
ICCRG Working Group O. Bonaventure
Internet-Draft M. Piraux
Intended status: Experimental Q. De Coninck
Expires: March 13, 2021 UCLouvain
 M. Baerts
 Tessares
 C. Paasch
 Apple
 M. Amend
 Deutsche Telekom
 September 09, 2020

Multipath schedulers
draft-bonaventure-iccrg-schedulers-01

Abstract

 This document proposes a series of abstract packet schedulers for
 multipath transport protocols equipped with a congestion controller.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 13, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Bonaventure, et al. Expires March 13, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Multipath schedulers September 2020

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. An abstract multipath transport protocol 4
3. Packet scheduling challenges 5
4. Packet schedulers . 6
4.1. Round-Robin . 7
4.2. Weighted Round-Robin 7
4.3. Strict Priority . 8
4.4. Round-Trip-Time Threshold 9
4.5. Lowest Round-Trip-Time First 9

 4.6. Combination of schedulers type: Priority and Lowest
 round-trip-time first 11

5. Informative References 12
Appendix A. Change log . 13
A.1. Since draft-bonaventure-iccrg-schedulers-00 13

 Authors' Addresses . 13

1. Introduction

 The Internet was designed under the implicit assumption that hosts
 are equipped with a single network interface while routers are
 equipped with several ones. Under this assumption, an Internet host
 is usually identified by the IP address of its network interface.

 This assumption does not hold anymore today for two reasons. First,
 a growing fraction of the Internet hosts are equipped with several
 network interfaces, usually through different datalink networks.
 These multihomed hosts are reachable via different IP addresses.
 Second, a growing fraction of the hosts that are attached through a
 single network interface are dual-stack and are thus reachable over
 both IPv4 and IPv6.

 Several Internet transport protocols have been extended to leverage
 the different paths that are exposed on such hosts: Multipath TCP
 [RFC6824], the load sharing extensions to SCTP
 [I-D.tuexen-tsvwg-sctp-multipath], Multipath DCCP
 [I-D.amend-tsvwg-multipath-dccp] and Multipath QUIC
 [I-D.deconinck-quic-multipath]. These multipath transport protocols
 differ in the way they are organized and exchange control information
 and user data. However, they all include algorithms to handle three
 problems that any multipath transport protocol needs to solve:

https://datatracker.ietf.org/doc/html/draft-bonaventure-iccrg-schedulers-00
https://datatracker.ietf.org/doc/html/rfc6824

Bonaventure, et al. Expires March 13, 2021 [Page 2]

Internet-Draft Multipath schedulers September 2020

 o Congestion controller

 o Path manager

 o Packet scheduler

 o Packet re-assembly

 From a congestion control viewpoint, the main concern for a multipath
 transport protocol is that a multipath connection should not be
 unfair to single-path transport connections that share a common
 bottleneck. This problem can be solved by coupling the congestion
 windows of the different paths. The solution proposed in [RFC6356]
 is applicable to any transport protocol. Beside providing fairness,
 congestion control can also be a valuable input for different kind of
 traffic distribution algorithm within a packet scheduler. Typically
 metrics like RTT and available capacity can be derived.

 A multipath transport protocol uses different flows during the
 lifetime of a connection. The Path Manager contains the logic that
 regulates the creation/deletion of these flows. This logic usually
 depends on the requirements of the application that uses the
 multipath transport. Some applications use multipath in failover
 situations. In this case, the connection can use one path and the
 path manager can create another path when the primary one fails. An
 application that wishes to share its load among different paths can
 request the path manager to establish different paths in order to
 simultaneously use them during the connection. Many path managers
 have been proposed in the literature [CONEXT15], but these are
 outside the scope of this document.

 The packet scheduler is the generic term for the algorithm that
 selects the path that will be used to transmit each packet on a
 multipath connection. This logic is obviously only useful when there
 are at least two active paths for a given multipath transport
 connection. A variety of packet schedulers have been proposed in the
 literature [ACMCS14] and implemented in multipath transport
 protocols. Experience with multipath transport protocols shows that
 the packet scheduler can have a huge impact on the performance
 achieved by such protocols.

