix.org/200	Request successful
msix.org/400	Bad request
msix.org/401	Request unauthorized
msix.org/408	Transaction timeout
msix.org/500	Internal Server Error
msix.org/501	Not implemented
msix.org/503	Service Unavailable
msix.org/505	MSIX version not supported
 +--------------+--+

 Status elements are always sent as internal components of
 defineservicers, relateservicers, beginsessionrs, updatesessionrs,
 commitsessionrs, abortsessionrs, and getversionrs elements. When an
 MSIX server fails to understand a request, it must respond with a
 status element within the top-level msix element, and omit all other
 response elements.

5. Message Sets

 This section defines the messages that MSIX-compliant entities must
 support. Exchanges are composed of a request-response message pair.
 A request message definition is identified in this document by the
 REQUEST label at the top of the definition. The RESPONSE label
 identifies specific response messages. Each response includes the
 set of possible status codes that can result from the request. Note
 that the 5xx and 2xx status codes are not specifically identified in
 these blocks, as server errors are valid responses to any request,
 and success (one hopes) is always possible.

 MSIX defines three message sets: service definition, session
 submission, and utilities.

5.1 Service Definition

 This section describes how services are defined. Service definitions
 are performed by the client using a defineservice request. Service
 definitions are generally given names that are human-readable and
 pronounceable. Service names are represented as follows:

 vendor/service/service...

 Each element of a service name is an alphanumeric string, without
 whitespace and optionally with dashes or underscores. Elements are
 separated by single slashes ("/"). The top-level vendor element is a
 domain name that belongs to the organization defining the service.
 For example, if the organization that holds server.net were to define

 voice and fax services, their service names would be of the form
 server.net/voicecall, server.net/fax, and so on. Vendors are
 responsible for maintaining their own namespace of services
 underneath their vendor element.

Blount, Young [Page 9]

INTERNET-DRAFT June 1999

5.1.1. Define Service

5.1.1.1. defineservice REQUEST

 This request initiates service definition. The combination of
 distinguished name and version must be unique.

 Services are distinguished by two attributes: Their distinguished
 name (dn), and version. An MSIX server must reject a service
 definition request that carries a dn and version identical to a
 preexisting service definition.

 A successful defineservice request results in the MSIX server sending
 a defineservicers response that contains the distinguished name and
 version of the the service that was submitted.

 <!ELEMENT defineservice (dn, version, description, ptype*) >

 <!ELEMENT dn (#PCDATA)>
 Unique name of service. See section 5.1 for definition.

 <!ELEMENT version (#PCDATA)>
 Version of service.

 <!ELEMENT description (#PCDATA)>
 <!ATTLIST description xml:lang NMTOKEN #IMPLIED>
 Human-readable description of service.

 <!ELEMENT ptype (dn, type, description?, defaultvalue?) >
 <!ATTLIST ptype required (Y | N) "N">

 <!ELEMENT dn (#PCDATA)>
 Must be unique in containing defineservice element.

 <!ELEMENT type (#PCDATA)>
 Type of data. Valid types defined in table below.

 required (y | n)
 If n, each session that is an instance of this service must
 contain a property of this ptype.

Blount, Young [Page 10]

INTERNET-DRAFT June 1999

 +============+===+
 | Value | Description |
 +============+===+
STRING	Arbitrary-length character string
UNISTRING	Arbitrary-length UTF8-encoded character string
INT32	String representation of 4-byte signed integer
FLOAT	String representation of IEEE 4-byte floating point
	number
DOUBLE	String representation of IEEE 8-byte floating point
	number
BOOLEAN	Single ASCII character: T (0x54) or F (0x46)
TIMESTAMP	ISO 8601:1988 date string, as defined in appendix
 +------------+---+

 <!ELEMENT description (#PCDATA)>
 <!ATTLIST description xml:lang NMTOKEN #IMPLIED>
 Optional description

 <!ELEMENT defaultvalue (#PCDATA)>
 Optional default value

5.1.1.2. defineservicers RESPONSE

 Service definition can fail for a number of reasons. The
 distinguished names of each each contained ptype must be unique.
 Conflicts cause an error to be returned. The dn and version
 combination must be unique. The ptype elements must be well-formed.

