
TCPM D. Borman
Internet-Draft Quantum Corporation
Intended Status: Standards Track October 14, 2014
File: draft-borman-tcp4way-00.txt
Expires: April 14, 2015

TCP Four-Way Handshake

Abstract

 One of the limitations of TCP is that it has limited space for TCP
 options, only 54 bytes. Many mechanisms have been proposed for for
 extending the TCP option space, but the biggest challenge has been to
 get additional option space in the initial SYN packet.

 This memo presents a optional four-way TCP handshake to allow
 extended option space to be used in SYN packets in both directions.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF). Note that
 other groups may also distribute working documents as Internet-
 Drafts. The list of current Internet-Drafts is at

http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 14, 2015.

Copyright

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

TCPM Expires April 14, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/draft-borman-tcp4way-00.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TCP Four-Way Handshake October 2014

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction 2
 2. Motivation For this Approach 3
 3. TCP Four-Way Handshake 4
 3.1 Overview 4
 3.2 Changes to the TCP state diagram 5
 3.3 Three-Way or Four-Way Handshake? 6
 3.3.1 Non Four-Way Client Sets 4WAY bit 6
 3.3.2 Non Four-Way Server Sets 4WAY bit 6
 3.4 RTT Costs of the Four-Way Handshake 7
 4. Negotiating Non-directional vs. Directional TCP Options 8
 5. TCP Connection State Diagram 9
 6. IANA Considerations 11
 7. Security Considerations 11
 8. References 11
 8.1 Normative References 11
 8.2 Informative References 11

Appendix A. First Response of the Four-Way Handshake 12
Appendix B. Communicating Four-Way Handshake Support 14

 Acknowledgments 14
 Contributors 14
 Author's Address 14

1. Introduction

 The TCP packet format has 54 bytes for adding TCP options. The most
 common method to extend TCP is to define new options, but the limited
 TCP option space can make that difficult as the number of potential
 options grow. Support for various TCP options is typically
 negotiated during the three-way handshake, in the packets that
 contain the SYN. If both sides send and receive a given option in a
 packet with the SYN bit set, then both sides know that the option is
 supported.

 The majority of TCP sessions begin with three-way handshake, the
 exception to that is a simultaneous open.

 The ideas presented in this memo were first hinted at in a message to
 the TCPM mailing list [Borman14].

TCPM Expires April 14, 2015 [Page 2]

Internet-Draft TCP Four-Way Handshake October 2014

2. Motivation For this Approach

 The problem of expanding the TCP option space in the initial SYN
 packet has vexed designers for years. The main issue is maintaining
 compatibility with legacy TCP implementations, which don't understand
 the expanded TCP option space. When the initial SYN is sent, there
 is no knowledge as to whether or not the remote side can understand
 the extended option space. Various approaches have been considered:

 1) Send dual SYNs, with and without the extended options, and
 arrange that the extended SYN will be considered invalid and
 dropped by legacy implementations. [Yourtchenko11] [Briscoe14]
 2) Send an additional out of band packet along with the SYN to
 contain additional options. [Touch14]
 3) Send additional options that didn't fit into the SYN in
 additional packets using a new TCP option. [Eddy08]
 4) Send an initial SYN with extended options that a legacy server
 will fail, and then fall back to a new SYN without extended
 options. [Kohler04]

 [Ramaiah12] contains additional analysis of proposed ways to
 expand the TCP option space.

 Expanding the TCP option space in the initial SYN is a case of the
 more general issue: How can you change the fixed TCP header in the
 initial SYN packet and still maintain compatibility with legacy
 implementations? The TCP Window Scale option [RFC7323] redefined the
 Window field, but only in non-SYN packets. In the case of expanding
 the TCP option space, it involves redefining or overriding the Data
 Offset (DO) field.

 The most straight forward method for dealing with modifying the
 initial SYN packet is to add an initial packet exchange so that the
 client can find out what the server supports, and then it knows, for
 example, if the server supports extended TCP option space. The
 problem with this approach is that it adds an additional RTT to
 connection startup, and most people are looking for ways to shorten,
 not lengthen, the initial connection setup, for example "TCP Fast
 Open" [TFO]. Though to be clear, the extra RTT is really not a
 concern about connection setup, but about when data can be first
 delivered to the application.