 Packet re-assembly or re-ordering in multipath transport has the
 functionality to equalize the effect of packet scheduling across
 paths with different characteristics and restore the original packet
 order to a certain extent. Obviously, packet re-assembly is the
 counterpart of packet scheduling and located at the far end of the
 multipath transport. However, packet scheduling schemes exists which
 render the re-assembly superfluous or lowering at least its effort.

https://datatracker.ietf.org/doc/html/rfc6356

Bonaventure, et al. Expires March 13, 2021 [Page 3]

Internet-Draft Multipath schedulers September 2020

 In this document, we document a series of multipath packet schedulers
 that are known to provide performance that matches well the
 requirements of specific applications. To describe these packet
 schedulers, we assume an abstract transport that is briefly presented
 in Section 2. In Section 3 we describe the challenges and
 constraints around a multipath scheduler. Finally, we describe the
 different schedulers in Section 4. To keep the description as simple
 and intuitive as possible, we assume here multipath connections that
 are composed of two paths, a frequent deployment scenario for
 multipath transport. This does not restrict the proposed schedulers
 to using only two paths. Implementations are encouraged to support
 more than 2 paths. We leave the discussion on how to adapt these
 abstract schedulers to concrete multipath transport protocols in
 future drafts.

2. An abstract multipath transport protocol

 For simplicity, we assume a multipath transport protocol which can
 send packets over different paths. Some protocols such as Multipath
 TCP [RFC6824] support active and backup paths. We do not assume this
 in this document and leave the impact of these active/backup paths in
 specific documents.

 Furthermore, we assume that there are exactly two active paths for
 the presentation of the packet schedulers. We consider that a path
 is active as long as it supports the transmission of packets.
 Meaning, A Multipath TCP subflow TCP segment with the FIN or RST
 flags set is not considered as an active path. Other constraints are
 possible on whether or not a path is active. These are specific to
 the scheduler and vary depending on the goal of the scheduler. An
 example of these is that when a path has experienced a certain number
 N of retransmission timeouts, the path can be considered inactive.

 We assume that the transport protocol maintains one congestion
 controller per path as in [RFC6356]. We do not assume a specific
 congestion controller, but assume that it can be queried by the
 packet scheduler to verify whether a packet of length l would be
 blocked or not by the congestion control scheme. A window-based
 congestion controller such as [RFC6356] can block a packet from being
 transmitted for some time when its congestion window is full. The
 same applies to a rate-based congestion controller although the
 latter could indicate when the packet could be accepted while the
 former cannot.

 We assume that the multipath transport protocol maintains some state
 at the connection level and at the path level. On both level, the
 multipath transport protocol will maintain send and receive windows,

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6356
https://datatracker.ietf.org/doc/html/rfc6356

Bonaventure, et al. Expires March 13, 2021 [Page 4]

Internet-Draft Multipath schedulers September 2020

 and a Maximum Segment Size that is negotiated at connection
 establishment.

 It may also contain some information that is specific to the
 application (e.g. total amount of data sent or received) and
 information about non-active flows. At the path level, we expect
 that the multipath transport protocol will maintain an accurate
 estimation of the round-trip-time over that path, possibly a send/
 receive window, per path MTU information, the state of the congestion
 controller, and optionally information that is specific to the
 application or the packet scheduler (e.g. priority for one path over
 another one).

3. Packet scheduling challenges

 Packet scheduling tries to balance different quality of service goals
 with different constraints of the paths. The balance depends on
 which of the goals or constraints is the primary factor for the
 experience the application is aiming for. In the following we list
 these goals and constraints and conclude by how they can influence
 each other.

 Each path can be subject to a different cost when transmitting data.
 For example, a path can introduce a per-byte monetary cost for the
 transmission (e.g., metered cellular link). Another cost can be the
 power consumption when transmitting or receiving data. These costs
 are imposing restrictions on when a path can be used compared to the
 lower-cost path.

 A goal for many applications is to reduce the latency of their
 transaction. With multiple paths, each path can have a significantly
 different latency compared to the other paths. It is thus crucial to
 schedule the traffic on a path such that the latency requirements of
 the application are satisfied.