 <!ELEMENT defineservicers (status, dn, version) >

 <!ELEMENT status (code, message?, detail?)>

 +=============================+====================================+
 |code |message |
 +=============================+====================================+
 |msix.org/400 |Bad request |
 +-----------------------------+------------------------------------+
 |msix.org/401 |Request unauthorized |
 +-----------------------------+------------------------------------+
 |msix.org/defineservicers/450 |dn name collision -- service of this|
 | |version already defined |
 +-----------------------------+------------------------------------+
 |msix.org/defineservicers/451 |Invalid ptype: multiple identical |
 | |dn's |
 +-----------------------------+------------------------------------+
 |msix.org/defineservicers/452 |Invalid ptype: specifies unsupported|
 | |type |
 +-----------------------------+------------------------------------+

 <!ELEMENT dn (#PCDATA)>
 Distinguished name of service.

 <!ELEMENT version (#PCDATA)>
 Service version

Blount, Young [Page 11]

INTERNET-DRAFT June 1999

5.1.2. Relate Services

 Relationships can exist amongst services. Services can be parents or
 children of other services. Parent-child relationships serve to
 establish billing constraints among services and the sessions that
 are instantiations of them.

 Sessions that have children are not considered complete until all
 their children have completed. This facility enables an MSIX client
 to instruct the server to wait on further processing of an ongoing
 transaction (rating, creating a bill, and so on) until it is
 complete. For instance, a conference call session can contain a
 collection of individual calls to and from a conference bridge. The
 conference bridge, an MSIX client, can report the individual calls by
 sending several messages over time, and then commit a parent
 "conference" session when the call has completed.

 Services that are not related to other services are termed simple
 services. Services that are related to other services are called
 compound services.

 A client may specify that a relationship is to be optional. If a
 relationship is not required, a session whose corresponding service
 has a parent may or may not identify a parent session. If a service
 has a required relationship, an MSIX server must reject sessions that
 identify parent sessions for which a corresponding service parent-
 child relationship has not been defined.

 Relationships are not versioned. A relationship between parent and
 child applies to all versions of both parent and child.

 5.1.2.1. relateservices REQUEST

 <!ELEMENT relateservices (parentdn, childdn) > <!ATTLIST
 relateservices required (y | n) "n">

 <!ELEMENT parentdn (#PCDATA)>
 Distinguished name of parent service. See section 5.1 for
 definition.

 <!ELEMENT childdn (#PCDATA)>
 Distinguished name of child service. See section 5.1 for
 definition.

 5.1.2.2. relateservices RESPONSE

 <!ELEMENT relateservicers (status) >

 <!ELEMENT status (code, message?, detail?)>

Blount, Young [Page 12]

INTERNET-DRAFT June 1999

 +==============================+===================================+
 |code |message |
 +==============================+===================================+
 |msix.org/400 |Bad request |
 +------------------------------+-----------------------------------+
 |msix.org/401 |Request unauthorized |
 +------------------------------+-----------------------------------+
 |msix.org/relateservicesrs/450 |One or more unknown or invalid dn's|
 +------------------------------+-----------------------------------+
 |msix.org/relateservicesrs/451 |Services already related |
 +------------------------------+-----------------------------------+

5.2. Session Submission

 This section describes the messages that communicate service usage
 information between client and server.

 As with services, sessions can be simple or compound. Simple
 sessions are those that are described by a single beginsession
 message. Compound sessions are submitted piecewise. A beginsession
 request may be followed by other beginsession requests, each of the
 latter referencing the former by use of its parentid element.

 Sessions must match the schema of the service to which their service
 dn refers.

 Each session, whether parent or child, must be committed before the
 MSIX server will further act on it (for example, make it available to
 a back end rating/billing system). If a parent session is committed
 or aborted, the commit or abort is recursively cascaded to all its
 children. Committed sessions may not be updated.

 A client may committ a session immediately, without sending a
 separate commitsession message, by setting a commit attribute in a
 beginsession or updatesession message to "Y".

5.2.1. Transaction State

 Session submission semantics are transactional so that events that
 happen to transpire across accounting/billing period boundaries won't
 be billed across two accounting/billing periods.

 A beginsession request starts a transaction. Transactions are
 completed by one of three methods: commit by the client, abort by the
 client, or abort (timeout) by the server.

