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Abstract

This document defines the Common Logic Interface Protocol (CLIP)
framework. CLIP provides a programming language independent interface
between system components. An overview of CLIP is provided as well as
a description of logical systems. In addition, the CLIP syntax is
defined. Example pseudo-code for common clip utility functions are
provided. Finally, some additional notes and recommended practices
are included in the document.
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Introduction

.1. Overview

The Common Logic Interface Protocol (CLIP) framework provides
independent logical systems a simple means of connecting and inter-
operating. CLIP provides a platform and programming language-
independent interface between system components. CLIP's roots are
primarily derived from data flow design methodology and the
fundamental common gateway interface (CGI) [RFC3875] concept of
name/value pair queries typically found on web server URI [RFC3986]
implementations. CLIP is designed to be scaleable. Specifically, CLIP
is intended to be a practical solution that is applicable from small
embedded devices to large scale server environments. In practice, a
CLIP system may be implemented in a multitude of environments. For
example, a script running on a web server, code running on a client
side browser, a native application running on a personal computer, or
firmware within an embedded device. Additionally, systems that
utilize CLIP can interconnect via any data communication method (e.g.
TCP/IP sockets, HTTP, data queues, device memory interface, software
programming interfaces, etc.). It should be noted that CLIP messages
are intended to be REST compatible.


https://datatracker.ietf.org/doc/html/rfc3875
https://datatracker.ietf.org/doc/html/rfc3986
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.2. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

An implementation is not compliant if it fails to satisfy one or more
of the 'must' requirements for the protocols it implements. An
implementation that satisfies all of the 'must' and all of the
'should' requirements for its features is said to be 'unconditionally
compliant'; one that satisfies all of the 'must' requirements but not
all of the 'should' requirements for its features is said to be
'conditionally compliant'.

Logical Systems

A logical system is one or more expressions or sub-systems that
operate on a set of input parameters and MAY generate one or more
output parameters. The input and output to and from logical systems
are name/value pairs as specified in the CLIP Syntax [section 3.1].

Figure 1 shows a high level overview of a simple logical system.

Input 1 ---> | Simple System |---> Output 1

Figure 1 - Simple CLIP Logical System


https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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In practice, a logical system will contain five fundamental elements:
a data input receiver (data_recv), an input handler (clip_in), a
logical system (system), an output generator (clip_out), and a data
output sender (data_send). Figure 1.1 shows these internal elements
using the Simple System from Figure 1 as a model.

I
I
I
I
Input 1 ------------- > | data_recv | |
I
I
I
I
I

| ______________

I I

| ____________

I I

| \%

| mmmmmmmmee e e I
| | clip_in |-->| system |-->| clip_out | |
| --mmmmmme e e I
I I I
[ R e I
I I I
I v I
[ I
| | data_send | --------------- > Qutput 1
I

I

I

Figure 1.1 - CLIP Logical System Internal Elements

The input receiver (data_recv) is responsible for capturing input
data from an input source. The input handler (clip_in) parses input
name/ value strings into a system dependent native format. The
system operates on the native input name/value pairs. The output
generator (clip_out) builds output name/value strings from the
system's native format. The output sender (data_send) distributes
the output data to its intended destination.
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Figure 2 shows a complex logical system that includes multiple input
and output parameters.

| |
Input 1 ---> | | ---> Output 1
| |
| Complex |
| System | .
| | ---> Output M-1
| | ---> Output M
| |

Input N-1 --->
Input N --->

Figure 2 - Complex CLIP Logical System

CLIP can be utilized in both simple and complex logical systems.
Systems can be inter-"clipped", intra-'"clipped", or any combination
thereof.

Figure 3 shows two systems that are inter-clipped. 1In this case,
Output 1 from System A is utilized as Input 2 into System B.
Correspondingly, Output 2 from System B is channeled to System A as
Input 1.

--> Input 1 ---> | SYS A |--> OQutput 1 ---

--- Output 2 <-- | |<--- Input 2 <--
| SYs B |

Figure 3 - Inter-clipped Logical Systems
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Figure 4 shows two logical systems that are intra-clipped. 1In this
case, Input Al of System A is utilized as Input B1 into System B.
Correspondingly, Output B2 from System B is redirected as the Output
A2 from System A. In this example, System A also has an additional
Output A1l.

| SYS A
Input B1

Input Al --> ---> Output A1l

-->| SYS B |-- Output -->|---> Output A2
| | B2

Figure 4 - Intra-clipped Logical Systems
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3. CLIP
3.1 Syntax

The CLIP Interface provides a common format for input and output to
and from logical systems and is specified as a set of name value
pairs delimited by the ampersand ("&") character. Each name/value
pair in a set is delimited by the equals ("=") character.