 Achieving high throughput is another goal of many applications.
 Streaming applications often require a minimum bit rate to sustain
 playback. The scheduler should try to achieve this bit rate to allow
 for a flawless streaming experience. Beyond that, adaptive streaming
 requires also a more stable throughput experience to ensure that the
 bit rate of the video stream is consistent. When sending traffic
 over multiple paths the bit rate can experience more variance and
 thus the scheduler for such a streaming application needs to take
 precautions to ensure a smooth experience.

 Finally, transport protocols impose a receive-window that signals to
 the sender how much data the application is willing to receive. When
 the paths have a large latency difference, a multipath transport can

Bonaventure, et al. Expires March 13, 2021 [Page 5]

Internet-Draft Multipath schedulers September 2020

 quickly become receive-window limited. This limitation comes from
 the fact that a packet might have been sent on a high-latency path.
 If the transport imposes in-order delivery of the data, the receiver
 needs to wait to receive this packet over the high-latency path
 before providing it to the application. The sender will thus become
 receive-window limited and may end up under-utilizing the low-latency
 path. This can become a major challenge when trying to achieve high
 throughput.

 All of these quality of service goals and constraints need to be
 balanced against each other. A scheduler might decide to trade
 latency for higher throughput. Or reduce the throughput with the
 goal of reducing the cost.

4. Packet schedulers

 The packet scheduler is executed every time a packet needs to be
 transmitted by the multipath transport protocol. A packet scheduler
 can consider three different types of packets:

 o packets that carry new user data

 o packets that carry previously transmitted user data

 o packets that only carry control information (e.g.,
 acknowledgements, address advertisements)

 In Multipath TCP, the packet scheduler is only used for packets that
 carry data. Multipath TCP will typically return acknowledgements on
 the same path as the one over which data packets were received. For
 Multipath QUIC, the situation is different since Multipath QUIC can
 acknowledge over one path data that was previously received over
 another path. In Multipath TCP, this is only partially possible.
 The subflow level acknowledgements must be sent on the subflow where
 the data was received while the data-level acknowledgements can be
 sent over any subflow.

 This document uses the Python language to represent multipath
 schedulers. A multipath scheduler is represented as a Python
 function. This function takes the length of the next packet to
 schedule as argument and returns the path on which it will be send.
 A path is represented as a Python class with the following
 attributes:

 o srtt: The smoothed RTT of the path [RFC6298].

 o cc_state: The state of the congestion controller, i.e. either
 slow_start, congestion_avoidance or recovery.

https://datatracker.ietf.org/doc/html/rfc6298

Bonaventure, et al. Expires March 13, 2021 [Page 6]

Internet-Draft Multipath schedulers September 2020

 o blocked(l): A function indicating whether a packet of length l
 would be rejected by the congestion controller.

 The schedulers presented can be executed in a simulator
 [MultipathSim] implementing the abstract multipath protocol presented
 in Section 2. It can be used to simulate a file transfer between a
 client and a server over multiple paths.

4.1. Round-Robin

 We use the Round-Robin scheduler as a simple example to illustrate
 how a packet scheduler can be specified, but we do not recommend its
 usage. Experiments with Multipath TCP [ACMCS14] indicate that it
 does not provide good performance.

 This packet scheduler uses one additional state at the connection
 level: last_path. This stores the identifier of the last path that
 was used to send a packet. The scheduler is defined by the code
 shown in Figure 1.

 class RoundRobin(Scheduler):
 """ Chooses an available path in a round-robin manner. """
 last_path: Optional[Path] = None

 def schedule(self, packet_len: int):
 if self.last_path in self.paths:
 next_idx = self.paths.index(self.last_path) + 1
 else:
 next_idx = 0
 sorted_paths = self.paths[next_idx:] + self.paths[:next_idx]
 for p in sorted_paths:
 if not p.blocked(packet_len):
 self.last_path = p
 return p

 Figure 1: A simple Round Robin scheduler

 This scheduler does not distinguish between the different types of
 packets. It iterates over the available paths and sends over the
 ones whose congestion window is open.