Blount, Young [Page 13]

INTERNET-DRAFT June 1999

 +---------+
 | OPEN |
 +---------+
 | |
 commit | | abort/timeout
 v v
 +---------+ +---------+
 |COMMITTED| | ABORTED |
 +---------+ +---------+

 Fig. 4 -- State Transitions

 This specification does not discuss the parameters that govern server
 timeout.

5.2.2. Begin Session

 This request initiates a session transaction. The session
 transaction is maintained in the OPEN state until commit, abort, or
 timeout. The server returns a beginsessionrs response that
 identifies the uid of the session.

 A beginsession request must not identify a committed session as its
 parent.

 If the commit attribute is set to Y, the session is to be immediately
 committed.

 Note that the uids of session submission are not the uids that are
 attributes of the msix root element. Separate uids are required for
 each beginsession request and are referenced in subsequent
 updatesession, commitsession, and abortsession requests.

5.2.2.1. beginsession REQUEST

 <!ELEMENT beginsession (dn, uid, parentid?, property*) >
 <!ATTLIST beginsession commit (y | n) "n">
 commit
 y or n. If y, commit submission immediately

 <!ELEMENT dn (#PCDATA)>
 Distinguished Name of service

 <!ELEMENT uid (#PCDATA)>
 Unique identifier for this session submission

 <!ELEMENT parentid (#PCDATA)>
 uid of parent session, if compound

 <!ELEMENT property (dn, value) >

 If the client wishes to make use of the default value defined by
 the referenced ptype, the client must refrain from sending a
 property element for that ptype in the session.

Blount, Young [Page 14]

INTERNET-DRAFT June 1999

 <!ELEMENT dn (#PCDATA)>
 Distinguished name -- used to identify <ptype>

 <!ELEMENT value (#PCDATA)> Value of property.

5.2.2.2. beginsessionrs RESPONSE

 <!ELEMENT beginsessionrs (status, uid) >

 <!ELEMENT status (code, message?, detail?)>

 +============================+=====================================+
 |code |message |
 +============================+=====================================+
 |msix.org/400 |Bad request |
 +----------------------------+-------------------------------------+
 |msix.org/401 |Request unauthorized |
 +----------------------------+-------------------------------------+
 |msix.org/beginsessionrs/150 |Undefined service dn |
 +----------------------------+-------------------------------------+
 |msix.org/beginsessionrs/400 |Invalid parentid |
 +----------------------------+-------------------------------------+
 |msix.org/beginsessionrs/401 |Invalid property aggregate: multiple |
 | |identical dn's |
 +----------------------------+-------------------------------------+
 |msix.org/beginsessionrs/402 |Invalid property: nonexistent ptype |
 +----------------------------+-------------------------------------+
 |msix.org/beginsessionrs/403 |non-unique session uid |
 +----------------------------+-------------------------------------+
 |msix.org/beginsessionrs/404 |required property not set |
 +----------------------------+-------------------------------------+

 <!ELEMENT uid (#PCDATA)>
 uid of session

5.2.3. Update Session

 This request asks an MSIX server to modify its record of an OPEN
 session. The server's existing knowledge of a particular session
 will be replaced by a new version. This facility enables a client to
 periodically refresh an MSIX server with new information about a
 service being performed.

 As with beginsession, the commit attribute is available as a shortcut
 to committing a transaction. If the commit element is set to Y, the
 session is to be immediately committed. After commit, no further
 updates are allowed.

5.2.3.1. updatesession REQUEST

 <!ELEMENT updatesession (uid, property*) >
 <!ATTLIST updatesession commit (y | n) "n">

 commit

Blount, Young [Page 15]

INTERNET-DRAFT June 1999

 y or n. If y, commit submission immediately

 <!ELEMENT uid (#PCDATA)>
 Unique identifier of the session being updated

 The property element is defined in section 5.2.2.1. Note that all
 properties in a session need not be updated--only those that the
 client wishes to update. The "required" attribute is enforced only
 for beginsession and not for updatesession.

