Internet Draft B. Booth
<draft-booth-clip-00.txt> Motorola Mobility
Creation Date: 2011-01-20

Category: Experimental

Expires July 2011 January 2011

Common Logic Interface Protocol (CLIP) Framework
<draft-booth-clip-00.txt>

Status of this Memo
Distribution of this memo is unlimited.

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on July 24, 2011.
Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.

Booth Expires July 2011 [Page 1]

https://datatracker.ietf.org/doc/html/draft-booth-clip-00.txt
https://datatracker.ietf.org/doc/html/draft-booth-clip-00.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet Draft CLIP January 20, 2011

Abstract

This document defines the Common Logic Interface Protocol (CLIP)
framework. CLIP provides a programming language independent interface
between system components. An overview of CLIP is provided as well as
a description of logical systems. In addition, the CLIP syntax is
defined. Example pseudo-code for common clip utility functions are
provided. Finally, some additional notes and recommended practices
are included in the document.

Table of Contents

=

N I oo Yo [T o} o T 3
P T € 1V 2 o B = T 3
1.2, REQUIIEMENES ittt ittt et et et et ettt et ns 3

2. Logical SYyStemS ...ttt e e e e e 4

G O I 8
1 Y 1 o 8
3.2, PSEUAO COOB .t i ittt ittt ettt e et et e e 9
3.3. Example Message Definitionciiiiiiiiininnnrnnns 10
3.4. Additional Notes and Recommended Practices 12

4. Security Considerationsiiiiiiiintnr ettt 12

5. IANA CONSIiderations ...ttt ittt e e et e e 12

6. Acknowledgements ...ttt i e e 13

A 1= = =1 0 (o= 13

Introduction

.1. Overview

The Common Logic Interface Protocol (CLIP) framework provides
independent logical systems a simple means of connecting and inter-
operating. CLIP provides a platform and programming language-
independent interface between system components. CLIP's roots are
primarily derived from data flow design methodology and the
fundamental common gateway interface (CGI) [RFC3875] concept of
name/value pair queries typically found on web server URI [RFC3986]
implementations. CLIP is designed to be scaleable. Specifically, CLIP
is intended to be a practical solution that is applicable from small
embedded devices to large scale server environments. In practice, a
CLIP system may be implemented in a multitude of environments. For
example, a script running on a web server, code running on a client
side browser, a native application running on a personal computer, or
firmware within an embedded device. Additionally, systems that
utilize CLIP can interconnect via any data communication method (e.g.
TCP/IP sockets, HTTP, data queues, device memory interface, software
programming interfaces, etc.). It should be noted that CLIP messages
are intended to be REST compatible.

https://datatracker.ietf.org/doc/html/rfc3875
https://datatracker.ietf.org/doc/html/rfc3986

Booth Expires July 2011 [Page 2]

Internet Draft CLIP January 20, 2011

1

N

.2. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

An implementation is not compliant if it fails to satisfy one or more
of the 'must' requirements for the protocols it implements. An
implementation that satisfies all of the 'must' and all of the
'should' requirements for its features is said to be 'unconditionally
compliant'; one that satisfies all of the 'must' requirements but not
all of the 'should' requirements for its features is said to be
'conditionally compliant'.

Logical Systems

A logical system is one or more expressions or sub-systems that
operate on a set of input parameters and MAY generate one or more
output parameters. The input and output to and from logical systems
are name/value pairs as specified in the CLIP Syntax [section 3.1].

Figure 1 shows a high level overview of a simple logical system.

Input 1 ---> | Simple System |---> Output 1

Figure 1 - Simple CLIP Logical System

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Booth Expires July 2011 [Page 3]

Internet Draft CLIP January 20, 2011

In practice, a logical system will contain five fundamental elements:
a data input receiver (data_recv), an input handler (clip_in), a
logical system (system), an output generator (clip_out), and a data
output sender (data_send). Figure 1.1 shows these internal elements
using the Simple System from Figure 1 as a model.