4.2. Weighted Round-Robin

 The Weighted Round-Robin scheduler is a more advanced version of the
 Round-Robin scheduler. It allows specifying a particular
 distribution of paths. This can be used to non-uniformly spread
 packets over paths.

Bonaventure, et al. Expires March 13, 2021 [Page 7]

Internet-Draft Multipath schedulers September 2020

 This packet scheduler adds two states:

 o distribution: A list containing the distribution of paths to
 consider. Paths to which more importance is given will be present
 several times in the list. The ordering of the list allows to
 choose whether interleaved or burst sending is preferred.

 o last_idx: It stores the index in the distribution of the last path
 used to send a packet.

class WeightedRoundRobin(Scheduler):
 """ Chooses an available path in a following a fixed distribution. """
 distribution: List[Path]
 last_idx: int = -1

 def schedule(self, packet_len: int) -> Optional[Path]:
 next_idx = (self.last_idx + 1) % len(self.distribution)
 sorted_paths = self.distribution[next_idx:] +
self.distribution[:next_idx]
 for i, p in enumerate(sorted_paths):
 if not p.blocked(packet_len):
 self.last_idx = (self.last.idx + i) % len(self.distribution)
 return p

 Figure 2: A Weighted Round Robin scheduler

 This scheduler does not distinguish between the different types of
 packets. It iterates over the available paths following the given
 distribution and sends over the ones whose congestion window is open.
 A variant of this algorithm could maintain a deficit per path and
 consider the length of packets when distributing them.

4.3. Strict Priority

 The Strict Priority scheduler's aim is to select paths based on a
 priority list. Some paths might go through networks that are more
 expensive to use than others. Then the idea is to select the path
 with the highest priority if it is available before looking at others
 by priority. This scheduler is described by the code shown in
 Figure 3.

Bonaventure, et al. Expires March 13, 2021 [Page 8]

Internet-Draft Multipath schedulers September 2020

class StrictPriority(Scheduler):
 """ Chooses the first available path in a priority list of paths. """

 def schedule(self, packet_len: int):
 for p in sorted(self.paths, key=lambda p: p.priority, reverse=True):
 if not p.blocked(packet_len):
 return p

 Figure 3: A simple Strict Priority scheduler

 This scheduler can face performance issues if, compared to others,
 paths with high priority accept a lot of data but delivered packets
 with a high latency. When the path is experiencing bufferbloat, the
 receiver has to store packets for a long time in its buffers to
 ensure an in-order delivery. It is then recommended to cover these
 cases in the scheduler implementation with the help of the congestion
 control algorithm.

4.4. Round-Trip-Time Threshold

 The Round-Trip-Time Threshold scheduler selects the first available
 path with a smoothed round-trip-time below a certain threshold. The
 goal is to keep the RTT of the multipath connection to a small value
 and avoid having the whole connection impacted by "bad" paths. A
 prototype is shown in Figure 4.

@dataclass
class RTTThreshold(Scheduler):
 """ Chooses the first available path below a certain RTT threshold. """
 threshold: float

 def schedule(self, packet_len: int):
 for p in self.paths:
 if p.srtt < self.threshold and not p.blocked(packet_len):
 return p

 Figure 4: A simple Round-Trip-Time Threshold scheduler

 This kind of protection can of course be added to other existing
 schedulers.

4.5. Lowest Round-Trip-Time First

 The Lowest round-trip-time first scheduler's goal is to minimize
 latency for short flows while at the same time achieving high
 throughput for long flows [ACMCS14]. To handle the latency
 differences across the paths when being limited by the receive-

Bonaventure, et al. Expires March 13, 2021 [Page 9]

Internet-Draft Multipath schedulers September 2020

 window, this scheduler deploys a fast reinjection mechanism to
 quickly recover from the head-of-line blocking.