This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC5234].

uchar = any unicode character except for
"&", "=", or "%"

nv_char = uchar / "%25" / "%26" / "%3D"

name = *( nv_char )

value = *( nv_char )

nv_pair = *( [ name "=" ] value )

clip_input = *( nv_pair *( "&" nv_pair ) )

clip_output = *( nv_pair *( "&" nv_pair ) )


https://datatracker.ietf.org/doc/html/rfc5234
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3.2 Pseudo Code

The code examples (written in Javascript below) outline the functions
that a CLIP system MUST implement for a given programming language.

// CLIP in function

function clip_in(str,limit) {
var in_array = new Array();
var i = 0;
var start = 0;
var next = 0;

if (typeof limit != "undefined") {
for (1=0;i<limit;i++) {
next = str.indexO0f("&",start);
in_array[i] = split_nv(str.substring(start,next));
start = next + 1,
}
in_array[limit] = str.substring(start);
} else {
in_array = str.split('&');
for (x in in_array) {
in_array[x] = split_nv(in_array[x]);
}
}

return in_array;

}

// CLIP out function
function clip_out(out_array) {

for (x in out_array) {
if (out_array[x].name && out_array[x].value) {
out_array[x] = clip_encode(out_array[x].name) + "=" +
clip_encode(out_array[x].value);
} else {
if (out_array[x].name) {
out_array[x] = clip_encode(out_array[x].name);
} else {
out_array[x] = clip_encode(out_array[x].value);
}
}
}

var output = out_array.join('&');
return output;

}
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// Create a name / value pair object
function nv_pair(n,v) {

this.name = n;

this.value = v;

}

// Split a string into a name / value pair object
function split_nv(nv_str) {
var nv = nv_str.split('=");
if (nv.length == 2) {
nvp = new nv_pair(clip_decode(nv[0]),clip_decode(nv[1]));
} else {
nvp = new nv_pair(null,clip_decode(nv_str));
}

return nvp;

}

// Decodes equals and ampersands
function clip_decode( value ) {
var x = trim ( value );
X = x.replace(/%25/g9, "%");

X = X.replace(/%26/g, "&");
X = X.replace(/%3D/g, "=");
return x;

}

// Encodes equals and ampersands
function clip_encode( value ) {
var x = value;
X x.replace(/%/g, "%25");
X x.replace(/&/g, "%26");
X = X.replace(/=/g, "%3D");
return x;

}
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3.3 Example Message Definition
CLIP messages MAY be defined by providing a syntax, any sub-
parameters and (optionally) return parameters. The example below

demonstrates a simple request/response message set that corresponds
to the input and output of a simple echo system.

Echo Example:

"Greeting=Hello&Who=World!" --> | Echo | --> "Response=Hello World!"

Booth Expires July 2011 [Page 10]
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1. Greeting

SYNTAX
Greeting=<greeting_type>&<subparams>

GREETING TYPES

o m e e e e e e e e e e e e e e e e e e e e e e e e e e e em o= +
| valid Vvalues | Description |
ot mm o o e e oo e e e e e e e e e e e e e e e mmm—— oo +
| "Hello" | Salutation |
o +

RETURNS
e . +
| Name | vValues |
o e e e e e e e e e e e e e e e e e e e e e e e e e e mmmm oo +
| "Error" | "Invalid Input" |
N N e e ., +

1.1 Hello

SYNTAX

Greeting=Hello&<subparams>

SUBPARAMS
e e e NN +
| Name | valid Vvalues |
oo e e e e e e e e e e e e e e e e e e oo - +
|  "who" | <name_string> |
gt +

RETURNS
Upon Success return:
gt +
| Name | vValues |
oo e o e e e e e e e e e e e m oo - +
| "Response" | <response_string> |
et +

o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e o= +
| Name | vValues |
o e oo o e e e e e e e e e e e e e e e e e e e e e mmm—— oo +
| Error | "Invalid Input" |
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3.4 Additional Notes and Recommended Practices

3.4.1 Case Sensitivity

CLIP names and values are case sensitive.

3.4.2 Duplicate Names

Only the first name in a set of duplicate names within a CLIP message
SHOULD be processed. For example, if a CLIP message contains
"price=1.00&price=5.00", the logical system parsing the name value
pairs would only act upon "price=1.00" and discard "price=5.00".

3.4.1 Ordering Constraints

[

o

There are no specific ordering constraints on CLIP inputs or outputs
unless specifically defined within a system's protocol definition. It
is preferred that input and output sets be defined in a manner such
that any such ordering constraints are avoided.

Security Considerations

There are no security considerations relevant to this document.

IANA Considerations

No actions are required from IANA as result of the publication of
this document.
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