 An alternative is to send the additional data in the initial SYN such
 that a legacy TCP will ignore it. This is most commonly done by
 sending the information in a TCP option, which legacy TCP would
 ignore. But the TCP option space is only 54 bytes, and by definition
 an expanded TCP option space won't fit in the legacy TCP option
 space. So, the additional data needs to be sent by some other

https://datatracker.ietf.org/doc/html/rfc7323

 mechanism, e.g. in a second SYN or in an additional non-SYN packet.
 Challenges with this approach include the SYNs being routed to

TCPM Expires April 14, 2015 [Page 3]

Internet-Draft TCP Four-Way Handshake October 2014

 different destination machines, the order of the packets being
 reversed, as well as a server needing to wait some amount of time to
 decide whether or not the additional packet will be arriving.

 The goal of this proposal is to integrate discovery of server
 capabilities into the connection setup, while still allowing for data
 to be delivered in a timely manner.

3. TCP Four-Way Handshake

3.1 Overview

 For a connection with ISS (Initial Send Sequence) values of ISSA from
 the client and ISSB from the server, the normal three-way TCP
 handshake is:

 Enter SYN-SENT
 SYN(seq=ISSA) ->
 Enter SYN-RECEIVED
 <- SYN(seq=ISSB)/ACK(ISSA)
 Enter ESTABLISHED
 ACK(ISSB) ->
 Enter ESTABLISHED

 A simultaneous open is:

 Enter SYN-SENT Enter SYN-SENT
 SYN(seq=ISSA) -> <- SYN(seq=ISSB)

 Enter SYN-RECEIVED Enter SYN-RECEIVED
 SYN(seq=ISSA)/ACK(ISSB) -> <- SYN(seq=ISSB)/ACK(ISSA)

 Enter ESTABLISHED Enter ESTABLISHED

 See [RFC793] page 68 and [RFC1122] page 86.

 The normal scenario for the proposed four-way handshake is:

 Enter SYN-SENT
 SYN(seq=ISSA) ->
 Enter SYN-SENT
 <- SYN(seq=ISSB)/ACK(ISSA)
 Enter SYN-RECEIVED
 SYN(seq=ISSA)/ACK(ISSB) ->
 Enter ESTABLISHED
 <- ACK(ISSA)
 Enter ESTABLISHED

 There are other options for the initial server response in the four-

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122

 way handshake. Those are discussed in Appendix A as well as the

TCPM Expires April 14, 2015 [Page 4]

Internet-Draft TCP Four-Way Handshake October 2014

 reasons they weren't chosen.

3.2 Changes to the TCP state diagram

 The changes can be described entirely as new new state transitions
 and some additional decisions:

 LISTEN -> rcv SYN,
 if (allow4way)
 passive4way=1, snd SYN,ACK -> SYN-SENT
 else
 passive4way=0, snd SND,ACK -> SYN-RCVD
 SYN-SENT -> rcv ACK
 if (passive4way == 1)
 -> ESTABLISHED
 else
 normal error processing

 CLOSED -> active OPEN, create TCB, snd SYN,
 active4way=1 -> SYN-SENT

 SYN-SENT -> rcv SYN,ACK
 if (active4way == 1 && (continue4way))
 snd SYN,ACK -> SYN-RCVD
 else
 snd ACK -> ESTABLISHED

 The "allow4way" and "continue4way" decisions are based on the
 contents of the inbound packet.

 Instead of overloading the SYN-SENT state and burying the decisions
 in the existing LISTEN and SYN-SENT states, the state diagram could
 be expanded with one new state, SYN-ACK-SENT, and two transitional
 states, ALLOW-4WAY and CONTINUE-4WAY. These *-4WAY states are
 transitional because once entered, an immediate decision is made and
 then they are immediately exited to a new state.