I
I
I
I
Input 1 ------------- > | data_recv | |
I
I
I
I
I

| ______________

I I

| ____________

I I

| \%

| mmmmmmmmee e e I
| | clip_in |-->| system |-->| clip_out | |
| --mmmmmme e e I
I I I
[R e I
I I I
I v I
[I
| | data_send | --------------- > Qutput 1
I

I

I

Figure 1.1 - CLIP Logical System Internal Elements

The input receiver (data_recv) is responsible for capturing input
data from an input source. The input handler (clip_in) parses input
name/ value strings into a system dependent native format. The
system operates on the native input name/value pairs. The output
generator (clip_out) builds output name/value strings from the
system's native format. The output sender (data_send) distributes
the output data to its intended destination.

Booth Expires July 2011 [Page 4]

Internet Draft CLIP January 20, 2011

Figure 2 shows a complex logical system that includes multiple input
and output parameters.

| |
Input 1 ---> | | ---> Output 1
| |
| Complex |
| System | .
| | ---> Output M-1
| | ---> Output M
| |

Input N-1 --->
Input N --->

Figure 2 - Complex CLIP Logical System

CLIP can be utilized in both simple and complex logical systems.
Systems can be inter-"clipped", intra-'"clipped", or any combination
thereof.

Figure 3 shows two systems that are inter-clipped. 1In this case,
Output 1 from System A is utilized as Input 2 into System B.
Correspondingly, Output 2 from System B is channeled to System A as
Input 1.

--> Input 1 ---> | SYS A |--> OQutput 1 ---

--- Output 2 <-- | |<--- Input 2 <--
| SYs B |

Figure 3 - Inter-clipped Logical Systems

Booth Expires July 2011 [Page 5]

Internet Draft CLIP January 20, 2011

Figure 4 shows two logical systems that are intra-clipped. 1In this
case, Input Al of System A is utilized as Input B1 into System B.
Correspondingly, Output B2 from System B is redirected as the Output
A2 from System A. In this example, System A also has an additional
Output A1l.

| SYS A
Input B1

Input Al --> ---> Output A1l

-->| SYS B |-- Output -->|---> Output A2
| | B2

Figure 4 - Intra-clipped Logical Systems

Booth Expires July 2011 [Page 6]

Internet Draft CLIP January 20, 2011

3. CLIP
3.1 Syntax

The CLIP Interface provides a common format for input and output to
and from logical systems and is specified as a set of name value
pairs delimited by the ampersand ("&") character. Each name/value
pair in a set is delimited by the equals ("=") character.

This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC5234].

uchar = any unicode character except for
"&", "=", or "%"

nv_char = uchar / "%25" / "%26" / "%3D"

name = *(nv_char)

value = *(nv_char)

nv_pair = *([name "="] value)

clip_input = *(nv_pair *("&" nv_pair))

clip_output = *(nv_pair *("&" nv_pair))

https://datatracker.ietf.org/doc/html/rfc5234

Booth Expires July 2011 [Page 7]

Internet Draft CLIP January 20, 2011

3.2 Pseudo Code

The code examples (written in Javascript below) outline the functions
that a CLIP system MUST implement for a given programming language.

// CLIP in function

function clip_in(str,limit) {
var in_array = new Array();
var i = 0;
var start = 0;
var next = 0;

if (typeof limit != "undefined") {
for (1=0;i<limit;i++) {
next = str.indexO0f("&",start);
in_array[i] = split_nv(str.substring(start,next));
start = next + 1,
}
in_array[limit] = str.substring(start);
} else {
in_array = str.split('&');
for (x in in_array) {
in_array[x] = split_nv(in_array[x]);
}
}

return in_array;

}

// CLIP out function
function clip_out(out_array) {

for (x in out_array) {
if (out_array[x].name && out_array[x].value) {
out_array[x] = clip_encode(out_array[x].name) + "=" +
clip_encode(out_array[x].value);
} else {
if (out_array[x].name) {
out_array[x] = clip_encode(out_array[x].name);
} else {
out_array[x] = clip_encode(out_array[x].value);
}
}
}

var output = out_array.join('&');
return output;