5.2.3.2. updatesessionrs RESPONSE

 <!ELEMENT updatesessionrs (status, uid) >

 <!ELEMENT status (code, message?, detail?)>

 +=============================+====================================+
 |code |message |
 +=============================+====================================+
 |msix.org/400 |Bad request |
 +-----------------------------+------------------------------------+
 |msix.org/401 |Request unauthorized |
 +-----------------------------+------------------------------------+
 |msix.org/408 |Transaction timeout |
 +-----------------------------+------------------------------------+
 |msix.org/updatesessionrs/400 |Nonexistent session uid |
 +-----------------------------+------------------------------------+
 |msix.org/updatesessionrs/401 |Invalid property aggregate: |
 | |multiple identical dn's |
 +-----------------------------+------------------------------------+
 |msix.org/updatesessionrs/402 |Invalid property: nonexistent ptype |
 +-----------------------------+------------------------------------+

5.2.4. Commit Session

 This message requests that an MSIX server commit a session
 transaction. Commit of a parent session recursively cascades commit
 to all child sessions.

5.2.4.1. commitsession REQUEST

 <!ELEMENT commitsession (uid) >

 <!ELEMENT uid (#PCDATA)>
 uid of beginsession request

5.2.4.2. commitsessionrs RESPONSE

 <!ELEMENT commitsessionrs (status, uid) >

 <!ELEMENT status (code, message?, detail?)>

Blount, Young [Page 16]

INTERNET-DRAFT June 1999

 +=============================+====================================+
 |code |message |
 +=============================+====================================+
 |msix.org/400 |Bad request |
 +-----------------------------+------------------------------------+
 |msix.org/401 |Request unauthorized |
 +-----------------------------+------------------------------------+
 |msix.org/408 |Transaction timeout |
 +-----------------------------+------------------------------------+
 |msix.org/commitsessionrs/400 |Nonexistent session uid |
 +-----------------------------+------------------------------------+
 |msix.org/commitsessionrs/401 |Session transaction not OPEN |
 +-----------------------------+------------------------------------+

 <!ELEMENT uid (#PCDATA)>
 uid of committed session

5.2.5. Abort Session

 This message requests that an MSIX server abort a session
 transaction. Abort of a parent session recursively cascades abort to
 all child sessions.

 An aborted transaction will not be provided as a billable record to a
 back-end rating/billing system.

5.2.5.1. abortsession REQUEST

 <!ELEMENT abortsession (uid) >

 <!ELEMENT uid (#PCDATA)>
 uid of beginsession request

5.2.5.2. abortsessionrs RESPONSE

 <!ELEMENT abortsessionrs (status, uid) >

 <!ELEMENT status (code, message?, detail?)>

 +=============================+====================================+
 |code |message |
 +=============================+====================================+
 |msix.org/400 |Bad request |
 +-----------------------------+------------------------------------+
 |msix.org/401 |Request unauthorized |
 +-----------------------------+------------------------------------+
 |msix.org/408 |Transaction timeout |
 +-----------------------------+------------------------------------+
 |msix.org/commitsessionrs/400 |Nonexistent session uid |
 +-----------------------------+------------------------------------+

 |msix.org/commitsessionrs/401 |Session transaction not OPEN |
 +-----------------------------+------------------------------------+

 <!ELEMENT uid (#PCDATA)>

Blount, Young [Page 17]

INTERNET-DRAFT June 1999

 uid of aborted session

5.3 Utilities

 This section describes messages of general utility. They are not
 specific to service definition or session description.

5.3.1 Get Versions

 Requests that the MSIX server identify all versions of the MSIX
 protocol that it supports. The MSIX server returns one or more
 version elements.

 All future versions of MSIX must support the getversions request as
 defined in this document.

5.3.1.1 getversions

 <!ELEMENT getversions EMPTY) >

5.3.1.2 getversionsrs

 <!ELEMENT getversionsrs (status, version+) >

 <!ELEMENT status (code, message?, detail?)>

 +=============================+====================================+
 |code |message |
 +=============================+====================================+
 |msix.org/400 |Bad request |
 +-----------------------------+------------------------------------+

6. Security Considerations

 MSIX depends on its underlying transport for security. In a non-
 secure environment, a number of attacks are possible. Services can
 be created or removed, false session records can be transmitted, and
 so on. No authorization facilities within MSIX are defined or
 supported.