 The LISTEN -> SYN-RCVD transition is replaced by:

 LISTEN -> rcv SYN -> ALLOW-4WAY

 ALLOW-4WAY(YES) -> snd SYN,ACK -> SYN-ACK-SENT
 ALLOW-4WAY(NO) -> snd SYN,ACK -> SYN-RCVD

 SYN-ACK-SENT -> rcv SYN,ACK, snd ACK -> ESTABLISHED
 SYN-ACK-SENT -> rcv ACK of SYN, x -> ESTABLISHED

TCPM Expires April 14, 2015 [Page 5]

Internet-Draft TCP Four-Way Handshake October 2014

 and the SYN-SENT -> ESTABLISHED transition is replace by:

 SYN-SENT -> rcv SYN,ACK -> CONTINUE-4WAY

 CONTINUE-4WAY(YES) -> snd SYN,ACK -> SYN-RCVD
 CONTINUE-4WAY(NO) -> snd ACK -> ESTABLISHED

3.3 Three-Way or Four-Way Handshake?

 There are two new decision points for for handling a four-way
 handshake. First, when a connection in LISTEN state receives a SYN
 packet, it has to decide based on the contents of that packet whether
 or not the remote side understands the four-way handshake. This is
 accomplished through the allocation of one of the unused bits in the
 TCP header, the 4WAY bit.

 Note: Other ways to convey support for the four-way handshake were
 considered, these are discussed in Appendix B.

 The client sets the 4WAY bit in the initial SYN. If the server
 receives a 4WAY bit in the initial SYN, then it will set the 4WAY bit
 in the SYN/ACK. If the client recieves a SYN/ACK without the 4WAY
 bit set, it proceeds with the normal three-way handshake. If it
 receives a SYN/ACK with the 4WAY bit set, then based on the options
 in the SYN/ACK it can chose to either proceed with the normal three-
 way handshake, or to continue with the four-way handshake.

 If a packet is received with the 4WAY bit set, but not the SYN bit,
 the 4WAY bit is ignored. When sending a packet without the SYN bit
 set, the 4WAY bit must not be set.

 [RFC3168] notes TCP interoperability issues with the CWR and ECE
 bits, but the 4WAY bit does not have the same issues.

3.3.1 Non Four-Way Client Sets 4WAY bit

 In this case, the server might enter SYN-ACK-SENT state. It will
 respond with a SYN-ACK. Because this looks like the same ACK
 generated in SYN-RCVD state, it will look to the client like a normal
 SYN/ACK packet, other than the 4WAY bit, and it will respond with a
 normal ACK, and the connection will complete with the normal three-
 way handshake.

3.3.2 Non Four-Way Server Sets 4WAY bit

 If the client decides to not continue a four-way handshake, then it
 will respond with an ACK and complete the normal three-way handshake.
 If the client decides that it does want to continue with a four-way
 exchange, it'll send a SYN/ACK. When the server receives the packet,

 the normal TCP processing will strip off the SYN, and continue

TCPM Expires April 14, 2015 [Page 6]

Internet-Draft TCP Four-Way Handshake October 2014

 processing as a normal three-way handshake.

3.4 RTT Costs of the Four-Way Handshake

 When compared to the three-way handshake, the four-way handshake adds
 an additional 0.5 RTT before both sides enter ESTABLISHED state. But
 the more important question is how does the four-way handshake affect
 the delivery of initial data to the application? This is best
 answered by looking at some specific cases, comparing the three-way
 handshake with the four-way handshake.

 Data can be sent on a SYN packet, but it cannot be delivered to the
 application until entering ESTABLISHED state.

 Three-way handshake with data sent once in ESTABLISHED:

 0.0) SYN ->
 0.5) <- SYN/ACK
 1.0) Client enters ESTABLISHED
 ACK w/client data ->
 1.5) Server enters ESTABLISHED, delivers client data.
 <- Server data
 2.0) Client delivers server data

 Four-way handshake with data sent once in ESTABLISHED:

 0.0) SYN ->
 0.5) <- SYN
 1.0) SYN/ACK->
 1.5) Server enters ESTABLISHED state
 ACK w/Server data
 2.0) Client enters ESTABLISHED state
 Client delivers server data
 ACK w/client data ->
 2.5) Server delivers client data

 So in both cases, the server data is delivered at the client after 2
 RTTs, and for the four-way the client's data is delivered to the
 server at 2.5 RTT instead of 1.5 RTT, so 1 RTT later.

 Now, let's look at both cases with data in the SYN/ACK:

 Three-way handshake:

 0.0) SYN ->
 0.5) <- SYN/ACK w/server-data
 1.0) Client enters ESTABLISHED
 Client delivers server-data
 ACK w/client data ->

 1.5) Server enters ESTABLISHED

TCPM Expires April 14, 2015 [Page 7]

Internet-Draft TCP Four-Way Handshake October 2014

 Server delivers client-data.