}

Booth Expires July 2011 [Page 8]

Internet Draft CLIP January 20, 2011

// Create a name / value pair object
function nv_pair(n,v) {

this.name = n;

this.value = v;

}

// Split a string into a name / value pair object
function split_nv(nv_str) {
var nv = nv_str.split('=");
if (nv.length == 2) {
nvp = new nv_pair(clip_decode(nv[0]),clip_decode(nv[1]));
} else {
nvp = new nv_pair(null,clip_decode(nv_str));
}

return nvp;

}

// Decodes equals and ampersands
function clip_decode(value) {
var x = trim (value);
X = x.replace(/%25/g9, "%");

X = X.replace(/%26/g, "&");
X = X.replace(/%3D/g, "=");
return x;

}

// Encodes equals and ampersands
function clip_encode(value) {
var x = value;
X x.replace(/%/g, "%25");
X x.replace(/&/g, "%26");
X = X.replace(/=/g, "%3D");
return x;

}

Booth Expires July 2011 [Page 9]

Internet Draft CLIP January 20, 2011

3.3 Example Message Definition
CLIP messages MAY be defined by providing a syntax, any sub-
parameters and (optionally) return parameters. The example below

demonstrates a simple request/response message set that corresponds
to the input and output of a simple echo system.

Echo Example:

"Greeting=Hello&Who=World!" --> | Echo | --> "Response=Hello World!"

Booth Expires July 2011 [Page 10]

Internet Draft CLIP January 20, 2011

1. Greeting

SYNTAX
Greeting=<greeting_type>&<subparams>

GREETING TYPES

o m em o= +
| valid Vvalues | Description |
ot mm o o e e oo e e e e e e e e e e e e e e e mmm—— oo +
| "Hello" | Salutation |
o +

RETURNS
e . +
| Name | vValues |
o e mmmm oo +
| "Error" | "Invalid Input" |
N N e e ., +

1.1 Hello

SYNTAX

Greeting=Hello&<subparams>

SUBPARAMS
e e e NN +
| Name | valid Vvalues |
oo e e e e e e e e e e e e e e e e e e oo - +
| "who" | <name_string> |
gt +

RETURNS
Upon Success return:
gt +
| Name | vValues |
oo e o e e e e e e e e e e e m oo - +
| "Response" | <response_string> |
et +

o m e o= +
| Name | vValues |
o e oo o e mmm—— oo +
| Error | "Invalid Input" |

Booth Expires July 2011 [Page 11]

Internet Draft CLIP January 20, 2011

3.4 Additional Notes and Recommended Practices

3.4.1 Case Sensitivity

CLIP names and values are case sensitive.

3.4.2 Duplicate Names

Only the first name in a set of duplicate names within a CLIP message
SHOULD be processed. For example, if a CLIP message contains
"price=1.00&price=5.00", the logical system parsing the name value
pairs would only act upon "price=1.00" and discard "price=5.00".

3.4.1 Ordering Constraints

[

o

There are no specific ordering constraints on CLIP inputs or outputs
unless specifically defined within a system's protocol definition. It
is preferred that input and output sets be defined in a manner such
that any such ordering constraints are avoided.

Security Considerations

There are no security considerations relevant to this document.

IANA Considerations

No actions are required from IANA as result of the publication of
this document.

Booth Expires July 2011 [Page 12]

Internet Draft CLIP January 20, 2011

6. Acknowledgements

This document has benefited greatly from the comments of Terry
Brogan, Pat Leary, Bill Franks and Dinkar Bhat.

7. References
7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF'", RFC 5234, January 2008.

[RFC3875] Robinson, D. and K. Coar, "The Common Gateway Interface
(CGI) Version 1.1", RFC 3875, October 2004.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66, REC
3986, January 2005.

Authors' Addresses

Bob Booth

Motorola Mobility

101 Tournament Drive

Horsham, PA 19040

EMail: bob.booth@motorola.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3875
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Booth Expires July 2011 [Page 13]