 At each round, the scheduler iterates over the list of paths that are
 eligible for transmission. To decide whether or not a path is
 eligible, a few conditions need to be satisfied:

 o The congestion window needs to provide enough space for the
 segment

 o The path is not in fast-recovery or experiencing retransmission
 timeouts

 Among all the eligible paths, the scheduler will choose the path with
 the lowest RTT and transmit the segment with the new data on that
 path. Figure 5 illustrates a simple lowest RTT scheduler which does
 not include fast reinjections.

 class LowestRTTFirst(Scheduler):
 """ Chooses the first available path with the lowest RTT. """

 def schedule(self, packet_len: int):
 # Sort paths by ascending SRTT
 for p in sorted(self.paths, key=lambda path: path.srtt):
 if not p.blocked(packet_len) \
 and p.cc_state != 'recovery':
 return p

 Figure 5: A simple Lowest RTT First scheduler

 To handle head-of-line blocking situations when the paths have a
 large delay difference the scheduler uses a strategy of opportunistic
 retransmission and path penalization as described in [NSDI12].

 Opportunistic retransmission kicks in whenever a path is eligible for
 transmission but the receive-window advertised by the receiver
 prevents the sender from transmitting new data. In that case the
 sender can transmit previously transmitted data over the eligible
 path. To overcome the head-of-line blocking the sender will thus
 transmit the packet at the head of the transmission queue over this
 faster path (if it hasn't been transmitted on this particular path
 yet). This packet has thus a chance to quickly reach the receiver
 and fill the hole created by the head-of-line blocking.

 Whenever the previously mentioned mechanism kicks in, it is and
 indication that the path's round-trip-time is too high to allow the
 path with the lower RTT to fully use its capacity. We thus should

Bonaventure, et al. Expires March 13, 2021 [Page 10]

Internet-Draft Multipath schedulers September 2020

 reduce the transmission rate on this path. This mechanism is called
 penalization and is achieved by dividing the congestion window by 2.

 [comment:] ## Out-of-order transmission for in-order arrival

4.6. Combination of schedulers type: Priority and Lowest round-trip-
 time first

 Combining some types of schedulers can be a way to address some use
 cases. For example, a scheduler using the priority and the round-
 trip-time attributes can be used to give more priorities to some
 links having a lower cost (e.g. fixed vs. mobile accesses) while
 still being able to benefit from the advantages of the "Lowest RTT
 First" scheduler described in Section 4.5. A prototype of this
 "hybrid" scheduler is shown in Figure 6.

class PriorityAndLowestRTTFirst(Scheduler):
 """ Chooses the first available path with the highest priority and then the
lowest RTT. """

 def schedule(self, packet_len: int):
 # Sort paths by ascending priority (2nd sort) and then ascending SRTT
(1st sort)
 paths = sorted(self.paths, key=lambda path: path.srtt)
 paths = sorted(paths, key=lambda path: path.priority, reverse=True)
 for p in paths:
 if not p.blocked(packet_len) and p.cc.state is not
CCState.recovery:
 return p

 Figure 6: A scheduler combining priority and RTT attributes

 Combining some properties can have new undesired effects. In the
 case presented here, paths with a higher priority but also a higher
 RTT can affect performances compared to a setup having a scheduler
 not looking at the priority but only the round-trip-time. If paths
 with a higher priority are used first whatever the network conditions
 are on these paths, it is normal to sacrifice the total bandwidth
 capacity but fully use the capacity of these links with a higher
 priority. If the paths with a lower priority are seen as extra
 capacity that can be used only when the other links are congested, it
 is fine if they are not fully used when the sender is limited by the
 global sending window of the multipath connection.

 For this kind of scheduler, it could be interesting to also associate
 the benefits associated to a "Round-Trip-Time Threshold" scheduler
 described in Section 4.4. This scheduler prevents being too impacted
 by links having a higher priority but a very high RTT while other
 paths, with a lower priority and a lower RTT, can be used. It is a

 matter of qualifying what is important: maximizing the use of paths

Bonaventure, et al. Expires March 13, 2021 [Page 11]

Internet-Draft Multipath schedulers September 2020

 over reducing the latency and probably the total bandwidth as well if
 the sender and/or the receiver are limited by congestion windows.

 It is also important to note that the penalization mechanism
 described in the "Lowest round-trip-time first" scheduler in

Section 4.5 also needs to take into account the priority. If the
 goal is to maximize the use of some links over others, links with a
 higher priority cannot be penalized over the ones with a lower
 priority. The consequence of this would be that links with higher
 priority are under used due to the penalization.