 Four-way handshake:

 0.0) SYN ->
 0.5) <- SYN
 1.0) SYN/ACK with client-data ->
 1.5) Server enters ESTABLISHED
 Server delivers client-data
 <- ACK w/server data
 2.0) Client enters ESTABLISHED
 Client delivers server-data.

 You get the same differences, but reversed. The client's data is
 delivered after 1.5 RTTs in both cases, and the servers data is
 delivered 1 RTT later, at 2.0 RTT instead of 1.0 RTT.

 If you put the data with the bare SYN, the initial data doesn't get
 delivered any sooner, because you still have to wait for the ACK of
 the SYN to deliver the data.

4. Negotiating Non-directional vs. Directional TCP Options

 TCP options that are negotiated in the initial SYN exchange can be
 classified as either non-directional or directional. An example of a
 non-directional option is the TCP Window Scale option. Negotiating a
 non-directional TCP option falls naturally into the Four-Way
 handshake, but allows for more options to be negotiated than will fit
 into the initial SYN packet when using expanded TCP option space. In
 order to allow this, the SYN/ACK from the server, with the TCP
 Extended Data option (EDO) [EDO], can contain initial negotiation for
 TCP options that weren't received in the initial SYN, which the
 client can then acknowledge in its SYN/ACK, using the EDO option.
 Because the options are non-directional, it doesn't matter which side
 presents it first.

 Directional options do not fall as cleanly into the extended four-way
 handshake. A directional option is one which is originated in the
 initial SYN, and the servers response in the SYN/ACK is determined in
 direct response to the inbound option. For example, assume an option
 FOO that has 100 variants, where servers typically have support for
 all 100 variants, but clients usually only a small number. The
 client sends option FOO with a short list of variants that it
 supports, and then the server chooses which one of those to use, and
 responds with that variant. If instead the server initiates the the
 option in the SYN/ACK, it'd have to include all 100 variants and let
 the client choose from that list. In the future, new TCP options
 would need to be designed to work in the context of the four-way

 handshake. For existing directional options, it would not be
 unreasonable to require that they be included in the initial SYN, and

TCPM Expires April 14, 2015 [Page 8]

Internet-Draft TCP Four-Way Handshake October 2014

 other non-directional options would be deferred and negotiated in the
 SYN/ACK exchange.

5. TCP Connection State Diagram

 The following diagram is modified from the diagram in RFC 793
 [RFC793]. In addition to adding the "ALLOW 4WAY?", "CONTINUE 4WAY?"
 and "SYN-ACK SENT" states, it also includes the three changes listed
 in RFC 1122 [RFC1122]:

 "(a) The arrow from SYN-SENT to SYN-RCVD should be labeled
 with "snd SYN,ACK", to agree with the text on page 68
 and with Figure 8.

 (b) There could be an arrow from SYN-RCVD state to LISTEN
 state, conditioned on receiving a RST after a passive
 open (see text page 70).

 (c) It is possible to go directly from FIN-WAIT-1 to the
 TIME-WAIT state (see page 75 of the spec)."

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122

TCPM Expires April 14, 2015 [Page 9]

Internet-Draft TCP Four-Way Handshake October 2014

 TCP Connection State Diagram
 +--------+ --------\
 | CLOSED |<------\ \ active OPEN
 +--------+ \ \ -----------
 passive OPEN | ^ CLOSE \ \ create TCB
 ------------ | | ---------- \ \ snd SYN
 create TCB V | delete TCB \ \
 +--------+ \ \
 rcv SYN | LISTEN | CLOSE \ \
 ------- +--------+ ---------- \ |
 +-------------+ x / ^ | SEND delete TCB | V
 | ALLOW 4WAY? |<------------- | | ------- +---------+
 | |------------ | \ snd SYN | |
 +-------------+ YES \ | ------------------>| SYN |
NO -----------		---------------	SENT
----------- snd SYN,ACK	\ / rcv SYN		
snd SYN,ACK V \	-----------		
+--------------+ \	snd SYN,ACK +---------+		
	SYN-ACK SENT	\	rcv SYN,ACK
+--------------+		-----------	
rcv SYN,ACK		rcv ACK of SYN	
-----------		--------------	
snd ACK	\ x		
V \ -----------		-----	
+---------+ ----------- \		/ +----------------+	
	rcv RST \	/	
SYN	----------------------)-)- /	-----------	-------
RCVD	<---------------------)-)--- / snd SYN,ACK	snd ACK	
	<---------------------)-)------ /		
	------------------		-------------------
+---------+ rcv ACK of SYN \		/	
CLOSE -------------- V V V V			
------- x CLOSE +-------------+ rcv FIN			
V snd FIN -------	ESTABLISHED	------- +---------+	
+--------+ snd FIN		snd ACK	CLOSE
FIN	<------------------		-------------->
WAIT-1	----------------- +-------------+		
	-------- \ +---------+		
+--------+ \ ------------------+ rcv FIN CLOSE			
rcv ACK of FIN		------- -------	
--------------	rcv FIN,ACK of FIN V snd ACK snd FIN V		
V x	------------------ +---------+ +----------+		
+-----------+	x	CLOSING	
FINWAIT-2		+---------+ +----------+	
+-----------+	rcv ACK of FIN	rcv ACK of FIN	
rcv FIN	--------------	--------------	
------- \ x V x V			
 \ snd ACK --------->+-----------+ Timeout=2MSL +--------+