7. References

 [1] Bradner, S. "The Internet Standards Process -- Revision 3", RFC
2026, October 1996.

 [2] Bray, T., J. Paoli, and C. Sperberg-McQueen, "Extensible Markup
 Language (XML) 1.0", W3C Recommendation, February 1998.

 [3] Fielding, R., J. Gettys, J. Mogul, H. Frystyk, and
 T. Berners-Lee. "Hypertext Transfer Protocol--HTTP/1.1", RFC 2068,

https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2068

 January 1997.

 [4] Freir, Alan O., P. Karlton, and P. Kocher, "The SSL Protocol
 Version 3.0, Netscape Communications Corporation, March 1996.

Blount, Young [Page 18]

INTERNET-DRAFT June 1999

 [5] Rivest, R. "The MD5 Message-Digest Algorithm", RFC 1321, April
 1992.

 [6] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246,
 January 1999.

 [7] Postel, J., editor, "INTERNET PROTOCOL", RFC 791, September 1981.

 [8] Postel, J., editor, "TRANSMISSION CONTROL PROTOCOL", RFC 793,
 September 1981.

 [9] "Data elements and interchange formats -- Information interchange
 -- Representation of dates and times", ISO 8601:1988.

8. Acknowledgments

 The authors thank the MSIX partners for their guidance and support,
 and Eric Hughes for his early advice in the shaping of this protocol.

 The Aurora team at NetCentric provided technical input and criticism.
 Team members included Gilbert Benghiat, Navdip Bhachech, Philip
 Kenny, Frank Kim, Bill O'Donnell, Jeff Rago, Scott Swartz, Yiwen Woo,
 and Derek Young. Michael Weintraub, Jianchao Wang, and Tsu-Junk Kung
 at GTE provided valuable criticism and advice.

 The description of a timestamp specification that appears in the
 appendices was lifted from the HTML/4.0 specification, edited by Dave
 Raggett, Arnaud Le Hors, and Ian Jacobs. Text describing the status
 message set and a number of the error codes was poached from RFC

2068, by R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T.
 Berners-Lee.

9. Authors' Addresses

 Alan Blount
 MetraTech Corp.
 411 Waverley Oaks Road
 Waltham, MA 02452
 Email: blount@alum.mit.edu

 Derek Young
 MetraTech Corp.
 411 Waverley Oaks Road
 Waltham, MA 02452
 Phone: +1 781 398 2242
 Fax: +1 781 398 2232
 Email: dyoung@metratech.com

Appendices

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068

Appendix A. Document Type Definition

 <!-- Root Document -->
 <!DOCTYPE msix [

Blount, Young [Page 19]

INTERNET-DRAFT June 1999

 <!ELEMENT msix (defineservice | beginsession | updatesession |
 commitsession | abortsession | status |
 defineservicers | beginsessionrs | updatesessionrs |
 commitsessionrs | abortsessionrs)
 <!ATTLIST msix version CDATA #FIXED '1.2'
 timestamp CDATA #REQUIRED
 uid ID #REQUIRED >] >

 <!-- Misc. elements and attributes -->
 <!ELEMENT version (#PCDATA)>
 <!ELEMENT timestamp (#PCDATA)>
 <!ELEMENT uid (#PCDATA)>
 <!ELEMENT dn (#PCDATA)>
 <!ELEMENT description (#PCDATA)>
 <!ATTLIST description xml:lang NMTOKEN #IMPLIED>
 <!ELEMENT parentdn (#PCDATA)>
 <!ELEMENT type (#PCDATA)>
 <!ELEMENT defaultvalue (#PCDATA)>
 <!ELEMENT parentid (#PCDATA)>

 <!-- ptype support -->
 <!ELEMENT ptype (dn, type, description?, defaultvalue?) >
 <!ATTLIST ptype required (Y | N) "N">

 <!-- property support -->
 <!ELEMENT property (dn, value) >
 <!ELEMENT value (#PCDATA)>

 <!-- status support -->
 <!ELEMENT status (code, message?, detail?)>
 <!ELEMENT code (#PCDATA)>
 <!ELEMENT message (#PCDATA)>
 <!ELEMENT detail (#PCDATA)>