 ASCII figure

 Figure 7: A simple figure

5. Informative References

 [ACMCS14] Paasch, C., Ferlin, S., Alay, O., and O. Bonaventure,
 "Experimental Evaluation of Multipath TCP Schedulers",
 Proceedings of the 2014 ACM SIGCOMM workshop on Capacity
 sharing workshop , n.d..

 [CONEXT15]
 Hesmans, B., Detal, G., Barre, S., Bauduin, R., and O.
 Bonaventure, "SMAPP : Towards Smart Multipath TCP-
 enabled APPlications", CoNEXT '15: Proceedings of the 11th
 ACM Conference on Emerging Networking Experiments and
 Technologies , n.d..

 [I-D.amend-tsvwg-multipath-dccp]
 Amend, M., Bogenfeld, E., Brunstrom, A., Kassler, A., and
 V. Rakocevic, "DCCP Extensions for Multipath Operation
 with Multiple Addresses", draft-amend-tsvwg-multipath-

dccp-03 (work in progress), November 2019.

 [I-D.deconinck-quic-multipath]
 Coninck, Q. and O. Bonaventure, "Multipath Extensions for
 QUIC (MP-QUIC)", draft-deconinck-quic-multipath-05 (work
 in progress), August 2020.

 [I-D.tuexen-tsvwg-sctp-multipath]
 Amer, P., Becke, M., Dreibholz, T., Ekiz, N., Iyengar, J.,
 Natarajan, P., Stewart, R., and M. Tuexen, "Load Sharing
 for the Stream Control Transmission Protocol (SCTP)",

draft-tuexen-tsvwg-sctp-multipath-20 (work in progress),
 July 2020.

https://datatracker.ietf.org/doc/html/draft-amend-tsvwg-multipath-dccp-03
https://datatracker.ietf.org/doc/html/draft-amend-tsvwg-multipath-dccp-03
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-05
https://datatracker.ietf.org/doc/html/draft-tuexen-tsvwg-sctp-multipath-20

Bonaventure, et al. Expires March 13, 2021 [Page 12]

Internet-Draft Multipath schedulers September 2020

 [MultipathSim]
 Piraux, M., "Multipath simulator for the IETF draft
 Multipath schedulers", n.d.,
 <https://github.com/obonaventure/draft-

schedulers/blob/master/scheduler_simulator.py>.

 [NSDI12] Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M.,
 Duchene, F., Bonaventure, O., and M. Handley, "How Hard
 Can It Be? Designing and Implementing a Deployable
 Multipath TCP", 9th USENIX Symposium on Networked Systems
 Design and Implementation (NSDI 12) , n.d..

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols",

RFC 6356, DOI 10.17487/RFC6356, October 2011,
 <https://www.rfc-editor.org/info/rfc6356>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

Appendix A. Change log

A.1. Since draft-bonaventure-iccrg-schedulers-00

 o Renamed Delay Threshold to RTT Threshold

 o Added the Priority And Lowest RTT First scheduler

Authors' Addresses

 Olivier Bonaventure
 UCLouvain

 Email: Olivier.Bonaventure@uclouvain.be

 Maxime Piraux
 UCLouvain

 Email: Maxime.Piraux@uclouvain.be

https://github.com/obonaventure/draft-schedulers/blob/master/scheduler_simulator.py
https://github.com/obonaventure/draft-schedulers/blob/master/scheduler_simulator.py
https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc6356
https://www.rfc-editor.org/info/rfc6356
https://datatracker.ietf.org/doc/html/rfc6824
https://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/draft-bonaventure-iccrg-schedulers-00

Bonaventure, et al. Expires March 13, 2021 [Page 13]

Internet-Draft Multipath schedulers September 2020

 Quentin De Coninck
 UCLouvain

 Email: quentin.deconinck@uclouvain.be

 Matthieu Baerts
 Tessares

 Email: Matthieu.Baerts@tessares.net

 Christoph Paasch
 Apple

 Email: cpaasch@apple.com

 Markus Amend
 Deutsche Telekom

 Email: markus.amend@telekom.de

Bonaventure, et al. Expires March 13, 2021 [Page 14]