 --------------------------->| TIME WAIT |-------------->| CLOSED |
 +-----------+ delete TCB +--------+

TCPM Expires April 14, 2015 [Page 10]

Internet-Draft TCP Four-Way Handshake October 2014

6. IANA Considerations

 TBD

7. Security Considerations

 TBD

8. References

8.1 Normative References

 [RFC793] Postel, J., "Transmission Control Protocol - DARPA Internet
 Program Protocol Specification", RFC 793, DARPA, September
 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

8.2 Informative References

 [Borman14] Borman, D., "Re: [tcpm] New Version Notification for
draft-touch-tcpm-tcp-edo-01.txt", message to the TCPM

 mailing list, 22 May 2014, <http://www.ietf.org/mail-
archive/web/tcpm/current/msg08804.html>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC 3168,
 September 2001, <http://www.rfc-editor.org/info/rfc3168>.

 [RFC7323] Borman, D., Braden, R., Jacobson, V., and R. Scheffenegger,
 Ed., "TCP Extension for High Performance", RFC 7323,
 September 2014, <http://www.rfc-editor.org/info/rfc7323>.

 [TFO] Cheng, Y., Jhu, J., Radhakrishnan, S., and A. Jain, "TCP Fast
 Open", Work in Progress, draft-ietf-tcpm-fastopen-10.txt,
 September 2014.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
http://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-tcp-edo-01.txt
http://www.ietf.org/mail-archive/web/tcpm/current/msg08804.html
http://www.ietf.org/mail-archive/web/tcpm/current/msg08804.html
https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc7323
http://www.rfc-editor.org/info/rfc7323
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-10.txt

TCPM Expires April 14, 2015 [Page 11]

Internet-Draft TCP Four-Way Handshake October 2014

 [EDO] Joe Touch, J., and W. Eddy, "TCP Extended Data Offset Option",
 Work in Progress, draft-ietf-tcpm-tcp-edo-01.txt, October
 2014.

 [Kohler04] Kohler, E, "Extended Option Space for TCP" Work in
 Progress, draft-kohler-tcpm-extopt-00.txt, September 2004.

 [Touch14] Touch, J., Briscoe, B., and T. Faber, "TCP SYN Extended
 Option Space in the Payload of a Supplementary Segment",
 Work in Progress, draft-touch-tcpm-tcp-syn-ext-opt-01.txt,
 September 2014.

 [Eddy08] Eddy, W., and A. Langley, "Extending the Space Available for
 TCP Options", Work in Progress, draft-eddy-tcp-loo-04,
 July 2008.

 [Yourtchenko11] Yourtchenko, A., "Introducing TCP Long Options by
 Invalid Checksum", Work in Progress, draft-yourtchenko-

tcp-loic-00.txt, April 2011.

 [Ramaiah12] Ramaiah, A., "TCP option space extension", Work in
 Progress, draft-ananth-tcpm-tcpoptext-00.txt, March 2012.

 [Briscoe14] Briscoe, B., "Extended TCP Option Space in the Payload of
 an Alternative SYN", Work in Progress, draft-briscoe-tcpm-

syn-op-sis-02, September 2014.