 <!-- Message sets -->

 <!-- Define Service -->
 <!ELEMENT defineservice (dn, version, description, ptype*) >
 <!ELEMENT defineservicers (status, dn, version) >

 <!-- Relate Service -->
 <!ELEMENT relateservices (parentdn, childdn) >
 <!ATTLIST relateservices required (y | n) "n">
 <!ELEMENT parentdn (#PCDATA)>
 <!ELEMENT childdn (#PCDATA)>
 <!ELEMENT relateservicers (status) >

 <!-- Begin Session -->
 <!ELEMENT beginsession (dn, uid, parentid?, property*) >

 <!ATTLIST beginsession commit (Y | N) "N">
 <!ELEMENT beginsessionrs (uid) >

 <!-- Update Session -->
 <!ELEMENT updatesession (uid, property*) >

Blount, Young [Page 20]

INTERNET-DRAFT June 1999

 <!ATTLIST updatesession commit (y | n) "n">
 <!ELEMENT updatesessionrs (status, uid) >

 <!-- Commit Session -->
 <!ELEMENT commitsession (uid) >
 <!ELEMENT commitsessionrs (status, uid) >

 <!-- Abort Session -->
 <!ELEMENT abortsession (uid) >
 <!ELEMENT abortsessionrs (status, uid) >

 <!-- Get Versions -->
 <!ELEMENT getversions EMPTY) >
 <!ELEMENT getversionsrs (version+) >

] >

Appendix B. Timestamps

 MSIX supports a form of timestamp representation defined by ISO
 8601:1988[1]. ISO 8601:1988 allows many options and variations in
 the representation of dates and times. This specification defines a
 specific format which is one of those allowed by ISO 8601:1988.

 The format is:

 YYYY-MM-DDThh:mm:ssTZD

 where:

 YYYY = four-digit year
 MM = two-digit month (01=January, etc.)
 DD = two-digit day of month (01 through 31)
 hh = two-digits of hour (00 through 23) (am/pm NOT allowed)
 mm = two digits of minute (00 through 59)
 ss = two digits of second (00 through 59)
 TZD = time zone designator

 The time zone designator is one of:

 Z
 indicates UTC (Coordinated Universal Time).
 +hh:mm
 indicates that the time is a local time that is hh hours and mm
 minutes ahead of UTC.
 -hh:mm
 indicates that the time is a local time that is hh hours and mm
 minutes behind UTC.

 Exactly the components shown here must be present, with exactly this

 punctuation. Note that the "T" appears literally in the string, to
 indicate the beginning of the time element, as defined in ISO8601.

 If a generating application does not know the time to the second, it

Blount, Young [Page 21]

INTERNET-DRAFT June 1999

 may use the value "00" for the seconds (and minutes and hours if
 necessary). Both of the following examples correspond to November 5,
 1994, 8:15:30 am, US Eastern Standard Time.

 1994-11-05T13:15:30Z
 1994-11-05T08:15:30-05:00

Appendix C. Example Message Exchanges

 This section contains a number of exchanges that illustrate the use
 of MSIX. Material in braces "[]" is not literal. Literal
 replacements will be substituted in a later draft of this document.

C.1. Simple Service Definition

 In this example a client defines a new service.

 Client -> Server

 Client sends a <defineservice> request.

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:25:01Z" uid="[uid0]">
 <defineservice>
 <dn>server.net/Fonecall</dn>
 <version>7.3</version>
 <description>Internet to PSTN telephone call</description>
 <ptype>
 <dn>AccountId</dn>
 <type>STRING</type>
 </ptype>
 <ptype>
 <dn>DialedNumber</dn>
 <type>STRING</type>
 </ptype>
 <ptype>
 <dn>Duration<dn>
 <type>INT32</type>
 </ptype>
 <ptype>
 <dn>StartTime</dn>
 <type>TIMESTAMP</type>
 </ptype>
 </defineservice>
 </msix>

 Server -> Client

 Server responds with a defineservicers element.

Blount, Young [Page 22]

INTERNET-DRAFT June 1999

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:25:02Z" uid="[uid0]">
 <defineservicers>
 <status>
 <code>msix.org/200</code>
 </status>
 <dn>server.net/FoneCall</dn>
 <version>7.3</version>
 </defineservicers>
 </msix>

 C.2. Simple Session Submission

 In this example a client submits a simple session to a server.

 Client -> Server

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:25:03Z" uid="[uid1]">
 <beginsession commit="y">
 <uid>[uid2]</uid>
 <dn>server.net/FoneCall</dn>
 <property>
 <dn>AccountId</dn>
 <value>324955</value>
 </property>
 <property>
 <dn>DialedNumber</dn>
 <value>+16177205200</value>
 </property>
 <property>
 <dn>Duration</dn>
 <value>280</value>
 </property>
 <property>
 <dn>StartTime</dn>
 <value>1997-06-06T09:35:22Z</value>
 </property>
 </beginsession>
 </msix>

 Server -> Client

 Server responds with a beginsessionrs message that includes the uid
 of the session.

Blount, Young [Page 23]

INTERNET-DRAFT June 1999

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:25:03Z" uid="[uid1]">
 <beginsessionrs>
 <status>
 <code>msix.org/200</code>
 </status>
 <uid>[uid2]</uid>
 </beginsessionrs>
 </msix>

C.3. Compound Service Definition

 In this example a client defines a new compound service.

 Client -> Server

 Client sends a defineservice request.

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:26:01Z" uid="[uid5]">
 <defineservice>
 <dn>server.net/FaxBroadcast</dn>
 <version>2.4</version>
 <description>Multiple Destination Fax</description>
 <ptype>
 <dn>AccountId</dn>
 <type>STRING</type>
 </ptype>
 <ptype>
 <dn>Priority</dn>
 <type>STRING</type>
 </ptype>
 </defineservice>
 </msix>

 Server -> Client

 Server responds with a defineservicers element.

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:26:02Z" uid="[uid5]">
 <defineservicers>

Blount, Young [Page 24]

INTERNET-DRAFT June 1999

 <status>
 <code>msix.org/200</code>
 </status>
 <dn>server.net/FaxBroadcast</dn>
 <version>2.4</version>
 </defineservicers>
 </msix>

 Client -> Server

 Client sends another defineservice request.

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:26:03Z" uid="[uid6]">
 <defineservice>
 <dn>server.net/FaxBroadcast/Fax</dn>
 <version>2.6</version>
 <description>Multiple Destination Fax</description>
 <ptype>
 <dn>DialedNumber</dn>
 <type>STRING</type>
 </ptype>
 <ptype>
 <dn>Duration</dn>
 <type>INT32</type>
 </ptype>
 <ptype>
 <dn>StartTime</dn>
 <type>TIMESTAMP</type>
 </ptype>
 <ptype>
 <dn>BitRate</dn>
 <type>INT32</type>
 </ptype>
 </defineservice>
 </msix>

 Server -> Client

 Server responds with a defineservicers element.

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:26:04Z" uid="[uid6]">
 <defineservicers>
 <status>
 <code>msix.org/200</code>

Blount, Young [Page 25]

INTERNET-DRAFT June 1999

 </status>
 <dn>server.net/FaxBroadcast/Fax</dn>
 <version>2.6</version>
 </defineservicers>
 </msix>

 Client -> Server

 Client creates a parent-child relationship between the two services.

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:26:05Z" uid="[uid7]">
 <relateservices required="y">
 <parentdn>server.net/FaxBroadcast</parentdn>
 <childdn>server.net/FaxBroadcast/Fax</childdn>
 </relateservices>
 </msix>

 Server -> Client

 Server responds whith a relateservicesrs element.

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:26:06Z" uid="[uid7]">
 <relateservicesrs>
 <status>
 <code>msix.org/200</code>
 </status>
 </relateservicesrs>
 </msix>

C.4. Compound Session Submission

 In this example a client submits a compound session.

 Client -> Server

 Client sends a "parent" session.

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:27:03Z" uid="[uid10]">
 <beginsession commit="n">

Blount, Young [Page 26]

INTERNET-DRAFT June 1999

 <dn>server.net/FaxBroadcast</dn>
 <uid>[uid11]</uid>
 <property>
 <dn>AccountId</dn>
 <value>bozo22</value>
 </property>
 <property>
 <dn>Priority</dn>
 <value>HIGH</value>
 </property>
 </beginsession>
 </msix>

 Server -> Client

 Server responds with a beginsessionrs messages.