Appendix A. First Response of the Four-Way Handshake

 For a connection with ISS values of ISSA from the client and ISSB
 from the server, three different options for the first server
 response were considered:

 (1) SYN(seq=ISSB)
 (2) SYN(seq=ISSB)/ACK(seq=ISSA-1)
 (3) SYN(Seq=ISSB)/ACK(seq=ISSA)

 SYN(seq=ISSB)

 The original idea for the four-way handshake was to have the
 server do a simple turn-around of the TCP three-way handshake, by

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-edo-01.txt
https://datatracker.ietf.org/doc/html/draft-kohler-tcpm-extopt-00.txt
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-tcp-syn-ext-opt-01.txt
https://datatracker.ietf.org/doc/html/draft-eddy-tcp-loo-04
https://datatracker.ietf.org/doc/html/draft-yourtchenko-tcp-loic-00.txt
https://datatracker.ietf.org/doc/html/draft-yourtchenko-tcp-loic-00.txt
https://datatracker.ietf.org/doc/html/draft-ananth-tcpm-tcpoptext-00.txt
https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-syn-op-sis-02
https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-syn-op-sis-02

TCPM Expires April 14, 2015 [Page 12]

Internet-Draft TCP Four-Way Handshake October 2014

 responding to the initial SYN with another bare SYN. Because it
 had already received a SYN and knows that the client supports the
 four-way handshake, it could respond with a plain SYN, making use
 of header modifying options that the client had indicated it
 supported. This is similar to a a simultaneous open, except the
 server is able to transition from SYN-SENT to ESTABLISHED instead
 of going through SYN-RECEIVED state.

 Enter SYN-SENT
 SYN(seq=ISSA) ->
 Enter SYN-SENT
 <- SYN(seq=ISSB)
 Enter SYN-RECEIVED
 SYN(seq=ISSA)/ACK(ISSB) ->
 Enter ESTABLISHED
 <- ACK(ISSA)
 Enter ESTABLISHED

 The problems with this approach are that it forces the full four-
 way handshake, and a middle-box in the path might block the
 returning bare SYN.

 SYN(seq=ISSB)/ACK(seq=ISSA-1)

 This response also turns the three-way handshake into something
 that looks a lot like a simultaneous open, since the ACK does not
 acknowledge the SYN. The disadvantage is that it also forces a
 full four-way handshake, since it does not acknowledge the initial
 SYN. However, this should work better for getting through a
 middle-box since it is not a bare SYN. But if the middle-box is
 digging into the TCP packet and tries to verify the ACK field, it
 might still block this packet since it is not the expected ACK
 field of the normal three-way handshake.

 SYN(seq=ISSB)/ACK(seq=ISSA)

 This response looks like the normal three-way handshake response,
 which gives the client the ability to choose whether to complete
 the three-way handshake by sending an ACK(ISSB), or continue the
 four-way handshake by responding with SYN(seq=ISSA)/ACK(ISSB).
 The advantage of this option is that it doesn't always force the
 four-way handshake, and to a middle-box the packets look like the
 normal TCP packets that it expects to see.

 The third option offers the least possibility that middle-boxes will
 block the packets, and also leaves the flexibility for deciding on a
 three-way or four-way handshake up to the client. Because it is to
 the client's benefit to have a four-way handshake, it should be the

 one to decide whether or not the four-way handshake is needed for a

TCPM Expires April 14, 2015 [Page 13]

Internet-Draft TCP Four-Way Handshake October 2014

 particular handshake.

Appendix B. Communicating Four-Way Handshake Support

 Besides allocating a 4WAY bit in the TCP header, two other options
 were considered for communicating support for the four-way handshake:

 Create a new 4WAY TCP option

 This does not have the interoperability issues that the 4WAY
 TCP bit has, because it is assumed that connections will not
 send unknown TCP options. The disadvantage of this is that it
 requires two more bytes out of the TCP option space.

 Implied support by other TCP options

 The primary motivation for the four-way handshake is to give
 the client a second chance to send TCP options in a SYN. This
 is intended for use with the new TCP EDO option, and the
 presence of the EDO option could imply support for the four-way
 handshake. This allows the client to send additional TCP
 options using the TCP EDO option in a SYN/ACK packet.

Acknowledgments

 TBD

Contributors

 TBD

Author's Address

 David Borman
 Quantum Corporation
 1155 Centre Pointe Drive, Suite 1
 Mendota Heights, MN 55120

 Phone: (651) 688-4394
 Email: david.borman@quantum.com

TCPM Expires April 14, 2015 [Page 14]