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:27:03Z" uid="[uid10]">
 <beginsessionrs>
 <status>
 <code>msix.org/200</code>
 </status>
 <uid>[uid11]</uid>
 </beginsessionrs>
 </msix>

 Client -> Server

 Client sends a "child" session.

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:27:04Z" uid="[uid12]">
 <beginsession commit="n">
 <dn>server.net/FaxBroadcast/Fax</dn>
 <uid>[uid13]</uid>
 <parentid>[uid11]</parentid>
 <property>
 <dn>DialedNumber</dn>
 <value>12815145802</value>
 </property>

 <property>
 <dn>Duration</dn>
 <value>229</value>
 </property>
 <property>

Blount, Young [Page 27]

INTERNET-DRAFT June 1999

 <dn>StartTime</dn>
 <value>1997-07-01T15:23:57Z</value>
 </property>
 <property>
 <dn>BitRate</dn>
 <value>9600</value>
 </property>
 </beginsession>
 </msix>

 Server -> Client

 Server responds with a beginsessionrs message.

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:27:05Z" uid="[uid12]">
 <beginsessionrs>
 <status>
 <code>msix.org/200</code>
 </status>
 <uid>[uid13]</uid>
 </beginsessionrs>
 </msix>

 Client -> Server

 Client commits parent session.

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:27:06Z" uid="[uid14]">
 <commitsession>
 <uid>[uid10]</uid>
 </commitsession>
 </msix>

 Server -> Client

 Server responds with commitsessionrs elements.

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:27:05Z" uid="[uid14]">
 <commitsessionrs>

Blount, Young [Page 28]

INTERNET-DRAFT June 1999

 <status>
 <code>msix.org/200</code>
 </status>
 <uid>[uid10]</uid>
 </commitsessionrs>
 </msix>

C.5 Session Update and Abort

 A client submits a simple session, makes an update, and then aborts.

 Client -> Server

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:25:03Z" uid="[uid15]">
 <beginsession>
 <uid>[uid16]</uid>
 <dn>server.net/FoneCall</dn>
 <property>
 <dn>AccountId</dn>
 <value>324955</value>
 </property>
 <property>
 <dn>DialedNumber</dn>
 <value>+16177205200</value>
 </property>
 <property>
 <dn>Duration</dn>
 <value>723</value>
 </property>
 <property>
 <dn>StartTime</dn>
 <value>1997-06-06T11:32:15Z</value>
 </property>
 </beginsession>
 </msix>

 Server -> Client

 Server responds with a beginsessionrs message that includes the uid
 of the session.

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:25:04Z" uid="[uid15]">
 <beginsessionrs>

Blount, Young [Page 29]

INTERNET-DRAFT June 1999

 <status>
 <code>msix.org/200</code>
 </status>
 <uid>[uid16]</uid>
 </beginsessionrs>
 </msix>

 Client updates the session's Duration property.

 Client -> Server

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:25:05Z" uid="[uid17]">
 <updatesession>
 <uid>[uid16]</uid>
 <property>
 <dn>Duration</dn>
 <value>850</value>
 </property>
 </updatesession>
 </msix>

 Server -> Client

 Server responds with an updatesessionrs message.

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:25:06Z" uid="[uid17]">
 <updatesessionrs>
 <status>
 <code>msix.org/200</code>
 </status>
 <uid>[uid16]</uid>
 </updatesessionrs>
 </msix>

 Client aborts session

 Client -> Server

 POST cgi/msix HTTP/1.0
 Content-Type: text/plain

 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:25:07Z" uid="[uid18]">

Blount, Young [Page 30]

INTERNET-DRAFT June 1999

 <abortsession>
 <uid>[uid16]</uid>
 </abortsession>
 </msix>

 Server -> Client

 Server responds with an abortsessionrs message.

 HTTP/1.0 200 OK
 Content-Type: text/plain
 Content-Length: [FIXME]

 <?xml version=1.0?>
 <msix version="1.2" timestamp="1997-07-01T15:25:08Z" uid="[uid18]">
 <abortsessionrs>
 <status>
 <code>msix.org/200</code>
 </status>
 <uid>[uid16]</uid>
 </abortsessionrs>
 </msix>

Blount, Young [Page 31]

